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Abstract

Background: Recent literature has revealed that genetic exchange of microRNA between cells
can be essential for cell-cell communication, tissue-specificity and developmental processes. In stem
cells, as in other cells, this can be accomplished through microvesicles or exosome mediated
transfer. However, molecular profiles and functions of microRNAs within the cells and in their
exosomes are poorly studied. Next generation sequencing technologies could provide a broad-
spectrum of microRNAs and their expression and identify possible microRNA targets. In this work,
we performed deep sequencing of microRNAs to understand the profile and expression of the
microRNAs in microvesicles and intracellular environment of human embryonic stem cells derived
mesenchymal stem cells (hES-MSC).

We outline a workflow pertaining to visualizing, statistical analysis and interpreting deep sequencing
data of known intracellular and extracellular microRNAs from hES-MSC). We utilized these results
of which directed our attention towards establishing hepatic nuclear factor 4 alpha (HNF4A) as a
downstream target of let-7 family of microRNAs.

Results: In our study, significant differences in expression profile of microRNAs were found in
the intracellular and extracellular environment of hES-MSC. However, a high level of let-7 family of
microRNAs is predominant in both intra- and extra- cellular samples of hES-MSC. Further results
derived from visualization of our alignment data and network analysis showed that let-7 family
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microRNAs could affect the downstream target HNF4A, which is a known endodermal
differentiation marker. The elevated presence of let-7 microRNA in both intracellular and extra
cellular environment further suggests a possible intercellular signalling mechanism through
microvesicles transfer. We suggest that let-7 family microRNAs might play a signalling role via such
a mechanism amongst populations of stem cells in maintaining self renewal property by suppressing
HNF4A expression. This is in line with recent paradigm where microRNAs regulate self-renewal
and differentiation pathways of embryonic stem cells by forming an integral biological network with
transcription factors.

Conclusion: In summary, our study using a combination of alignment, statistical and network
analysis tools to examine deep sequencing data of microRNAs in hES-MSC has led to a result that
(i) identifies intracellular and exosome microRNA expression profiles of hES-MSCwith a possible
mechanism of miRNA mediated intercellular regulation by these cells and (ii) placed HNF4A within
the cross roads of regulation by the let-7 family of microRNAs.

Background
Small RNAs play a wide range of regulatory roles from
degradation to translational silencing of messenger RNA.
The most studied class of small regulatory RNA is
microRNAs (miRNAs). miRNAs are about 22 nucleotides
long and have been identified in animals, plants and
viruses. Precursor miRNAs have stem loop structures that
are cleaved by Drosha and Dicer forming mature
functional miRNA molecule. By forming RNA-induced
silencing complexes, miRNA can either cleave messenger
RNA molecules or inhibit translation. Through such
mechanisms, they are involved in various cellular
processes including hematopoietic differentiation and
cell cycle regulation [1,2].

The amount of genetic information regulated post-
transcriptionally by miRNAs is potentially huge. Com-
putational and indirect evidences indicate that miRNAs
might regulate up to a third of all genes making direct
and indirect consequences of miRNA directed regulation
significant [3]. The resulting regulatory network is very
often an extensive and complex one.

Deep sequencing provides a rapid and sensitive way of
obtaining miRNA profiles expressed by human embryonic
derived mesenchymal stem cells (hES-MSC). These cells
have the ability to differentiate into multiple mesenchymal
phenotypes, such as bone, cartilage, tendon and adipose
tissue [4]. This property with a broad distribution of sources
makes MSC an attractive therapeutic target.

Despite this level of interest, a clear understanding of the
factors involved in regulation of MSC remains rudimen-
tary. Global gene expression analysis has revealed that MSC
differentiation into specific mature cells types is a
temporally controlled and regulated process [5,6]. miRNAs
provide an attractive mechanism for temporal regulation of
mRNA translation and stability. Regulation of miRNA

expression pattern can then be perceived as a novel
regulatory network affecting cellular function. Organiza-
tion of the hierarchical order of stem cell types based on
the linkage of their functional characteristics to such
regulatory elements might present a novel means to
understand and eventually manipulate cell fate. This
miRNA mediated regulation of stem cell differentiation
however will act in concert with other methods of
regulation of gene expression like transcription factors,
epigenetic mechanisms etc. Therefore it is important to
interpret the results of this study in the context of
understanding miRNA regulation in concert with other
regulatory mechanisms that control cellular differentiation.

Recent literature has also revealed that genetic exchange
of mRNA and miRNA between cells can be accomplished
through microvesicles or exosome mediated transfer [7].
Microvesicles can be shed from surfaces of activated cells
or derived from the endosomal membrane compartment
after fusion of secretory granules with the plasma
membrane where they exist as intraluminal membrane-
bound vesicles. Embryonic stem cells are a source of such
microvesicles. It is possible that embryonic stem cell
derived microvesicles contain biologically active mole-
cules that affect growth and cell fate decision of targeted
cells. Similar vesicles released from human and murine
mast cell lines were shown to contain miRNAs [8].
Employing microvesicles for transfer of genetic material
would be an efficient means for these intercellular
communications [9]. It is conceivable that MSC derived
from embryonic stem cells also communicate with
neighbouring cells using microvesicles. In this study,
we performed deep sequencing of small RNAs to
understand the expression of miRNAs in both micro-
vesicles and intracellular environment of hES-MSC.

This convergence of deep sequencing technology and the
potential regulatory roles of miRNA in stem cells provide
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many opportunities as well as challenges in terms of data
mining methodology in uncovering biological signifi-
cance. Bioinformatics tools are necessary to bridge the
gap between raw sequencing data and biological
significance of these regulatory RNAs. A fundamental
difficulty lies in identifying miRNA targets as well as
deciphering the exact mechanism of translational repres-
sion of mRNAs by these snippets. Considerable work has
been put into computational prediction of miRNA
targets. Many challenges still remain in integrating
large sequencing datasets to obtain gene-level distinc-
tions.

In our study, we present a novel workflow using existing
tools available for understanding these sequencing data
sets. Our workflow extracts salient features from sequen-
cing data for visualization and focuses on potential
relationships between miRNAs with gene targets. Apply-
ing our workflow for quantitative estimation of small
RNAs in hES-MSC intra and extra cellular examples, we
can develop a better understanding of exosome
mediated miRNA involvement in the regulation of
other cells in the hES-MSC microenvironment.

Results
Distribution of miRNAs from Deep Sequencing showed
distinct phases
Massive sequencing data can be overwhelming to
examine. With each stage of processing, choices are
made to direct analysis towards biological significance
and understanding. Initial processing stages emphasize
on visualisation of datasets in different forms such as
annotations and alignment in the genome. This allows
for quick assesment of salient features. Following this
are more advanced analyses exploiting existing tools
for examining distrbutions and networks topology used
to conjure biological hypothesis for verification. The
entire workflow can then be thought as a funneling
process towards identifying biologically interesting
interactions of miRNAs with genes in hES-MSC (Figure 1).
These interactions can then be experimentally verified.

One of the main challenges in interpreting deep
sequencing data is the large number of transcripts with
small read counts in the range of 1 to 10. Therefore there
is a need to determine a threshold value for sieving out
significant miRNAs. We address this issue by first
examining the overall distribution of transcripts in our
samples which are biological replicates. Plots were made
to interpret the global expression distribution for these
miRNAs as depicted in Figure 2. Such plots can be
interpreted to give the probability of finding a particular
miRNA given an associated count/abundance.

In general, the distribution shows three distinct phases.
A large number of unique transcripts have low count
number and are distributed unevenly across the low
count number range. This is followed closely by a
subsequent phase where the numbers of unique tran-
scripts are distributed evenly across a large range of
count number magnitude. The last phase follows the
previous with transcripts reverting to an uneven dis-
tribution of high count number. These phases can be
categorised into different groups based on transcript
counts. Figures 3 and 4 show this classification which
reflects the degree of agreement and overlap in each case.

Considering the initial uneven distribution of transcripts
with low count number, it is a possibility that this large
group of transcripts constitute a form of noise since this
group of transcripts is expressed sporadically with low
counts. The concept of noise here is distinct from noise
arising from stochastic variations in the expression level
of a given gene in individual cells. It is possible that
these transcripts arose from imperfect fidelity of Pol II
transcriptional machinery due to stochastic components
governing fundamental interactions between molecules
within the cell. Alternatively, it could also be an artefact
inherent to sequencing.

Transcripts of the subsequent phase with even distribution
can then be inferred to be another group of miRNAs that
constitute a steady state expression of miRNA genes in MSC
followed by the last phase consisting of miRNAs with large
count numbers that contributes significantly to the unique
phenotype exhibited by such cells. From a genome wide
perspective, this representation and interpretation of data
presents a possibility to distinguish the relative proportions
of biologically significant miRNAs from potential noise. To
corroborate such a view with a quantitative aspect, a
statistical test based strategy was developed.

Statistical Method employed implies transcript count of
32 as the minimum threshold
To achieve this quantitative threshold value for further
analysis, we began by mapping reads to the human
genome. Seqmap was used to map known human
miRNA transcript sequence data with 3 mis-matches in
alignments to the human genome. The resulting geno-
mic graphs (Figure 5) combined with read counts when
observed in the UCSC genome browser reveals peaks
along genomic locations. Histograms of the peaks
magnitude distribution (Figure 6) reveal that, after an
initial transient uneven distribution phase, peaks are
similar amongst our biological replicates. To achieve a
threshold value, an adaptive thresholding method using
KS statistics is deployed (Figure 7). This value came to a
read count of 32. Transcripts with a read count of more
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than 32 are thus deemed to be significantly different
from noise. This threshold value of 32 read counts
coincide with the point of inflexion in the distributions
of Figure 2 that marks the separation of the initial
transient uneven phase with the later stable phase.

High read counts of let-7 family miRNAs transcripts
are present in both intra and extra cellular samples
of hES-MSC
Using the 32 read counts as the threshold, ranking
according to read counts was performed on this subset of
human miRNAs. Table 1 shows the highest ranking
miRNA transcripts in the intracellular space, whereas
Table 2 lists the highest ranking miRNA transcripts in the
extracellular space. The complete list of miRNAs in the

intracellular and extracellular space of MSC ranked
according to their abundance is given in supplementary
file 1. let-7 family of miRNAs is represented predomi-
nantly in the top rankings miRNAs in both intra and
extra cellular samples of hES-MSC. let-7 family of
miRNAs was first identified in C. elegans and has since
been emerging as having important tumour-supressor
role. Moreover, it also marks a temporally controlled
switch from stem cells to differentiated cell fate. This led
to our growing interest of let-7 miRNA's functional roles
in hES-MSC. Apart from the let-7 family, other miRNAs
like miR199b, miR22 & miR143 were also significantly
overrepresented in both the intracellular and the extra-
cellular hES-MSC samples. It is also interesting to note
that there is significant overlap between the lists of

Deep Sequenced Library

Intracellular Samples Avg: 5513798
Extracellular Samples Avg: 5244926

Identical Sequences Counted and Remove

Intracellular Samples Avg: 292211
Extracellular Samples Avg: 432178

Mapping to Known human miRNAs

Intracellular Samples Avg: 308
Extracellular Samples Avg: 146

Application of KS Statistics for Low Boundary Thresholding

Intracellular Samples: 124
Extracellular Samples: 20

Network Topology & DNA Alignment Analysis for Candidate family of miRNAs
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Figure 1
Different stages of processing microRNA sequences to gain biological insight. Massive sequencing data can be
overwhelming to examine, with each stage of processing choices are made to direct analysis towards biological significance and
understanding. Initial processing stages emphases on visualization of datasets in different forms such as annotations and
alignment in the genome. This is to allow for quick assessment of salient features. Following this are more advanced analysis
exploiting existing tools for examining distributions and networks topology to conjure biological hypothesis for verification.
The entire workflow can then be thought as a funneling process towards biologically interesting interactions for verification in
our hES-MSC cell line.
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miRNA represented in the intracellular and extracellular
space. We were unable to find any miRNAs that were
overrepresented only in the extracellular space and not in
the intracellular hES-MSC space.

Complexity Reduction using Gene interaction Networks
revealed similarity in topology that suggested
downstream targets for let-7 family of miRNAs
miRNAs are known to down regulate gene expression.
This can be done by direct mRNA cleavage, mRNA decay
by deadenylation or translational repression. The great-
est challenge besetting incorporation of miRNA regula-
tion into known gene expression mechanism is the great
difficulty in predicting mRNA targets of miRNAs.
Although the binding event behind the translational
repression and mRNA degradation is driven primarily by
complementarity between miRNA and target sites,
computationally predicted target interactions generally
generate a large list of targets. One such prediction
algorithm, TargetScan requires perfect complementarity
to the seed region of miRNA and extends these regions to
account for complementarity outside the region. Con-
servation criteria based on the presence of seed region in
an island of conservation is then incorporated by using

groups of orthologous 3’ UTR as input data. All of the
above aims to efficiently reduce the false positive rates.
However, the large amount of predictive targets for the
let-7 miRNA family constitutes a complexity that can be
difficult to interpret and explore. Since the accuracy of
prediction of target sequences is low, it is difficult to
identify bona fide gene targets regulated by miRNAs
using Targetscan alone. Also such an approach will not
yield genes indirectly regulated by miRNAs. Therefore we
decided to focus on networks generated by Targetscan
predictions rather than individual genes.

Our way of visualizing the roles of miRNA is via the
concept of an integrated network emerging from the
culmination of the interactions of the gene targets
associated with the family of let-7 miRNAs. Such
networks are tenuous but would serve sufficiently as a
first order approximation. Networks generated using our
previous genomic mapping alignment data were com-
pared with the networks generated using TargetScan
predictions. Examination of both networks (Figure 8)
simultaneously revealed common nodes within these
gene interaction networks. Hepatic nuclear factor 4 alpha
(HNF4A) was found to be a common node in both
networks making it a highly probable downstream target
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Figure 2
High abundant expression signals of detected miRNAs in two independent replicates show similar frequency
distributions. Distributions of the expression signal count (y-axis: representing the proportion of total transcript counted
and the x-axis: representing the count of signals; data in a log scale) derived from biological replicates of intracellular samples
show a high degree of similarity. The empirical distributions can be interpreted as a mixture of two essentially distinct
distributions. The low-abundant count (presented on the left part of the distribution) provides noise-rich data. This data shows
an exponential decline of the frequency distribution suggesting that a large portion of signal have low counts. This is followed
by a fairly even distribution across the log scale of counts and ended with sporadic signal that have high counts at the far end of
the log scale. The high-abundant count (presented on the right part of the distribution) has a long tail and shows log-normal-
like frequency distribution. The last part of the distribution shows high level of similarity in the right-size trends, which is is
exploited in statistical tests for determining significances/reliable signals from mostly noise signals.
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of indirect transcriptional regulation by let-7 family of
miRNA. The expression of let-7 family of miRNAs was
verified by quantitative real time PCR. let-7 b, let-7g, let-
7f and let-7i miRNAs have threshold cycle (CT) values of
23.11, 22.85, 24.54 and 23.02 respectively compared to
beta-Actin at a CT value of 15.5. We further compared the
expression of Let 7 family of miRNA in Hep G2 cells.
Hep G2 which is a liver cell line expresses high levels of
HNF4A. let-7 miRNA was expressed at 5.7 fold higher
levels in hES-MSC compared to HEPG2 cells, whereas
HNF4A was undetectable in hES-MSC and very strongly
expressed in HEPG2 cells (56,000 fold lower in hES-MSC

{CT 32.63} compared to HEPG2 cells{CT 20.36}). Thus,
a high level of expression of let-7 family of miRNA
coincide with a low level of expression of HNF4A (e.g.
hES_MSC) and vice versa (e.g. HEPG2).

To test the hypothesis that the network of genes
surrounding HNF4A was controlled by let-7 family
miRNA, we compared the expression of genes identified
in the let-7 family alignment network in HEPG2 cells
and hES-MSC. Figure 9 shows the relative gene expres-
sion of these genes in HEPG2 compared to hES-MSC.
Most genes in this network show a higher expression in
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(-0.01519,0.2247)
P-value: 0.0893
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95% Confidence Interval:
(-0.1739,0.04352)
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(-0.07007,0.1625)
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Kappa Coefficient: 0.3776
95% Confidence Interval:
(0.1610,0.5942)
P-value: 0.0019
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Figure 3
Venn Diagrams depict the difference of miRNA transcript counts identified in intracellular and extracellular
(secreted) miRNA sets. Due to statistical results presented on Figure 3, the transcript count domains are broadly separated
into 3 main levels: Low (below 32 transcripts), Mid-range (32-10000) and High (>10000). Within each sub-interval of the
miRNA expression value, Venn diagrams are used to analysis the degree of overlapping between experimental replicates.
Kappa correlation coefficient, reflecting the degree of agreement between two sets (Cytel Studio@7) was calculated for each
pair of replicates. In general, for intracellular compartment miRNAs the degree of overlapping (agreement between
experiments) for the Low category is much lower compared to the mid-range and high data subset. This result suggests a good
experimental responsibility of occurrence of miRNAs expressed at the moderate- and high-abundant expression levels. The
low-abundant set of miRNA shows poor reproducibility, perhaps due to experimental and biological noise. For the
extracellular miRNA samples, there were no transcripts at the high expression category. Moreover, a low probability of
co-occurrence of the same miRNAs (non-significant kappa correlation) in low expression category or in moderate expression
category is found.

BMC Genomics 2010, 11(Suppl 1):S6 http://www.biomedcentral.com/1471-2164/11/S1/S6

Page 6 of 15
(page number not for citation purposes)



HEPG2 cells (let-7 family miRNA expression low)
relative to hES-MSC (let-7 family miRNA expression
high) providing further support to our hypothesis that
let-7 family of miRNAs are regulating these genes.

Discussion
We have developed a workflow for analyzing deep
sequencing data focusing on miRNA. This workflow has
revealed several trends in miRNA expression profile for
hES-MSCs. The majority of sequenced transcripts were
identified by mapping to known small RNA libraries and
a considerable proportion of these were miRNAs. Several

studies have showed that certain miRNAs are associated
with specific stem cell types and those that are regulated
during stem cell differentiation. Characterizing miRNA
expression profile for the purpose of extracting biologi-
cal function from sequencing data can be a challenge.

Raw sequencing data of our samples showed distinct
distribution patterns across a large range of magnitude
for transcripts counts. The necessity of a minimum
threshold of transcript count for biological significance
was addressed by adaptive thresholding exploiting KS
statistics amongst biological replicates giving a lower

30 70 30

28 22 28

Comparison of IDs of Top Hundred Highly-expressed Ranked 
microRNAs between Sequenced Data and Microarray for  
Intracellular Samples

Sequenced Data

Comparison of Top Fifty Highly-expressed Ranked 
microRNAs between Sequenced Data and 
Microarray for Extracellular Samples

Microarray Data

Kappa Coefficient: 0.4 
P-value: <0.00001

Kappa Coefficient: -0.12
P-value: <0.00001

110

Pearson Chi-Square Sta�s�c = 4.298
P-value: <0.027

Co-occurrence of the IDs of Highly Expressed (>32) 
microRNAs Found in Intra-cellular and Extra-cellular 
Sequenced Data Samples

Intraceullar Common Genes

Extracellular Common Genes

20

Figure 4
Additional Venn diagram analysis. A) Considerable overlap in top ranked genes from comparing of highly-expressed
microarray and sequencing data for intracellular miRNAs. B) Overlap in top ranked genes from comparing of highly-expressed
microarray and sequencing data for extracellular miRNAs is low. C) Top-level sequence data shows strong agreement
between intra and extra cellular samples. Expression microarray for miRNAs were performed and compared with our deep
sequencing data. Ranking of the top miRNAs by their abundance from both techniques was performed. Top hundred miRNAs
for the intracellular samples were compared using kappa correlation analysis and a large degree of overlap between studied
sets was observed. Similarly for the extra cellular samples, the top 50 miRNAs were compared. The degree of overlap
between studied sets was less than that of the intracellular samples. A final comparison involves that of the common genes
amongst replicates of the intracellular samples with the extra cellular samples. In this case we found that most of the genes of
the extracellular microRNA form a common subset of the genes of the intracellular miRNA.
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Figure 5
Different hES-MSC replicates show similar alignment peaks. Visualization of Seqmap mapping via UCSC genome
browser reveals peaks along specific genomic regions that have large numbers of miRNA binding to these regions. In the top
figure A Blue and Purple trend lines represent biological replicates of samples derived from intracellular environment. High
degree of correlation is observed between the replicates as can be observed from the similarity in locations where peaks were
found. The height of each such peak corresponds to the number of transcripts detected from deep sequencing. Each peak now
represents genomic locations where a large number of specific transcripts bind to. The bottom figure B depicts the extra
cellular sample transcripts that are aligned to the human genome using Seqmap. Peaks occur in similar region after mapping
across the replicates. Each replicate is visualized with a different color and the salient feature reveals peaks from different
sample aligning in similar locations.
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Figure 6
Histograms of peak magnitudes show a similar distribution after an initial uneven trend. Distributions of peak
magnitudes [Y-axis shows the frequency of a particular transcript associated with the peak occurring; x-axis is a measure of the
transcript counts in log scale] after mapping shows the same trend after an initial uneven distribution. Green and red trend
lines are least square fits of gamma distribution function reflecting that both samples showed great similarity after the initial
uneven distribution possibly suggesting that the initial phase to be noise.
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bound value for transcript counts. Currently KS statistics
are used primarily for comparing distributions and have
been used in areas such as image processing for
examining pixel distribution. In our study, we employed
KS statistics to estimate the lower bound where
distributions of transcripts peaks begin to differ. Using
a transcript count of 32 as a lower bound, we were able
to define a threshold for miRNA expression based on
transcript abundance. Further comparisons (as shown in
Figure 4) of top ranked genes between our sequenced
data with microarray data showed that there is a
considerable degree of overlap between the two espe-
cially in the intracellular samples. miRNAs from the
extra-cellular samples form a subset of those expressed in
the intracellular samples. Among the most abundantly
expressed transcripts across both intra and extra-cellular
environment (Tables 1 &2) the let-7 family of miRNAs
was the only overexpressed family of known miRNAs.

Amongst other over expressed miRNAs, miR199b has
transcription factors like SOX4 and has been shown to
be involved in liver cancer and muscular dystrophy
[10,11]. miR143 has recently been shown to cooperate
with miR 145 to regulate plasticity and cell fate
determination of smooth muscle cells via regulation of
expression of transcription factors like Kruppel like
factor 4 (Klf-4), myocardin and Elk-1 [12].

let-7 mutant phenotype studied in C. elegans has been
associated with a lack of terminal differentiation and
ongoing cell proliferation, both of which are character-
istics of stem cells and cancer. let-7 targets include cell
cycle regulators such as CDC25A and CDK6 [13];
promoters of growth including RAS and c-myc [14,15]
and a number of early embryonic genes including
HMGA2, Mlin-41 and IMP-1 [16,17]. Further, let-7 also
targets Dicer [18,19] which is the protein responsible for

Figure 7
32 transcripts is an optimum threshold for achieving similar cumulative frequency distribution amongst
replicates. KS statistics was applied iteratively to our biological replicates (red and black lines), each graph depicts a gradual
change in the threshold value. The KS test statistics can be thought of as a cost function that we seek to minimize to ensure
that the distributions between the two replicates are similar. Applying such a strategy iteratively as we change the threshold
value gradually, we arrive at a point where both line converge together indicating similar distributions. The point where this
first occurs is designated as the minimum threshold count value of biological significance.
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miRNA maturation. Therefore it is possible that the let-7
family of miRNA acts as a master regulator of miRNA
function. Since the let-7 family of miRNAs were
abundantly expressed in MSC and given their central
role in controlling cellular differentiation and miRNA
regulation, we decided to focus on this family of miRNAs
for further investigations.

miRNA mediated translational repression might play an
important role in stem cell self-renewal. In our study, a
high level of let-7 family of miRNA transcripts was
predominant in both intra and extra cellular samples for
our hES-MSC. This was true for other abundantly
expressed miRNAs in the extra cellular space as well.
We were unable to find miRNAs that were expressed only

Table 1: Let 7 family of miRNAs are expressed strongly by hES-MSC within the cells. This table lists common transcripts in the
intracellular samples in the high category of more than 10,000 transcripts showing a predominance of let 7 family of miRNAs

Intracellular
Transcripts
Number
(Sample 2)

Intracellular
Transcripts
Number
(Sample 1)

Transcript Sequence miRNA Annotation

1076532 667868 TGAGGTAGTAGATTGTATAGTT hsa-let-7f
425364 363558 TGAGGTAGTAGTTTGTACAGTT hsa-let-7g
406433 342886 ACAGTAGTCTGCACATTGGTTA hsa-miR-199a-3p
179887 169479 TAGCACCATCTGAAATCGGTTA hsa-miR-29a
256612 164108 TGAGGTAGTAGGTTGTATAGTT hsa-let-7a
162041 133623 TGAGGTAGTAGTTTGTGCTGTT hsa-let-7i
145189 114380 TAGCTTATCAGACTGATGTTGA hsa-miR-21
51885 49588 TCAGTGCATGACAGAACTTGG hsa-miR-152
49042 48131 TGAGATGAAGCACTGTAGCTC hsa-miR-143
67564 46368 AGCTACATTGTCTGCTGGGTTTC hsa-miR-221
52911 39313 AGCAGCATTGTACAGGGCTATGA hsa-miR-103
28369 23084 AACCCGTAGATCCGAACTTGTG hsa-miR-100
26641 21523 TGAGGTAGTAGGTTGTATGGTT hsa-let-7c
29311 19314 TGAGGTAGGAGGTTGTATAGTT hsa-let-7e
15299 13189 TGGCTCAGTTCAGCAGGAACAG hsa-miR-24
13269 10037 TCCCTGAGACCCTAACTTGTGA hsa-miR-125b

Table 2: Let 7 family of miRNAs are secreted by hES-MSC in large numbers. This table lists common transcripts in the extracellular
samples that belong to the mid-range category of between 32 to 10,000 transcripts showing a predominance of let 7 family of miRNAs.
It is interesting to note that no transcripts with counts greater than 10,000 were observed in the extracellular space

Extracellular
Transcript
Number
(Sample 1)

Extracellular
Transcript
Number
(Sample 2)

Extracellular
Transcript
Number
Sample 3

Transcript
Sequence

miRNA
Annotation

826 3653 3734 TGAGGTAGTAGATTGTATAGTT hsa-let-7f
679 2748 1870 TGAGGTAGTAGTTTGTACAGTT hsa-let-7g
287 69 331 AAGCTGCCAGTTGAAGAACTGT hsa-miR-22
254 992 249 TGGAATGTAAAGAAGTATGTAT hsa-miR-1
243 605 997 ACAGTAGTCTGCACATTGGTTA hsa-miR-199a-3p
215 1225 931 TGAGGTAGTAGGTTGTATAGTT hsa-let-7a
182 227 644 TAGCTTATCAGACTGATGTTGA hsa-miR-21
170 100 515 TCAGTGCATGACAGAACTTGG hsa-miR-152
164 389 834 TAGCACCATCTGAAATCGGTTA hsa-miR-29a
112 42 160 TCCCTGAGACCCTAACTTGTGA hsa-miR-125b
95 1051 149 TGAGGTAGTAGGTTGTATGGTT hsa-let-7c
94 40 156 TGGCTCAGTTCAGCAGGAACAG hsa-miR-24
87 159 100 AAAAGCTGGGTTGAGAGGGCGA hsa-miR-320a
82 308 334 TGAGGTAGTAGTTTGTGCTGTT hsa-let-7i
81 97 43 TGAGGGGCAGAGAGCGAGACTTT hsa-miR-423-5p
71 55 310 TGGAGAGAAAGGCAGTTCCTGA hsa-miR-185
66 46 256 AACCCGTAGATCCGAACTTGTG hsa-miR-100
66 502 277 TGAGATGAAGCACTGTAGCTC hsa-miR-143
39 104 87 AGAGGTAGTAGGTTGCATAGTT hsa-let-7d
39 111 194 AGCTACATTGTCTGCTGGGTTTC hsa-miR-221
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in the extra cellular space or were expressed more
abundantly in the extra cellular space compared to the
intra cellular space. This suggests that the process of
secretion of miRNAs is most likely a passive one unlike
that of proteins, where signal peptide containing
proteins are transported out of the cell as soon as they
are synthesized.

Moreover, the elevated presence of miRNAs in the extra
cellular environment suggests a possible intercellular
signaling mechanism. Recent literature has also sup-
ported that genetic exchange of mRNA and miRNA
between cells can be accomplished through microvesi-
cles transfer [7,8]. miRNAs like miR 21 [20], miR 133
and miR 30 [21] have been shown to play a role in
cardiac remodelling in infracted hearts. Since miRNA can
affect cardiac remodelling and these miRNAs are
transported in micro vesicles by transplanted MSC
(Lim SK personal communication), it is possible that
transplanted MSC regulate remodelling of the surround-
ing myocardium through secreted miRNAs in addition to
secreted cytokines and soluble factors.

HNF4A is a transcription factor that has also been shown
to be essential for morphological and functional

differentiation of hepatocyte and for liver morphogenesis
[22]. HNF4A is also one of the physiological factors in the
liver to activate apoB gene expression at the AF-1 site [23].
Elevated levels of apoB have been correlated with an
increased risk of atherosclerosis and coronary heart
disease [24]. HNF4A is also involved in the regulation
of serum lipid levels and is linked to elevated serum
cholesterol and triglyceride levels in Finnish combined
familial hyperlipidemia patients [25]. However to date
there is no evidence of miRNA regulation of HNF4A.
None of the target prediction algorithms predict the
regulation of HNF4A by let-7 family of miRNAs. There are
no predicted miRNA binding sites in the untranslated or
intronic regions of the HNF4A gene. However combining
the networks generated by sequence alignment of
expressed miRNAs and Targetscan, we predict that
HNF4A is indirectly regulated by the let-7 family of
miRNAs. We were able to confirm this indirectly by
measuring the levels of let-7 family of miRNAs and
HNF4A in undifferentiated MSC and HEPG2 cells. In
undifferentiated MSC when let-7 miRNAs are highly
expressed, expression of HNF4A is very low. Conversely in
HEPG2 cells where a high level of HNF4A is expressed, we
find very low expression of let-7 family miRNAs. Since
HNF family of transcription factors have been reported to

Figure 8
HNF4A is a common hub for networks derived from alignment data and TargetScan predictions. Gene
interaction network on the left (A) is derived from the dataset of genes with overlapping regions corresponding to peaks from
previous mapping. The other gene interaction networks (B) is derived from computationally predicted gene targets from
TargetScan. Comparing both gene interaction network, similar topology was observed with HNF4A as a node amongst the
interactions suggesting HNF4A as a possible downstream target for let-7 family miRNAs.
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be upregulated in hepatocytes derived from adipose
tissue MSC [26], it is possible that let-7 regulates
HNF4A levels during this process. Since genes in the
HNF4A alignment network also show a similar expression
profile to HNF4A in HEPG2 and hES-MSC cells, it is
possible that the let-7 family miRNA regulation of
HNF4A is mediated through genes in this network. It is
also interesting to note that there is no predicted miRNA
target site in the UTR of HNF4A. Thus miRNA based
regulation of HNF4A may be indirectly achieved through
regulation of genes in the network that interact with
HNF4A. It will be interesting to study the effect of Lin28
overexpression on differentiation of hepatocytes from
hES-MSC since Lin 28 is a transcription factor that
inhibits function of let-7 family miRNAs.

let-7f miRNA is known to exert pro-angiogenic effects
[27]. Human MSC conditioned medium has been shown
to reduce infarct size in patients with acute myocardial
infraction [28]. Since MSC conditioned medium con-
tains exosomes with let-7 family miRNAs and these let-7
family miRNAs may regulate HNF4A (based on our
network and expression analysis), it is highly likely that
MSC conditioned medium mediated reduction of infarct
size is achieved by indirect regulation of HNF4A
mediated by the let-7 family of miRNAs.

Thus, our study suggests the possibility of let-7 family of
miRNAs indirectly regulating this particular transcription
factor to achieve physiological changes. This is in line
with recent paradigm where miRNAs regulate self-

Figure 9
Expression of genes in the HNF4A alignment network follows a similar pattern as HNF4A in hES-MSC and
HEPG2 cells. This figure shows the relative gene expression of genes from gene interaction network (A) in Figure 8 in
HEPG2 cells compared to hES-MSC. It is interesting to note that most genes in this network are suppressed when let-7 family
miRNAs are over-expressed (hES-MSC) and up-regulated when let-7 family gene expression goes down (HEPG2 cells).
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renewal and differentiation pathways of embryonic stem
cells by forming an integral biological network with
transcription factors [29].

Conclusion
In conclusion, our study using a combination of
different available tools to examine deep sequencing
data by examining alignment, computer predictions,
mathematical and network analysis has led us to a
hypothesis that HNF4A is indirectly regulated by the let-
7 family of miRNAs.

Methods
hES-MSC intracellular samples and microvesicles isolation
from culture media
Human embryonic derived mesenchymal stem cells were
used in this study. Two intracellular samples were
obtained at passage 18 by lysing the collected cells.
RNA was isolated from conditioned medium by adding
three volumes of Trizol LS (Invitrogen) to one volume of
conditioned medium and completing the extraction
according to the manufacturer's protocol. Total RNA
and small RNAs from MSC were purified using Trizol
(AppliedBiosystems) and mirVana™ miRNA Isolation Kit
(AppliedBiosystems), respectively. RNA was quantiated
using Quanti-T™ RiboGreen® RNA Assay Kit (Invitro-
gen). In a separate experiment, the conditioned medium
was treated with RNase, RNA extracted and compared to
RNA extracted from untreated conditioned medium. No
difference was observed in the RNA profile from the
RNase treated and untreated samples suggesting that the
RNA in the conditioned medium was contained within
the exosomes (data not shown). Resulting samples were
sent to Illumina Sequencing facilities for Deep Sequen-
cing. The intracellular samples were further gel purified
to only include transcripts between 18-35 nucleotides
long. This is a step in the standard sample purification
protocol for Deep Sequencing. This step was omitted in
the samples of hES-MSC conditioned medium profiling
the extra cellular small RNAs. However since all miRNAs
are in the 18-35 nucleotide range this step has no effect
on the data analysis described here which considered
only known miRNAs.

Extracting biologically significant miRNA profiles from
raw Deep Sequencing transcripts counts between intra
and extra-cellular samples through data visualization
tools and plots
Deep sequencing of small RNAs was performed using the
Illumina/Solexa platform (sequencing depth 5.5 million
reads) which produces individual sequence reads with
base quality scores. Identical sequences were counted
and removed. The resulting dataset consisted of unique
sequences with the associated read counts. Prior to

further analysis as show in the workflow (Figure 1), the
adaptor sequences were trimmed computationally.
Resulting sequences were mapped against known small
RNA libraries to identify sequences originating from
sources such as rRNA, tRNA, snRNA and snoRNA.
Focusing primarily on the dataset consisting of only
known human miRNAs, only small RNA sequences that
align to mirBASE were retained.

These sequences were aligned to the human genome
using Seqmap [30] with a 3 nucleotide mis-match
condition. We arrived at the 3 nucleotide mismatch
condition after looking at the distribution of the aligned
sequences at 1, 2, 3 and 4 nucleotide mismatch. The
distribution changed significantly after 3 nucleotide
mismatch. Therefore we concluded that this was the
maximum allowable mismatch for aligning the
sequenced transcripts. The Illumina ELAND alignment
tool which yields similar results as Seqmap also uses a 3
nucleotide mismatch for aligning RNA seq data. The
alignment results were visualized using UCSC genome
browser [31]. Genomic graphs depict the spatial dis-
tribution across the genome and are characterized by
peaks along the genome loci corresponding to transcript
count that align to that region. The magnitude of each
peak is a reflection of the number of transcripts.
Histograms were used to describe the frequency of
occurrence of theses peaks for further analysis.

Determining minimum threshold count of biological
significance
The process of quantifying the number and magnitude of
peaks due to each miRNA necessitates a threshold level
to differentiate miRNAs of biological significance from
background noise. We quantified a threshold value by
deploying a strategy via applying Kolomogorov-Smirnov
(KS) tests to our data iteratively.

Kolomogorov-Smirnov test is a form of minimum
distance estimation. In this aspect, we used it as a
nonparametric test of equality for comparing distribu-
tions from our biological replicates. The KS test statistics
quantifies the distance between the cumulative distribu-
tions of our replicates and thus can be viewed as a
measure of agreement between them. The threshold
number of transcripts was changed with each application
of the KS test and the KS statistics were recorded. The
final threshold count is the one which corresponds to the
first instance of a minimum point in the KS statistics
value.

This condition can be thought of as the first instance
when the distributions of miRNA amongst replicates
began to be similar. Such an approach can be thought of
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as a form of adaptive thresholding. The key parameter in a
thresholding process is the choice of the threshold value.
Usually, this value is arbitrary chosen. Our approach
computes this value automatically considering the
replicates of our experiments. Threshold values can thus
be uniquely generated for each experimental protocol or
cell type to differentiate biological significance from
background noise. Observation of the distributions of
transcripts from deep sequencing suggested the presence
of different distributions within each of the intracellular
samples. Application of KS statistics to our data ensures
that further interpretations are based on reproducible
parts of the overall distributions. KS statistics also provide
a lower threshold boundary which provided a quantita-
tive justification for selecting candidates for detailed
analysis in later stages of the workflow [32].

Having determined the threshold, we then proceeded to
characterize the salient features of miRNA expression
profiles by ranking the top miRNAs that accounted for
the large magnitude peaks observed in the genomic
graphs. The top 100 ranked miRNAs were compared to a
similar list derived from a miRNA microarray experiment
of the same samples as a measure of consistency.

Network Analysis for predicting indirect miRNA gene
Targets
TargetScan [33] was used to predict gene targets for the
let-7 family of miRNAs. An alternative representation of
the TargetScan results was used in our study where the
hypothesis is that biological pathways and networks
rather than the individual genes are driving development
of the range of phenotypes observed. It is such networks
and interactions that we would like to understand. Using
such framework to conceptualize predicted miRNA gene
targets from TargetScan, the targets for the let-7 family of
miRNA were subjected to pathway exploration using the
Ingenuity Pathway Analysis (Ingenuity® Systems, http://
www.ingenuity.com) software. Using Ingenuity Pathway
Analysis and accompanying interaction database, top
ranking interaction networks were generated.

Our approach in reducing complexity of gene interac-
tions networks uses the integration of the data from
different sources. This was done by comparing the
network generated based on our data from mapping
the respective peaks along genomic location with those
derived from the TargetScan prediction. Since Targetscan
over predicts miRNA targets, we compared networks
generated with genes predicted by Targetscan with
networks generated by genes from our alignment data.
We hoped to extract biological significance from the
expressed miRNAs by sieving for common nodes in these
networks of predicted miRNA targets. These common

nodes of gene targets strongly suggest a down stream
target being regulated by the respective miRNAs.

Measurements of expression levels of let-7 family of
miRNAs and HNF4A by quantitative real time reverse
transcriptase polymerase chain reaction (qRT-PCR)
RNA from cultured hES-MSC and HEPG2 cells was
extracted using Trizol reagent (Invitrogen, Carlsbad, CA).
qRT-PCR was performed using Taqman assays according
to manufacturer's instructions. For calculating relative
fold change values, the CT values were normalized to U6
miRNA as internal control for miRNA and GAPDH for
HNF4A. We chose U6 as the internal control because it is
similar in length and structure to known miRNAs.

Further we also verified the prediction that let-7 family
miRNAs regulate the network of 50 genes, by examining
the expression profiles of these genes in MSC and HEPG2
cells. The mRNA expression for 12 hES-MSC samples was
profiled by our lab using the Illumina Ref8 v3 Expression
BeadChip (data not shown). The mRNA expression
profiles for two HepG2 control samples were obtained
from ArrayExpress (ID: E-MEXP-1213). We chose these
samples because the mRNA profiling was also performed
on Illumina microarrays (HumanWG-6 v3), allowing for
more comparable expression values. Expression values
for the 50 genes identified in the HNF4A alignment
network were extracted for each sample. The expression
values were normalized by dividing them by the level of
expression of a housekeeping gene, glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) in each sample.
Then, the normalized expression value for each gene was
averaged across the 12 hES-MSC samples, and across 2
HEPG2 samples. A ratio of averaged normalized gene
expression value for each gene was generated by compar-
ing expression in HEPG2 to hES-MSC cells. The relative
expression for these 50 genes was visualized using
Ingenuity Pathway Analysis.
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