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Abstract
Background: Brucellosis is a major bacterial zoonosis affecting domestic livestock and wild mammals, as well as 
humans around the globe. While conducting proteomics studies to better understand Brucella abortus virulence, we 
consolidated the proteomic data collected and compared it to publically available genomic data.

Results: The proteomic data was compiled from several independent comparative studies of Brucella abortus that used 
either outer membrane blebs, cytosols, or whole bacteria grown in media, as well as intracellular bacteria recovered at 
different times following macrophage infection. We identified a total of 621 bacterial proteins that were differentially 
expressed in a condition-specific manner. For 305 of these proteins we provide the first experimental evidence of their 
expression. Using a custom-built protein sequence database, we uncovered 7 annotation errors. We provide 
experimental evidence of expression of 5 genes that were originally annotated as non-expressed pseudogenes, as well 
as start site annotation errors for 2 other genes.

Conclusions: An essential element for ensuring correct functional studies is the correspondence between reported 
genome sequences and subsequent proteomics studies. In this study, we have used proteomics evidence to confirm 
expression of multiple proteins previously considered to be putative, as well as correct annotation errors in the 
genome of Brucella abortus strain 2308.

Background
Brucella species bacteria are gram negative alpha pro-
teobacteria superbly adapted for survival in intracellular
environments. They infect a wide range of mammals,
including essentially all economically important domestic
mammals, many wild species, and humans. Brucellosis is
the largest bacterial zoonosis in the world [1-3]. In
humans, untreated brucellosis is a long lasting disease
characterized by recurrent fever episodes and clinical
manifestations that include spondylitis, severe head-
aches, joint or abdominal pain, endocarditis, and menin-
goencephalitis. In severe non-treated cases brucellosis
can cause death [1-3].

Seven terrestrial Brucella species have been defined:
Brucella melitensis, Brucella abortus, Brucella suis, Bru-

cella ovis, Brucella canis, Brucella neotomae and Brucella
microti which infect goats, cattle, pigs, sheep, dogs, desert
wood rats and common voles, respectively [1,4]. Two
Brucella species infecting marine mammals such as dol-
phins, whales, seals, sea lions and walrus have also been
defined as Brucella ceti and Brucella pinnipedialis [5-7].
With the exception of B. suis biovar 3, the Brucella
genome is encoded on two chromosomes, containing in
total approximately 3,500 genes. Genome sequences from
32 different Brucella strains, representing all species,
have been published either as complete genomes (10
strains) or as draft assemblies in NCBI (22 strains) [8-14].
The raw genome sequencing data of 78 other strains is
also available in the Sequence Read Archive of NCBI. The
genome sequences were very highly homologous,
although regions of unique genetic material were also
observed. It is possible that these regions are involved in
establishing the distinct host preferences and biological
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behavior of the different Brucella species sequenced to
date [15].

Unlike other pathogenic bacteria, Brucella virulence
does not appear to be the result of relatively few virulence
genes that can be transferred horizontally via plasmids,
phages, or assembled in pathogenicity islands. Brucella
also lack typical virulence factors such as exotoxins, fla-
gella, capsules, and type III secretion systems. Rather, the
pathogen's virulence appears to be an integrated aspect of
its physiology. Therefore, to better understand Brucella
virulence, we will need to better understand the Brucella
proteome, including how it changes during the different
stages of the intracellular and extracellular Brucella life-
cycles, and how it interacts with host proteins and pro-
cesses. Indeed, we have previously demonstrated that
Brucella bacteria are capable of extensive, reversible,
remodeling of their cell envelopes [16]. Furthermore, dur-
ing the establishment of an intracellular infection, Bru-
cella bacteria also appear able to carry out extensive, and
reversible, modifications to their biosynthetic pathways
and respiration in order to adapt to the changing
microenvironments encountered in infected host cells
[17]. This suggests that the Brucella proteome is consid-
erably more dynamic than previously suspected, and that
in depth proteomic analysis of the pathogen, as well as
integration of these data with the available genomic infor-
mation, will result in novel mechanistic and possibly
therapeutic insights.

In this work we have generated a synthesis of the pro-
teomic datasets we produced from multiple independent
comparisons of Brucella strains either grown in media or
retrieved from infected host cells. Some of this data is
currently publicly available [[16,17];http://proteomicsre-
source.org/Default.aspx] with the remainder becoming
available as part of this work. These studies were origi-
nally designed to identify experimental condition-specific
differences in the Brucella proteome. We compiled the
experimental evidence for any Brucella protein detected
and compared the proteomic data to the available
genomic data. We provide the first direct experimental
evidence for the expression of 305 Brucella proteins, but
also identified experimental evidence for the expression
of five genes previously annotated as pseudogenes, and of
start site errors in two other genes.

Results and Discussion
First experimental evidence of the expression of 305 
proteins in B. abortus 2308
Samples used for the proteomic analysis came from B.
abortus either grown extracellularly in media or isolated
from infected RAW264.7 macrophages. The extracellular
samples included whole bacteria grown directly in tryptic
soy broth, outer membrane preparations (blebs) [16] and
cytosols. Intracellular samples consisted of viable B. abor-

tus isolated at different time points post-infection from
RAW264.7 macrophages [17] and of phagosomes isolated
from infected murine phagocytic cells. We obtained 1704
peptides representing 621 different proteins, correspond-
ing to approximately 20% of the predicted proteome. For
305 proteins, we are reporting the first experimental evi-
dence of their expression in B. abortus 2308 (Table 1). We
also report genome annotation errors for two proteins,
expression of ORFs annotated pseudogenes for four pro-
teins and one correction to the sequence of another pre-
viously annotated pseudogene which allows for its full
length expression. Peptide sequences corresponding to
these 312 proteins are listed in Additional File 1. The pep-
tide coverage for the 305 newly demonstrated proteins
varied from 1 to 20, with an average of three peptides per
protein. In order to confirm the expression of proteins
identified by a single peptide, we manually validated all
MSMS spectra that had a sequence assignment score
smaller than 45. Forty-four of the 305 proteins were
described previously as hypothetical with no putative
function. When subcellular localizations were predicted
using three publicly available tools [18-20], 226 proteins
were predicted to be cytosolic, ten were inner membrane
proteins, 25 were periplasmic, three were outer mem-
brane proteins and the localization of 48 proteins could
not be predicted (Table 1). Experimental evidence for the
expression of the other 309 of the 620 proteins has been
demonstrated previously by our group [16,17] and others
[21-31]. It is important to note that we are reporting an
analysis of the combined results of several independent
experiments using the same bacterial strain and technol-
ogy to acquire the data. However, each experiment was a
separate comparative study designed to identify differen-
tially expressed bacterial proteins under specific condi-
tions per experiment. Proteins that were not sufficiently
differentially expressed under the experimental condi-
tions used would have not been identified. Thus, while
our results can be used to confirm that the proteins
reported were expressed, they may underestimate under
what conditions they can become expressed.

Correction of five pseudogene annotations
In previous studies using B. abortus 2308, we used the
genome databases available on NCBI for B. abortus, B.
melitensis and B. suis for protein identification. More
than once, we obtained peptides which matched proteins
supposedly expressed only by the latter two species.
Upon verification, those peptides were manually assigned
to ORFs of previously annotated pseudogenes of B. abor-
tus strain 2308 (NCBI taxonomy ID 359391). We there-
fore assembled a custom protein database which included
the predicted translation sequence of all B. abortus 2308
ORFs annotated as pseudogenes. Using this database, we
were able to confirm the protein expression of five of
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Table 1: B. abortus 2308 proteins for which the expression was demonstrated for the first time

Cytoplasm

BAB1_0002 DnaN BAB1_0855 GRX family BAB1_1449 UDP-N- BAB1_2149 PepS

BAB1_0022 Unknown BAB1_0856 BolA-related acetylmuramate BAB1_2168 RpsO; S15

BAB1_0023 AroA BAB1_0857 FGAM synthase II L-alanine ligase BAB1_2173 FabB

BAB1_0035 KdsB BAB1_0861 PurS BAB1_1508 CarB BAB2_0083 Eda2

BAB1_0063 Unknown BAB1_0864 HpcH/HpaI BAB1_1512 CspA BAB2_0090 GCN5-related

BAB1_0071 ArgG BAB1_0874 AcpP BAB1_1523 GreA N-acetyltransferase

BAB1_0100 Putative AsnC family BAB1_0880 HAD-like BAB1_1528 SseA-1 BAB2_0109 Gnd

BAB1_0107 Trs-ABC (P-loop) BAB1_0886 NN:DBI PRT BAB1_1538 OmpR BAB2_0160 Unknown

BAB1_0118 Unknown BAB1_0896 ArgS BAB1_1547 PepQ BAB2_0162 L-carnitine

BAB1_0122 GyrB BAB1_0898 NagZ BAB1_1549 PrsA dehydratase

BAB1_0139 NifU BAB1_0918 GatB/Yqey BAB1_1553 YchF BAB2_0177 YafB

BAB1_0159 S30EA BAB1_0924 AccC BAB1_1613 Unknown BAB2_0186 Fumarate hydratase

BAB1_0160 PtsN-like BAB1_0933 PCRF 2 BAB1_1645 DhaK-1 BAB2_0187 Unknown

BAB1_0191 GABAtrnsam BAB1_0943 TyrS BAB1_1646 DhaK-2 BAB2_0191 HAD-like,

BAB1_0204 AdhP BAB1_0949 SufC BAB1_1655 GabD subfamily IIA

BAB1_0215 ThiE BAB1_0955 DeaD BAB1_1669 PAS domain BAB2_0198 Pseudouridine

BAB1_0216 ThiG BAB1_0960 Trs heavy metal BAB1_1671 TcaR synthase

BAB1_0242 ManR BAB1_1014 MetG BAB1_1687 Dut BAB2_0216 3-hydroxybutyryl-CoA

BAB1_0285 HisD BAB1_1030 Gor BAB1_1695 PurA dehydrogenase

BAB1_0317 Trs arginine/
ornithine

BAB1_1037 Mandelate 
racemase;

BAB1_1702 Phosphoglucosa
mine

BAB2_0246 P47K

BAB1_0331 ArgD muconate 
lactonizing

mutase BAB2_0293 Gal

BAB1_0344 Pip BAB1_1043 Unknown BAB1_1719 ThiE BAB2_0295 DgoK

BAB1_0353 Unknown BAB1_1050 FolB BAB1_1722 Efp BAB2_0296 KdgA

dehydrogenase BAB1_1077 Ach1p BAB1_1751 Unknown BAB2_0335 NADH:flavin oxidore-

BAB1_0416 DUF85 BAB1_1096 NifU-like BAB1_1761 PyK ductase/NADH 
oxidase

BAB1_0429 Polyprenyl 
synthetase

BAB1_1098 PRA-CH BAB1_1778 FdxA BAB2_0337 RocF

BAB1_0446 DnaJ BAB1_1121 DNA gyrase 
subunit A

BAB1_1781 Unknown BAB2_0343 Trx-2

BAB1_0447 FabI-1 BAB1_1130 ClpA/B BAB1_1804 MarR family BAB2_0358 Dcp

BAB1_0482 FabD BAB1_1132 ClpP BAB1_1810 AtpH BAB2_0361 TypA

BAB1_0484 AcpP BAB1_1156 KdsA BAB1_1813 Transaldolase BAB2_0365 FbaA

BAB1_0489 Guanylate kinase BAB1_1157 PyrG BAB1_1815 LeuS BAB2_0366 RpiB/LacA/LacB

BAB1_0510 ThrC BAB1_1161 TpiA BAB1_1819 ACAT BAB2_0367 TIM 2

BAB1_0525 PpdK BAB1_1164 TrpC BAB1_1824 PurH BAB2_0370 EryC

BAB1_0532 Transthyretin BAB1_1169 GltX BAB1_1837 CynT BAB2_0448 Unknown

BAB1_0540 Formyl transferase, BAB1_1170 GltA BAB1_1840 MmsA BAB2_0457 FolD

N-terminal BAB1_1174 FabZ BAB1_1872 PrfA BAB2_0459 Pgl

BAB1_0544 DegT/DnrJ/EryC1/
StrS

BAB1_1187 Endoribonuclease BAB1_1874 LysC BAB2_0460 Zwf

BAB1_0561 Man-6-P isomerase L-PSP BAB1_1879 GrxC BAB2_0483 ShuT

type II BAB1_1188 GDPD BAB1_1887 HemC BAB2_0513 GcvT

BAB1_0570 XylA BAB1_1205 ElaB-domain BAB1_1895 FtsK-gamma BAB2_0518 PutA

BAB1_0587 Unknown BAB1_1212 BhbA BAB1_1918 LpdA-2 BAB2_0566 AldA

BAB1_0588 ATP/GTP-binding BAB1_1213 Unknown; 
conserved

BAB1_1926 SucC BAB2_0568 Unknown
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BAB1_0641 Alanine aminopep- BAB1_1223 AlaS BAB1_1936 GloB BAB2_0572 IlvE

tidase: Neutral zinc BAB1_1224 RecA BAB1_1946 SecA BAB2_0620 Unknown

metallopeptidase, BAB1_1233 RpsM; S13 BAB1_1970 FadB BAB2_0642 Acyl-CoA

zinc-binding region BAB1_1234 Adk BAB1_1971 EtfA dehydrogenase

BAB1_0666 DapA BAB1_1241 RpsH; S8 BAB1_1988 HisC BAB2_0644 Metal-dependent

BAB1_0671 RpoZ BAB1_1242 RpsN; S14 BAB1_1993 Ppa hydrolase

BAB1_0688 PyrC-1 BAB1_1244 RplX; L24 BAB1_2006 RegA BAB2_0645 GatC

BAB1_0697 CysS BAB1_1245 RplN; L14 BAB1_2016 RpmB; L28 BAB2_0646 GatA

BAB1_0718 MoaD BAB1_1248 RplP; L16 BAB1_2023 ClpA/clpB BAB2_0851 GuaB

BAB1_0740 Unknown BAB1_1249 RpsC; S3 BAB1_2059 ParB BAB2_0961 DapA

BAB1_0775 AspS BAB1_1256 RpsJ; S10 BAB1_2080 HslU BAB2_0976 AldB

BAB1_0780 HemB BAB1_1266 RplJ; L10 BAB1_2081 HslV BAB2_0988 ArgB

BAB1_0787 GlyA BAB1_1280 Unknown BAB1_2087 HisE BAB2_0990 Unknown

BAB1_0789 RibD BAB1_1286 GloA BAB1_2096 PTS system IIA BAB2_0991 DapD

BAB1_0790 RibE BAB1_1294 Aminotransferase subunit BAB2_0993 DapE

BAB1_0813 CysD BAB1_1297 Unknown BAB1_2109 AccD BAB2_1009 MgsA

BAB1_0817 Unknown; 
conserved

BAB1_1376 UreA BAB1_2133 Unknown BAB2_1012 DapB

BAB1_0826 NuoE BAB1_1408 IlvB BAB1_2134 SMP-30 BAB2_1013 Gpm

BAB1_0842 ProS BAB1_2135 Glutathione 
synthetase

Inner membrane

BAB1_0400 Unknown BAB1_1283 DUF192 BAB2_0261 RecA BAB2_0877 Binding-protein-

BAB1_0425 NhaA BAB1_1703 FtsH BAB2_0709 FtsK-alpha dependent transport

BAB1_0542 WbkC BAB1_1712 MotA; TolQ; ExbB BAB2_0728 CydA system inner

membrane 
component

Periplasm

BAB1_0010 Trs-ABC 
oligopeptide

BAB1_1118 PpiB-1 BAB2_0427 Trs-ABC 
spermidine/
putrescine

BAB2_0697 Unknown; conserved

BAB1_0155 OstA-like BAB1_1362 LacI BAB2_0812 Trs-ABC oligopeptide

BAB1_0404 Unknown BAB1_1413 DegP BAB2_0451 Trs-ABC 
oligopeptide

AppA family

BAB1_0444 PdxH BAB1_1890 YciI-like protein AppA family BAB2_0879 Trs-ABC spermidine/
putrescine

BAB1_0739 ETC complex I BAB1_1919 Unknown BAB2_0593 Trs-ABC amino 
acid

BAB1_0776 Unknown BAB1_1981 TlpA BAB2_0611 Trs-ABC amino 
acid

BAB2_0880 Unknown

BAB1_0881 Trs-ABC amino acid BAB2_0374 Unknown BAB2_0664 Trs-ABC peptide BAB2_1109 XylF

BAB1_1117 PpiB-2

Outer membrane

BAB1_0659 Omp2a BAB1_0707 OstA BAB1_0963 TolC

Table 1: B. abortus 2308 proteins for which the expression was demonstrated for the first time (Continued)
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these ORFs (Figure 1): BAB1_1205, BAB1_1645,
BAB1_1646, BAB1_1768 and BAB2_0216. The MSMS
spectra of the 18 peptides representing these former
pseudogenes were manually validated. We thus investi-

gated the reasons for which these genes had been anno-
tated as pseudogenes. The genomic sequence of the
cytoplasmic protein with a conserved DUF 883 domain
BAB1_1205 was found to be identical to BMEI0805, its B.

Unknown localization

BAB1_0030 Unknown BAB1_0991 Unknown BAB1_1543 DUF526 BAB1_2123 RpmI; L35

BAB1_0170 GrpE BAB1_1070 WrbA BAB1_1559 FbcF BAB1_2176 YaeC/NLPA 
lipoprotein

BAB1_0389 CcoP BAB1_1113 Unknown; 
conserved

BAB1_1641 Unknown BAB1_2186 RpsT; S20

BAB1_0413 AtpB BAB1_1152 PdhA BAB1_1647 FabG domain BAB2_0207 Unknown

BAB1_0418 Unknown BAB1_1230 RplQ; L17 BAB1_1693 bZIP BAB2_0243 YedY

BAB1_0420 Unknown BAB1_1232 RpsK; S11 BAB1_1728 RpmE; L31 BAB2_0269 RpsU; S21

BAB1_0453 Unknown BAB1_1240 PplF; L6 BAB1_1749 Unknown BAB2_0351 OsmC-like protein

BAB1_0479 RpsR, S18 BAB1_1260 RpsL; S12 BAB1_1768 Unknown BAB2_0356 Unknown

BAB1_0627 Unknown BAB1_1270 SecE BAB1_1784 DUF336 BAB2_0677 Unknown

BAB1_0650 Unknown BAB1_1341 Unknown BAB1_1814 Unknown BAB2_0726 YbgT

BAB1_0810 RpsI; S9 BAB1_1384 Cibk BAB1_1858 RplU; L21 BAB2_0869 HlyD

BAB1_0830 NDH-1 subunit I BAB1_1514 AspC BAB1_1984 LysA BAB2_1002 NqoB

Locus tags and descriptions of proteins are indicated and proteins are organized by predicted subcellular localization.

Table 1: B. abortus 2308 proteins for which the expression was demonstrated for the first time (Continued)

Figure 1 B. abortus 2308 former pseudogenes. Peptide sequences identified by mass spectrometry are highlighted in grey. Corresponding B. me-
litensis 16 M locus tags are indicated between parentheses.

 BAB2_0216 VSVERHADGVATVRINRPEARNALNLTTRQQLAEHFRALSGDESVRAIVLTGGETCFVAG  60
ADVREFASAGPIEMYLRHTEYLWDAIASCAKPVIAAVNGYALGGGCELAMHCDIIVAGEG 120
AVFGQPEVKLGLMPGAGGTQRLIRAVGKFQAMRIALTGCMVPAAEALSIGMISEMTANER 180
TLPRAHELAVEIARLPALAVAQIKEVMLVGADLPLDGALALERKAFQLLFDSKDQKRAQP 240
LSSKNANLPITDARTMERSINHIAIVGAGVMGTGIAQIAAQAGLVTQIFDAREGAAAASR 300
DRLASTLAKLAEKGKISAEDAQTAVSRIEICSSIQELADCDLVVEAIVEKLDAKQALFLE 360
LEAVVSGNCILATNTSSLSVTSIARVCRHPERVAGFHFFNPVPLMKVVEVIDGLTTDPAV 420 
GDALLVLAKRMGHHGIRAKDMPGFIINHAGRAYGTEALKILGECVAPRGDIDRILRESAG 480
FRMGPLELFDLTGLDVSHPVMESIYNQFYQEPRYSPSALTRQMLEGGYVGRKVGQGFYRY 540
EDGKMVAPPVPQPVPAVDIMPSVWISADCDEDKEQLYALLRSLGATVETGALPSAEALCL 600
LAPYGYDATTACELAGSDPARTVCIDMLPGLDRHRTLMMTPATSPAFRDAAHALLARDGV 660
NVTVIRDSVGFVAQRTLAAIVNLACDIAQQGIATADDIDQAVRLGLGYPQGPLAWGGFSD 720 
PENIVAYAGINRRPPLQAKPMVAPQGRAGPFPALRGAGYRLEHFRAKSAKRLRGEISPLD 780

Enoyl-CoA hydratase 
(BMEII1021)

MKSRLTMIAVAGLLAFSTAACTTNEQRTAGYGVGGAALGALAGGAIGGNGRGALTGAAIG  60
AVAGTLLGAAQTRNGTQYCRYRDPYGRIYEAPCQ                            94

 BAB1_1768 Hypothetical protein
 (BMEI0287)

 BAB1_1646 Dak phosphatase domain 
(BMEI0396)

LSPQLIHITGDTMQRFINNPDEVVEDTVRGFVKAHSDIIRLAENPRVIAAKDAPVAGKVG  60
VVTGGGSGHEPAFIGYTGKNMLDAVAVGELFSSPTAKSFHDAIREANGGKGVVVLYGNYA  120
GDNMNVKMATKLAAKDGIDVATVVANDDVCSAPAAEREKRRGVAGEIFMWKVGGAKAATG  180
ATLEEVRATAQKAIDNCRSIGVGLGPCTLPAVGHPNFEIAPGTMEVGIGHHGEPGVRVEP  240
LKSAAEVARDMCQIVLDDHGLAEGTEVAVLVSGLGATPLNELYILNDTIETEIRARGLKI  300
HRTYIGNYFTSLEMVGATLTVMALDSELKELLDVEVRCTTIL                    342

VRKRPVQTLNNAKAGDIVLTMAERIVENRAYLSEIDGKIGDGDHGVNMAKGFNMAAERLQ  60
GKNETLAASLDTLGTVLMTEIGGSMGPLYGVMFTEFAEKIDGVDNIDAAAFSHMLHAGLE  120
GIQSIGSAKVGDKTLLDTLVPAVEAFDEANAAGKSFAEALEALVAAAEKGRDSTINLVAR  180
IGRASHLGERSLGVLDAGATSCAIILKVLGEGARERLQ                        218

Dak phosphatase domain
(BMEI0397) 

 BAB1_1645

Hypothetical protein
(BMEI0805)

 BAB1_1205 MAEANINDIQQALEKQIAEMRTELKRMSRSLASHSDDLKARAEDAMDEASGRLRHAAQTV  60
RERGQVVAEAVRENPGTATTLFGTAGIIGILIGVAIGCALSERR                  104

AEANINDIQQALEK
AEDAMDEASGR
AEDAMDEASGR + m5|1 Oxidation (M)
ARAEDAMDEADGR
ARAEDAMDEASGR + m5|1 Oxidation (M)
GQVVAEAVR
SLASHSDDLK

 Locus tag Protein description Peptide sequence Protein sequence

QQLAEHFR

TAGYGVGGAALGALAGGAIGGNGR
     + m22|1 Deamidation (N)

AATGATLEEVR
FINNPDEVVEDTVR
NMLDAVAVGELFSSPTAK
NMLDAVAVGELFSSPTAK
     + m2|1 Oxidation (M)
VGVVTGGGSGHEPAFIGYTGK

AGDIVLTMAER
AYLSEIDGK
SFAEALEALVAAAEK
TLLDTLVPAVEAFDANAAGK
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melitensis counterpart. Apart from the short length of
this protein, there was no apparent reason for its pseudo-
gene annotation (Figure 1). For BAB1_1645 and
BAB1_1646 (Figure 1), the nucleotidic sequence was 99%
identical to their BMEI0397 and BMEI0396 counterparts,
leading to two cytoplasmic B. abortus 2308 dihydroxyace-
tone kinases involved in glycerolipid metabolism that are
98% and 100% identical to the B. melitensis proteins,
respectively. The case of BAB2_0216, which seems to be a
3-hydroxybutyryl-CoA dehydrogenase, was more com-
plex and confusing, having a single nucleotide deletion
when compared to B. melitensis. This deletion would lead
to the silencing of the stop codon which creates two sepa-
rate proteins in B. melitensis, BMEII1020 and
BMEII1021. In B. abortus 2308, a fusion of the two genes
would generate a much larger protein. However, the start
codon in the corresponding ORF of vaccine B. abortus
S19 (BAbS19_II02060) is different from BMEII1020, and
even more different from the start codon and carboxyl
terminal sequence of the counterparts in B. suis
(BSUIS_B0227), B. ovis (BOV_A0203), B. canis
(BCAN_B0224) and B. ceti (BCETI_6000534). As a con-
sequence, the lengths of B. abortus and B. melitensis pro-
teins differ considerably from those of other Brucella.
Since the BAB2_0216 peptide that we found is located in
the N-terminal section of the protein (Figure 1), we are
able to confirm the expression of this originally annotated
pseudogene, but were unable to confirm the expression of
the full length protein.

The sequence of the BAB1_1768 pseudogene was found
to be misannotated in B. abortus 2308. The peptide
sequence "TAGYGVGGAALGALAGGAIGGNGR" could
not be found in the B. abortus 2308 nucleotide-derived
proteome but matched the B. melitensis locus tag
BMEI0287. In fact, except for 1 nucleotide, the corre-
sponding 2308 genomic sequence is identical to that of
BMEI0287 (Figure 2C). In B. abortus 2308, a single nucle-
otide insertion in BAB1_1768 modifies the reading frame,
hence its original annotation as a pseudogene. The manu-
ally validated peptide matches B. abortus 2308 only when
the additional nucleotide is removed, indicating that the
sequence for locus BAB1_1768 should be corrected (Fig-
ure 1). Also to note is the earlier start site in B. abortus
2308, and all other species sequenced to date, when com-
pared to B. melitensis 16 M. We believe that the B. abor-
tus 2308 start site was correctly assigned in the publicly
available genome given the clear presence of a ribosome
binding site in position -8 of the B. abortus sequence.

Correction of two start site annotations errors
Another type of annotation error identified in our studies
was the erroneous assignment of gene translation start
sites. For 2 proteins of B. abortus 2308, we report the
expression of manually validated peptides corresponding

to the sequence found upstream of their currently anno-
tated start sites (Figure 2). The peptide sequence "MNI-
HEYQAK" was first found to match the cytoplasmic B.
melitensis succinyl-CoA synthetase subunit beta protein
(BMEI0138) and then assigned manually to BAB1_1926.
Sequence comparison with other Brucella species and
strains shows that the B. abortus 2308 protein start site is
not shared with any of the subject sequences (Figure 2A).
In fact, all homologues of this protein in other Brucella
strains or species share the same start site, which is found
22 amino acids upstream of the B. abortus 2308 site.
Moreover, a ribosome binding site can clearly be mapped
to position -8 of the proposed new translation start site.
We therefore believe this new start site to be accurate.

The second peptide, "TDLLPIMK", was found to match
the cytoplasmic B. melitensis keto-hydroxyglutarate-
aldolase (BMEII0009) and then assigned to BAB2_0083
in B. abortus 2308. This peptide overlaps the region
upstream to the currently annotated translation start site
and the first three amino acids based on the annotated
translation start site (Figure 2B). Alignment of the cur-
rent B. abortus 2308 protein sequence with its counter-
parts in other Brucella strains and species indicates that
the 2308 protein sequence is falsely truncated. Other
start sites lead to proteins having N-terminals longer by
11, 26 or 44 amino acids. Although we cannot clearly
indicate the actual start site of BAB1_1926 or
BAB2_0083, we can confirm that their N-terminals are
longer than currently annotated. Based on the homology
of the B. abortus 2308 genome being highest with that of
other B. abortus strains, one can speculate that the start
sites would be identical to those mapped in these strains.

Operons
Since genes that are part of an operon are usually co-tran-
scribed, it is possible that these genes might also be co-
translated [32]. Considering all proteins identified by our
studies, we were able to almost fully reconstitute one of
the two ribosomal RNA operons, with all but BAB1_1237
found. Additionally, the previously mentioned
BAB1_1645 and BAB1_1646 genes are predicted to be
part of an operon containing 6 genes, BAB1_1645 to
BAB1_1650 http://www.microbesonline.org/operons/
gnc359391.html. Four of these proteins were detected in
our studies, although only BAB1_1645, -46 and -48 were
found in the same experimental condition.

Conclusions
Mass spectrometry has proven to be a valuable tool to
identify and correct genomic annotation errors in the
study of microorganisms [33-37]. We performed a pro-
teomics analysis of B. abortus 2308 proteins expressed
upon extracellular and intracellular growth conditions to
validate existing gene predictions at the protein level, to

http://www.microbesonline.org/operons/gnc359391.html
http://www.microbesonline.org/operons/gnc359391.html
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Figure 2 Annotation errors in the B. abortus 2308 genome. (A, B) The original start codon annotation in the publicly available genome (NCBI tax-
onomy ID 359391) of the succinyl-CoA synthetase subunit beta (BAB1_1926, panel A) and of the KHG aldolase (BAB2_0083, panel B) are indicated by 
double asterisks whereas the corrected start site is indicated by a single asterisk (BAB1_1926 only). The peptides sequenced by mass spectrometry are 
highlighted in grey. The 5'-end of the CDS, as currently annotated, are underlined. The predicted sequence of the RBS found in proximity of the cor-
rected start site of BAB1_1926 is boxed. Numbers next to the nucleotide sequence and the schematic gene representation indicate the position in 
the genome sequence (NC_007618 or NC_007624). (C) Genomic and amino acid sequences of BAB1_1768, as currently found in the publicly available 
genome, were aligned to their counterparts in B. melitensis 16 M (BMEI0287). The sequence of the peptide detected by mass spectrometry is high-
lighted in grey. Matching nucleotides are indicated by vertical bars and matching amino acids are indicated by asterisks. The predicted sequence of 
the RBS found in proximity of the B. abortus start site is boxed.

   1874450  agaggacaaccagatgaatattcacgaataccaggccaagcgcctgcttcacacctacggcgcgccgatcgccaatggtGTGGCTGTCTATTCCGTCGAA  1874400

B. abortus 9-941         M  N  I  H  E  Y  Q  A  K  R  L  L  H  T  Y  G  A  P  I  A  N  G  V  A  V  Y  S  V  E
B. melitensis 16M        M  N  I  H  E  Y  Q  A  K  R  L  L  H  T  Y  G  A  P  I  A  N  G  V  A  V  Y  S  V  E
B. ovis                  M  N  I  H  E  Y  Q  A  K  R  L  L  H  T  Y  G  A  P  I  A  N  G  V  A  V  Y  S  V  E
B. suis                  M  N  I  H  E  Y  Q  A  K  R  L  L  H  T  Y  G  A  P  I  A  N  G  V  A  V  Y  S  V  E
B. abortus 2308                                                                            M  A  V  Y  S  V  E
                         
                         

BAB1_1926

18744211874594

1874450

1873291

BAB1_1927NC_007618

1874400

A

* **

BAB1_1768                  M  K  S  R  L  T  M  I  A  V  A  G  L  L  A  F  S  T  A  A  C  T  T  N  E  Q  R  T  
bab1_1768  ttgtaggagatgtttcATGAAATCTCGTCTTACGATGATTGCTGTTGCTGGCTTGCTGGCGTTCTCGACCGCCGCGTGCACGACGAACGAACAGCGTACG
           
bmeI0287   ttgtaggagatgtttcatgaaatctcgtcttacgATGATTGCTGTTGCTGGCTTGCTGGCGTTCTCGACCGCCGCGTGCACGACGAACGAACAGCGTACG
BMEI0287   ----------------------------------M  I  A  V  A  G  L  L  A  F  S  T  A  A  C  T  T  N  E  Q  R  T        
                                             *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  

BAB1_1768  A  W  L  R  R  W  W  C  G  S  R  C  S  C  R  W  R  N  W  R  Q  W  P  W  C  S  D  G  C  C  D  R  C  G    
bab1_1768  GCTTGGTTACGGCGTTGGTGGTGCGGCTCTCGGTGCTCTTGCCGGTGGCGCAATTGGCGGCAATGGCCGTGGTGCTCTGACGGGTGCTGCGATCGGTGCGGT

bmeI0287   GCT-GGTTACGGCGTTGGTGGTGCGGCTCTCGGTGCTCTTGCCGGTGGCGCAATTGGCGGCAATGGCCGTGGTGCTCTGACGGGTGCTGCGATCGGTGCGGT
BMEI0287   A   G  Y  G  V  G  G  A  A  L  G  A  L  A  G  G  A  I  G  G  N  G  R  G  A  L  T  G  A  A  I  G  A  V     
           *      

BAB1_1768  C  R  H  T  S  W  C  S  P  D  A  STOP---------------------------------------------------------------
bab1_1768  TGCAGGCACACTTCTTGGTGCAGCCCAGACGCGTAA----------------------------------------------------------------

bmeI0287   TGCAGGCACACTTCTTGGTGCAGCCCAGACGCGTAATGGCACGCAATATTGCCGTTACCGCGATCCGTATGGCCGCATCTACGAAGCGCCTTGCCAGTAA
BMEI0287    A  G  T  L  L  G  A  A  Q  T  R  N  G  T  Q  Y  C  R  Y  R  D  P  Y  G  R  I  Y  E  A  P  C  Q  STOP

C

BAB2_0083

      86363  tttgttctgaagccttgcgtatttcatcaaggggatgcgcccaaccgtcgagcgagccgatgtcgcagaaaaccgatcttcttcttcccatcATGAAAGGC  86263

B. melitensis 16M          M  R  I  S  S  R  G  C  A  Q  P  S  S  E  P  M  S  Q  K  T  D  L  L  L  P  I  M  K  G
B. abortus 9-941                                                        M  S  Q  K  T  D  L  L  L  P  I  M  K  G
B. ovis                                                                 M  S  Q  K  T  D  L  L  L  P  I  M  K  G 
B. abortus 2308                                                                                          M  K  G  

NC_007624

8627186463

86375

85666

86263

BAB2_0084

B

**

acquire useful information on B. abortus 2308 expressed
proteins and to identify and correct inaccurately anno-
tated ORFs. We were able to confirm the expression of
over 300 previously unreported proteins and five pseudo-
genes, and corrected two wrongly assigned translation

start sites. Taken together, these findings further demon-
strate that computational genomic annotation errors can
be corrected using proteomics. This will lead to improved
databases and thus better protein identification and func-
tional annotation.
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Methods
Brucella abortus protein preparation for mass 
spectrometry analysis
Four types of B. abortus 2308 samples were prepared:
outer membranes, cytosols, intracellular bacteria isolated
from infected RAW264.7 macrophages and extracellular
bacteria from overnight cultures. Outer membrane sam-
ples were prepared and processed for mass spectrometry
analysis as previously described [16]. Cytoplasmic frac-
tions were prepared as described previously [38]. Briefly,
bacteria grown in tryptic soy broth (Difco) in 2-liter
flasks on an orbital shaker and harvested by centrifuga-
tion in sealed cups at 7,000 × g for 20 min. The thick
slurry of bacteria were suspended in 10 mM phosphate-
buffered saline (pH 7.2) was passed twice through a
French press (Pressure Cell 40 K, Aminco; SLM Instru-
ments Inc., Urbana, Ill.) at an internal pressure of 35,000
lb/in2. The homogenate was digested with 50 mg of
DNase II type V and RNase A per ml (Sigma) for 18 h at
37°C and fractionated by ultracentrifugation. The cell
envelopes in the bottom of the tube removed and the
cytoplasmic fractions in the supernatant, filtered, lyo-
philized and characterized as described previously [39].
Intracellular bacteria were isolated from RAW264.7 mac-
rophages 3, 20 and 44 hours post-infection as previously
described [17]. Proteins were extracted from intracellular
and extracellular bacteria using the same method and
digested for mass spectrometry as previously described
[17].

Liquid Chromatography - Mass Spectrometry (LC-MS)
Peptide digests were analyzed by liquid chromatography
coupled to mass spectrometry (LC-MS) as described [40].
Briefly, the samples were injected onto a reversed-phase
column (Jupiter C18, Phenomenex, Torrance, CA) for
HPLC separation. For LC-MS survey scans, the mass
spectra were acquired over 400-1600 Da at a rate of 1
spectrum/second. Peptide sequencing was achieved by
targeted and shotgun LC-MS/MS. For MS/MS scans, the
mass range was 50-2000 Da, and each spectrum was
acquired in 2 seconds. For LC-MS/MS, the duty cycle was
one survey scan followed by one product ion scan (MS/
MS).

Protein identification
Protein identification was done by submitting LC-MS/
MS spectra to Mascot software (MatrixScience, Boston,
MA) and searching against custom protein databases (see
below). The parameters used for the Mascot search and
protein homology clustering were previously detailed
[16]. No multidimensional fingerprinting method was
used. Annotation for each protein was performed using
ExPASy Proteomics tools http://us.expasy.org/tools/
#proteome, Kegg GenomeNet Database Service http://

www.genome.jp/ and literature mining of orthologous
genes and proteins.

Protein databases
The databases were composed of protein sequences
obtained from the National Center for Biotechnology
Information (NCBI) protein database (for B. abortus
2308, NC_007618 and NC_007624; for B. melitensis 16
M, NC_003317 and NC_003318; for Mus musculus, all
protein sequences contained under taxonomy ID 10090)
and of B. abortus 2308 "pseudoproteins" corresponding to
the custom translation of pseudogenes. Genomic regions
corresponding to the 316 entries annotated as pseudo-
genes in NCBI were directly translated and added to the
database. Additionally, the ORF Finder tool from NCBI
was used to determine other possible protein sequences
corresponding to the pseudogenes. The ORF search was
done by including 0 to 200 bp upstream or downstream
from these regions. All resulting ORFs spanning the
entire pseudogene sequence were kept. Ribosome bind-
ing sites were mapped when possible according to the
sequence described in reference [41]. A total of 471 trans-
lated protein sequences were added to the NCBI data-
bases.

Validation of mass spectrometry results
Sequences assigned to MS/MS spectra of peptides, which
were mapped to pseudogenes or to genomic regions
annotated as untranslated regions, were manually vali-
dated. For proteins identified by a single peptide, manual
validation of the spectra was performed for peptide
sequences having a Mascot score below 45.

Prediction of protein localization
The localization of newly demonstrated proteins was pre-
dicted using PSORTb version 2.0.4 http://www.psort.org/
psortb/index.html, CELLO version 2.5 http://cello.life.
nctu.edu.tw/ and PSLpred http://www.imtech.res.in/
raghava/pslpred/index.html. For a localization to be
assigned, a minimum of 2 of the 3 predictions had to
match.
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