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Abstract

Background: A sense-antisense gene pair (SAGP) is a gene pair where two oppositely
transcribed genes share a common nucleotide sequence region. In eukaryotic genomes, SAGPs can
be organized in complex sense-antisense architectures (CSAGAs) in which at least one sense gene
shares loci with two or more antisense partners. As shown in several case studies, SAGPs may be
involved in cancers, neurological diseases and complex syndromes. However, CSAGAs have not
yet been characterized in the context of human disease or cancer.

Results: We characterize five genes (TMEM97, IFT20, TNFAIP1, POLDIP2 and TMEM199)
organized in a CSAGA on 17q11.2 (we term this the TNFAIP1/POLDIP2 CSAGA) and demonstrate
their strong and reproducible co-regulatory transcription pattern in breast cancer tumours. Genes
of the TNFAIP1/POLDIP2 CSAGA are located inside the smallest region of recurrent amplification
on 17q11.2 and their expression profile correlates with the DNA copy number of the region.
Survival analysis of a group of 410 breast cancer patients revealed significant survival-associated
individual genes and gene pairs in the TNFAIP1/POLDIP2 CSAGA. Moreover, several of the gene
pairs associated with survival, demonstrated synergistic effects. Expression of genes-members of
the TNFAIP1/POLDIP2 CSAGA also strongly correlated with expression of genes of ERBB2 core
region of recurrent amplification on 17q12. We clearly demonstrate that the observed co-
regulatory transcription profile of the TNFAIP1/POLDIP2 CSAGA is maintained not only by a DNA
amplification mechanism, but also by chromatin remodelling and local transcription activation.

Conclusion: We have identified a novel TNFAIP1/POLDIP2 CSAGA and characterized its co-
regulatory transcription profile in cancerous breast tissues. We suggest that the TNFAIP1/POLDIP2
CSAGA represents a clinically significant transcriptional structural-functional gene module
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associated with amplification of the genomic region on 17q11.2 and correlated with expression
ERBB2 amplicon core genes in breast cancer. Co-expression pattern of this module correlates with
histological grades and a poor prognosis in breast cancer when over-expressed. TNFAIP1/POLDIP2
CSAGA maps the risks of breast cancer relapse onto the complex genomic locus on 17q11.2.

Background
A cis-sense antisense gene pair (SAGP) comprises a gene pair
in which the individual genes map to opposite strands on
the same DNA locus and are, therefore, transcribed in
opposite directions. The corresponding pairs of cis-antisense
transcripts are mRNAs that are at least partially comple-
mentary to each other. Cis-antisense mRNAs that are
naturally transcribed from a SAGP are known as naturally
occurring sense-antisense (SA) RNAs.

Studies have shown that changes in the transcription of
SAGPs could be implicated in pathological processes
such as some cancers and neurological diseases [1-3]. For
example, it was shown experimentally in leukemia cells
that genes BAL1 and BBA, which form a SAGP, are bi-
directionally transcribed and concordantly expressed due
to INF-gamma induction and that their products can
directly interact at the protein level [4]. Previously we
reported that 12 high-confidence SAGPs pairs are
concordantly regulated in human breast cancer tissues
[5]. Among these, two pairs (RAF1/MKRN2 and CKAP1/
POLR2I) are constitutively co-regulated in breast tumors
of different genetic grades (G1, G1-like, G3-like, and
G3), while the co-expression of the CR590216/EAP30
SAGP is observed specifically in G3 genetic grade.

In mammalian genomes, SAGPs can be organized in
more complex sense-antisense gene architectures (CSA-
GAs) in which at least one gene shares loci with two or
more antisense partners [6-8]. Many dozens of CSAGAs
can be found in the human genome - [8-10]; therefore, it
is an intriguing speculation that not only SAGPs, but
also CSAGAs, as integrated modules, may play important
roles in human diseases, including cancer. In this regard,
the study of the co-regulatory profiles of genes in the
same CSAGA and, possibly, between different CSAGAs
or other transcriptional modules would shed new light
on the complex nature of the entire transcriptome.

There are many oncogenes on chromosome 17, although
the localization of these genes is not uniform. For
example, according to Cancer Genetics Web http://www.
cancer-genetics.org, the oncogenes TAF2N, NF1 and
THRA are located on 17q11.1-q12. ERBB2 (Her-2/neu),
a well-known oncogene, is located on 17q12. The gene
BIRC5 on 17q25.3, which encodes the apoptosis
inhibitor survivin, co-amplifies with ERBB2 and

correlates with high histological grade and a poor
prognosis in breast cancer when overexpressed [11].
Many other genes located close to ERBB2 on 17q12
could be over-expressed or/and amplified and are known
or suspected to play a role in carcinogenesis, specifically,
breast carcinogenesis. Previous studies have demon-
strated that the negative effect on the prognosis of breast
cancer attributed to ERBB2 amplification could, in fact,
be due to co-amplification of the region adjacent to
ERBB2 [12]. The ERBB2 gene and its neighbour genes
could be amplified and over-expressed in 25% of
invasive breast carcinomas [13,14]. In general, ERBB2
amplification and over-expression confers an unfavour-
able prognosis, although its significance is less than that
of the traditional prognostic factors of stage and grade. It
also seems that the prognosis and response to therapy
varies considerably within the spectrum of ERBB2-
amplified breast carcinomas, indicating that they are
biologically heterogeneous [14].

CSAGAs and their association with human cancers in the
regions outside of the ERBB2 amplicon core region in
17q12 [15] have not been studied. It is possible that a
high diversity of breast cancer cell subtypes could be
associated with active chromatin regions on 17q that are
different from the ERBB2 amplicon region. We focused
on a CSAGA located on 17q11.2 composed of five genes
and including the convergent SAGP TNFAIP1/POLDIP2.
We assume that novel CSAGAs important in breast
cancer development could be found in highly unstable
regions of the genome and that these complex archi-
tectures could play significant roles in transcription
control, resulting in cancer phenotypes and impacting
patient survival.

Methods
Patients, tumor specimens, cell lines and microarray data
Clinical characteristics of breast cancer patients and
tumor samples from two independent cohorts (Uppsala
and Stockholm) have been published previously [16].
The Stockholm cohort comprised Ks = 159 patients with
breast cancer, who were operated on in the Karolinska
Hospital from 1 January 1994 to 31 December 1996 and
identified in the Stockholm-Gotland breast Cancer
registry [16]. The Uppsala cohort involved Ku = 251
patients representing approximately 60% of all breast
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cancers resections in Uppsala County, Sweden, from 1
January 1987 to 31 December 1989. Information on
patients’ disease-free survival (DFS) times/events and the
expression patterns of approximately 30,000 gene
transcripts (representing N = 44,928 probe sets on
Affymetrix U133A and U133B arrays) in primary breast
tumors was obtained from the National Center for
Biotechnology Information (NCBI) Gene Expression
Omnibus (GEO) (the Stockholm data set ID is
GSE4922; the Uppsala dataset ID is GSE1456). The
microarray intensities were MAS5.0 calibrated and the
probe set signal intensities log-transformed and scaled
by adjusting the mean signal to a target value of log500.
For association studies of DNA copy number and gene
expression we utilized single nucleotide polymorphism
(SNP) copy number microarray data for 46 breast cancer
cell lines [12] (GEO data set IDs: GSE13696-GPL2004,
and GSE13696-GSL2005) as well as gene expression
profiling of 51 human breast cancer cell lines down-
loaded from the GEO: GSE12777.

Correlation analysis
Our primary goal is to identify whether the set of genes
composing the TNFAIP1/POLDIP2 CSAGA forms a
significant cluster. First, we estimate Pearson correlation
coefficients among these genes in the two large cohorts
and subsequently test whether their matrices are
significant at level a = 1%. Using Pearson correlation
coefficient requires that the data are normally distrib-
uted. To show that our data satisfy this assumption, we
run Kolmogorov-Smirnov test for Normality with
Lilliefor's P value correction. Additional file 1 contains
Supplementary Tables S1a-d shows the results for each
grade in each cohort. Evidently, our data can be thought
to come from a Gaussian distribution.

Then, we derive a correlation matrix of the form:
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where r1p denotes the Pearson correlation coefficient
between Affymetrix probesets 1 and p, estimated from
the microarray expression data, and p is the total number
of probes in the prospective cluster.

To test the significance of the R matrix, we used a
bootstrap version of Bartlett's statistical test [17]. The
bootstrap Bartlett test evaluates the significance of the
hypothesis H0: Rp×p = Ip×p, where Rp×p is the p × p
correlation matrix and Ip×p is the corresponding p × p
identity matrix. Under the null hypothesis, there is no

significant correlation among these probes, whereas
rejection of H0 at a = 1% is an indication of a cluster.
For the p genes of the correlation matrix one needs to
compute the statistic:

T = − − − +⎡
⎣⎢

⎤
⎦⎥

( ) ( ) | |N p log R1
1
6

2 5

where N is the sample size (number of patients in each
cohort), p is the number of variables (probes) and |R| is
the determinant of the sample correlation matrix. This
quantity is distributed approximately as c2 with 1/2 p(p-
1) degrees of freedom. To test the significance of the
statistic, we draw B = 5,000 samples of p neighbouring
genes (genes located close to each other) at random from
the set of 44,928 genes and estimate Bartlett's t-test, Tb,
for each of the B = 5,000 draws. The corresponding
bootstrap P value is estimated as:
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where Tb denotes the bootstrap test statistic of the bth

draw. Similar bootstrap approaches have been discussed
in [18].

Comparison of correlation matrices
We would like to show that the genes in the R matrix
form a significant, tight cluster that cannot be re-
produced in the neighbourhood. For our analysis we
use Box's M test [19], which evaluates the significance of
the hypothesis H0: Rp×p = Rq q×

∗ where Rp×p is as before
and Rq q×

∗ is a q × q correlation matrix of the neighbour-
ing genes (in our case q >p). Note that R and R* should
have equal dimension but the correlation coefficients ra,b
(a, b = 1,.., p) of R and ra b,

∗ of R* can be estimated from
unequal sample sizes v1 and v2 and used to estimate Box
M statistic as:
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|S1| is the determinant of the variance-covariance matrix
of our prospective gene cluster (corresponding to the
Rp×p correlation matrix), |S2| is the determinant of the
variance-covariance matrix of the neighbouring group of
genes (corresponding to the Rq q×

∗ correlation matrix)
and |Spool| is the pooled sample variance/covariance
matrix estimated as:
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Box [19] gave c2 and F approximations for the
distribution of M (an exact test does not exist). Notice
that in our case v1 = v2 but the dimensions of R and R*
differ. To compare R and R* we form all possible Rp p×

∗

matrices and compare each one with Rp×p using Box M
test. Then we average over the estimated P values. It is
possible that our approach introduces some bias in the
comparison. However, as we will see later, the difference
between the two compared matrices is large enough to
safely conclude for their statistical difference.

Survival Analysis Based on Genes and Gene Pair
Expression Patterns
This analysis involves testing whether the prospective
gene cluster contains survival significant genes and gene
pairs. As survival significant we consider the genes whose
expression levels are significantly correlated with survival
times/events. The approach that we follow is called data
driven grouping and has been extensively discussed in
[20]. Here we briefly describe the idea of the method.

We assume a microarray experiment with i = 1, 2,..., p
genes, whose log-transformed intensities are measured
for k = 1, 2,..., K patients. Associated with each patient
are continuous clinical outcome data (Disease Free
Survival time (DFS), tk, defined as the time interval
from surgery until the first recurrence (local, regional,
distant) or the last date of follow-up), and a nominal
(yes/no) clinical event ek (e.g., occurrence of tumor
metastasis at time tk). Each patient is assigned to low- or
high- risk groups according to:
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where ci denotes the cut-off of the ith gene's intensity
level. Motakis et al. [20] showed how to estimate this
cut-off from the data by maximizing the distance of the
Kaplan-Meier survival curves of the two patients groups.
This algorithm is called one-dimensional data-driven
grouping (1D DDg). The clinical outcomes/events are
subsequently fitted to the patients’ groups by the Cox
proportional hazard regression model [21]:
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where hik is the hazard function and ai(tk) = log hi0(tk)
represents the unspecified log-baseline hazard function;
b is the 1 × p regression parameter vector; and tk is
patient survival time. To assess the ability of each gene to
discriminate the patients into two distinct genetic classes,
the Wald P value of the bi coefficient of the Cox
proportional hazard regression model [21] is estimated

by using the univariate Cox partial likelihood function,
estimated for each gene i as:
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where R(tk) = {j: tj ≥ tk} is the risk set at time tk and ek is
the clinical event at time tk. The actual fitting of the Cox
model is conducted by the survival package in R http://
cran.r-project.org/web/packages/survival/index.html.
The genes with the significant bi Wald P values are
assumed to have better group discrimination ability and
are thus called "highly survival-significant genes". These
genes are selected for further confirmatory analysis or for
inclusion in a prospective gene signature set.

The proposed dichotomization of the patients into two
groups and the subsequent fit on the Cox proportional
hazards model is a strategy that has been followed in the
past (for example see [5]) to identify clinical groups of
patients. Our data-driven method is an improvement of
the mean-based approach [5] as showed in [20]. Data-
driven grouping estimates the optimal partition (cut-off)
of a single gene's expression level by maximizing the
separation of the survival curves related to the high- and
low- risk of the disease behaviour. In this sense it does not
rely on predefined cut-offs (like mean-based does) and,
more importantly, it is able to identify several survival
significant genes that cannot possibly be found by other
methods. Our technique has the potential to be a
powerful tool for classification, prediction and prognosis
of cancer and other complex diseases. Extensive discus-
sion and evaluation of our method can be found in [20].

A similar approach is applied to identify synergistic
survival-significant gene pairs using the two-dimensional
data-driven grouping method of Motakis et al. [20].
Briefly, for a given gene pair i, j with individual cut-offs
(identified from the one- dimensional data-driven
grouping) ci and cj, i ≠ j, we may classify the K patients
by seven possible two-group designs.

Figure 1 indicates the regions where patients’ gene
intensities [yi,k, yj,k] are plotted; note that “A", “B", “C”
and “D” are defined by the conditions A: yi,k <c

i and yj,
k<c

j; B: yi,k ≥ ci and yj,k <c
j; C: yi,k<c

i and yj,k ≥ cj; D: yi,k ≥ ci

and yj,k ≥ cj. For each i and j pair (i, j = 1,..., p), group the
patients according to each of the seven designs shown in
Figure 1 (using individual gene cut-offs), fit the Cox
model:
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for each design and estimate the seven Wald P values for
β i

d (d = 1,..., 7 corresponds to designs). Provided that
the sample sizes of the respective groups are sufficiently
large and the proportionality assumption of the Cox
model is satisfied (the ratio of the hazards does not
depend on time), the best grouping scheme among the
five “synergistic” (designs 1 to 5) and the two “indepen-
dent” (designs 6 and 7) designs is that with the smallest
β i

d P- value. We perform multiple testing corrections
later when the best designs and P values have been
collected for each gene pair. At that stage we will identify
the truly prognostic significant genes by minimizing the
number of false positives. The procedure we will apply is
the False Discovery Rate [29]. Extensive discussion is
provided at the paragraph ‘Survival analysis of SFGM
genes and their closest neighbours in breast cancer
patients'.

The correlation and survival analyses were conducted in
R http://cran.r-project.org/ using software developed by
our group. All our programs are available upon request.

Results
Identification of the co-expressed TNFAIP1/POLDIP2
sense antisense gene pairs
Using the high-confidence Affymetrix Chip U133 A&B
probesets presented in the APMA database [22], http://
apma.bii.a-star.edu.sg/, we selected 156 SAGPs located
on chromosome 17 with reliable RefSeq support (those
IDs with NM prefixes) for each member of each pair.

Each of the genes in these SAGPs was supported by at
least 1 Affymetrix Chip U133 A&B probesets. We focused
on chromosome 17 because many regions of that
chromosome are actively involved in recurrent amplifi-
cations during breast cancer development (including the
ERBB2 amplicon). Using mRNA expression data from
the Uppsala and Stockholm cohorts, we calculated
Pearson correlations for each pair and identified high-
confidence correlated pairs of probesets (a = 1%)
representing twelve SAGPs. Among these positively-
and highly-correlated SAGPs, two convergent SA gene
pairs (the TNFAIP1/POLDIP2 SAGP and the IFT20/
TMEM97 SAGP) attracted our attention (Figure 2B)
because TNFAIP1 and IFT20 also have a common SA
overlapping region. Thus, these two SAGPs were in fact
the parts of the same complex CSAGA. Our further work
was focused on the detailed characterization of this
CSAGA.

POLDIP2 (NM_015584) encodes a protein that interacts
with the DNA polymerase delta p50 subunit and with
proliferating cell nuclear antigen (PCNA) [23]. Some
transcripts of this gene overlap in a tail-to-tail orienta-
tion with the gene for tumor necrosis factor alpha-
induced protein 1 (TNFAIP1; NM_021137). The genes of
this pair form a convergent (tail-to-tail) gene orientation
topology, share a 376-nucleotide region of their 3'-
untranslated regions and are located on human chromo-
some cytoband 17q11.2. It has been reported that this
gene can be induced by TNF-alpha [24]. Moreover, the

Figure 1
Grouping of a synergetic gene pair (genes 1 and 2 with respective cutoffs c1 and c2) and all possible two-group
designs (Designs 1-7).
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TNFAIP1 protein can also directly interact with the PCNA
protein. The rat TNFAIP1 stimulates polymerase delta
activity in vitro in a PCNA-dependent way [25]. Thus,
transcription of POLDIP2 and TNFAIP1 could be under
common control and the products of these genes could
be involved in the same pathways.

Identification of TNFAIP1/POLDIP2 Structural-Functional
Gene Module
We identified two SAGPs (TNFAIP1/POLDIP2 SAGP and
IFT20/TMEM97 SAGP) located close to each other on

17q11.2. These SAGPs demonstrated reproducible and
significant co-expression pattern in 2 independent
cohorts (the Uppsala and Stockholm cohorts) of breast
cancer patients. When the genes composing the SAGPs
were analyzed as a pair in survival analysis, their co-
expression turned out to be survival significant in both
cohorts. For TNFAIP1/POLDIP2 SAGP, the P value (and
designs) for Stockholm was 4.6E-04 (design = 1) and the
corresponding values for Uppsala was 3.1E-07 (design =
1). For IFT20/TMEM97 SAGP, the P value (and designs)
for Stockholm was 3.6E-03 (design = 2) and the
corresponding values for Uppsala was 1.6E-05 (design

Figure 2
TNFAIP1/POLDIP2 complex sense antisense architecture mapped onto the genome (UCSC genomic browser).
A - TNFAIP1/POLDIP SAGP (red arrows) and TMEM97/IFT20 SAGP (two next closest blue arrows on the left) with seven other
genes included in the analysis (blue arrows). B - TNFAIP1/POLDIP2 complex cis-sense antisense architecture (red box) with
different tracks. Small green solid boxes represent CpG islands, and green transparent boxes represent regions of enrichment
of potential miRNA regulatory target sites. ChIP-Seq tracks represent regions of DNA binding by STAT1 (human cervical
cancer HeLaS3 cell line [42]), ChIP-PET-defined histone trimethylations H3K4me3 and H3K27me3 (promyelocytic leukemia
cell line HL60 [40]) and ChIP-seq-defined RNA polymerase II binding (breast cancer cell line MCF7 [44]). Black arrows at the
bottom indicate the direct evidence of transcription activation of the TNFAIP1/POLDIP2 CSAGA in the breast cancer cell line.
The GIS ChiP-PET track shows H3K4me3 and H3K27me3 regions mapped on the human genome (embryonic stem cell line
hES3 [41]).
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= 2). The plots of patients grouping and Kaplan-Meier
survival curves are shown in ‘Materials and methods’
section.

Next, we produced correlation matrices of the TNFAIP1/
POLDIP2 and IFT20/TMEM97 SAGPs with seven more
neighbouring genes, including the one closest gene
(PPY2) located centromeric to IFT20/TMEM97 SAGP
and six closest genes (TMEM199, SEBOX, VTN, SARM1,
SLC13A2, FOXN1) located telomeric to TNFAIP1/POL-
DIP2 SAGP. According to the UCSC genomic browser
(hg18), the most distant centromeric gene, PPY2, is
located at a distance not exceeding 80 kb from TNFAIP1/
POLDIP2 SAGP. The most distant of the telomeric genes,
FOXN1, is located at a distance of 170 kb (Figure 2A).
Affymetrix U133A&B probesets 214283_at (gene
TMEM97), 229182_at as well as 233531_at and
234060_at (gene SLC46A1) were excluded from our
analysis due unclear support by the well annotated and
reliable RefSeq gene database. Genes (and their Affyme-
trix probes) in the matrix were placed in the same order
as they are located on 17q11.2 in the human genome.
Analyzing the correlation matrices of these 11 genes, we
discovered that 5 of them are structurally organized as
complex sense antisense gene architecture (CSAGA)
(Figure 2B). These genes are TMEM97, IFT20, TNFAIP1,
POLDIP2 and TMEM199. Figure 3A, B shows their strong
mutual correlation pattern in breast cancer patients in
both breast cancer cohorts. The expression levels of each
of these five genes in different grades of breast cancer in
both cohorts were much higher compared to the 6
centromeric and telomeric neighbours in the chosen
genomic window (Figure 3C, D). Also, significant
differences in gene expression levels were observed for
TMEM97 and POLDIP2 in different grades of breast
cancer in both cohorts (not shown). We performed heat
map analysis using Tree View 1.1.3 software [26] - which
showed a clear overexpression cluster of the five-gene
module compared to its centromeric and telomeric
neighbours in both breast cancer cohorts (Figure 3E, F).

The structural backbone of this TNFAIP1/POLDIP2 CSAGA
is composed of three CpG rich regions representing putative
gene promoters (two of which are bidirectional), as well as
two intergenic convergent SA overlaps (TMEM97 and IFT20,
TNFAIP1 and POLDIP2) with RefSeq support (Figure 2B)
and one divergent SA overlap with UCSC support (IFT20
and TNFAIP1) (data not shown).

Based on its structural and expressional integrity, we
have termed the TNFAIP1/POLDIP2 CSAGA a TNFAIP1/
POLDIP2 structural - functional gene module (SFGM). For
the remaining six genes in the chosen window we use the
term ‘neighbouring’ genes for the convenience of
description.

Next, using Bartlett's test [17] and Box's M test [19], we
addressed the following questions: first, whether the
correlation matrices for the five genes of the TNFAIP1/
POLDIP2 SFGM (the SFGM matrix) as well as the
correlation matrices for the six ‘neighbouring’ genes
('neighbouring’ genes matrix - NG matrix) are statisti-
cally significant compared with randomly chosen
matrices derived from genes close to each other in the
whole genome (Figure 3A, B); and, second, whether
SFGM matrices are significantly different from NG
matrices. As discussed before our second task involved
comparing two matrices of unequal dimension. For this
reason, we found all possible 6-genes signatures com-
posed by NG matrices and compared each respective
matrix with the SFGM matrix. Then, we averaged the test
P values and reported our results in Table 1.

Bartlett test in Uppsala cohort showed that the tested
correlation matrices were highly significant in all four
different grades or using all patients data at significance
level a = 1%. In the Stockholm cohort, G1 and G3
subgroups were highly significant at the same significant
level. G3-like subgroup was close to the border line and
only G1-like was not significant (Table 1). All NG
matrices in both cohorts produced insignificant Bartlett
P values and are not further considered as candidates for
the members of TNFAIP1/POLDIP2 SFGM.

Next, we applied Box's M test to the comparison of two
correlation matrices at a = 1%. The test revealed highly
significant differences in almost all pairs of SFGM
matrices and NG matrices (except for the Stockholm
G3-like subgroup). Taken together, the statistical analy-
sis clearly supports the existence of the five-gene SFGM.
On the other hand, it strongly excludes the six other
‘neighbouring’ genes as members of this SFGM. We also
utilized Box's M test to determine if there are any
differences among SFGM matrices for each cancer grade
in both cohorts. We observed that the SFGM showed a
significant strengthening of its co-regulatory profile
(from the first group to the second group in each pair,
correspondingly) in the following group pairs: G1 and
G3-like (Uppsala cohort, p = 8.08E-03; Stockholm
cohort, p = 9.21E-07); G1-like and G3 (Stockholm
cohort, p = 3.46E-004); G1 and G3 (Stockholm cohort, p
= 2.62E-04); G1-like and G3-like (Stockholm cohort, p =
3.64E-08).

We suggest three possible mechanisms for the observed
co-regulatory pattern of the TNFAIP1/POLDIP2 SFGM:
an amplification mechanism (recurrent amplification), -
if the modules are located in an amplified region on 17q
involved in the process of breast cancer development; a
chromatin remodeling/activation mechanism (for exam-
ple, histone modification); and a transcription activation
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mechanism (for example, common regulatory transcrip-
tion factors).

Survival analysis of SFGM genes and their closest
neighbours in breast cancer patients
We applied our survival analysis algorithm for the genes
of SFGM and NG matrices. Four members (unique
genes) of TNFAIP1/POLDIP2 SFGM are significant at a =
5% according to Wald P values, whereas no

neighbouring genes satisfied this criterion. To minimize
Type I error rate (false positives) we applied False
Discovery Rate (FDR) correction to the P values using the
classic FDR of Benjamini and Hochberg [27], extended
for positive dependent data [28]. Typically, positive
dependence exists if the variance covariance matrix of the
six probes we study contains only positive entries, which
is true in our case. At significance level a = 5%, the
Uppsala and Stockholm cohort FDR corrected P values

Figure 3
Members of the TNFAIP1/POLDIP2 CSAGA are mutually co-regulated in breast cancer and form a structural–
functional gene module. Correlation matrices visually demonstrate the presence of a characteristic co-regulatory pattern:
the co-regulatory area is formed by enrichment of significant Pearson correlation coefficients (a = 1%). Members of the
TNFAIP1/POLDIP2 CSAGA form a SFGM (blue matrix - SFGM matrix); the light green matrix shows correlations among six
‘neighbouring’ genes (the ‘neighbouring’ genes matrix - NG matrix); the light violet matrix area marks intergroup correlations
between genes of the SFGM matrix and NG matrix.. A, C and E – Uppsala cohort; B, D and F – Stockholm cohort; A and B –
correlation matrices, C and D - individual gene expression in breast cancer patients in different breast cancer grades (G1, G1-
like, G3-like and G3 [16]), E and F - heat map visualization of gene expression in different grades of breast cancer.
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were estimated as pu
∗ = 4.2E - 03 and ps

∗ = 5.1E - 03,
respectively. Table 2 indicates the Wald and FDR
significant probes of our set. Notice that after FDR
correction our set still contains highly significant genes
in both cohorts. It is important that all four genes belong
to the TNFAIP1/POLDIP2 SFGM and none belongs to the
group including the six “neighbour genes”. Interestingly,
TMEM97 was survival significant in both cohorts, and it
was shown previously to play a role in primary and
metastatic colorectal cancers [29]. We also applied
survival analysis and 2D data-driven grouping to identify
survival significant probe pairs among the probes of our
prospective cluster. First, we estimated the Wald P values
and then used the FDR correction as before. The FDR
corrected P values in Uppsala and Stockholm cohorts
were pu

∗ = 8.5E - 03 and ps
∗ = 4.9E - 03. We kept the

survival significant gene pairs which were common in
the two cohorts. Table 3 shows our results (11 non-
redundant survival significant gene pairs).

Among the seven unique genes that compose the eleven
significant gene pairs (Table 3) we observed all five genes of
the TNFAIP1/POLDIP2 SFGM and two (SARM and VTN)
belonging to the ‘neighbour's’ gene group. Three of the
eleven selected gene pairs (in bold italics in Table 3)
demonstrated an effect of synergy, with the Wald P values
for this more than ten times lower than the P values
calculated for the individual genes of the pairs. - For

example, the TNFAIP1/POLDIP2 (Figure 4), TNFAIP1/
TMEM97 and SARM1/TMEM199 (Additional file 2, Figures
S1 and S2) gene pairs revealed a synergistic effect with regard
to survival in the Stockholm cohort. Figures 4, S1 and S2
show clearly that synergy improved patients grouping.

The gene pair TNFAIP1/POLDIP2 is a convergent SAGP
in the middle of the TNFAIP1/POLDIP2 SFGM. There-
fore, our survival analysis of the TNFAIP1/POLDIP2
SFGM and its “neighbouring genes” has revealed
individual survival significant genes as well as significant
gene pairs suggesting that the TNFAIP1/POLDIP2 SFGM
is important for breast cancer prognosis.

Expression of gene members of the TNFAIP1/POLDIP2
structural-functional gene module strongly correlates with
DNA copy number
Previous studies of HER2-amplified tumors have demon-
strated that the smallest region of amplification (SRA)
involving HER2 spans 280 kb and contains a number of
genes in addition to HER2 that have elevated levels of
expression [32][33]. A comprehensive genomic study of
HER2 (ERBB2) amplicon by Arriola et al. [30] revealed 21
additional smallest regions of amplification (SRAs)
scattered throughout the genome. In our study of the
data from [30] we found that the TNFAIP1/POLDIP2
SFGM is located inside of one of these 21 SRAs on
17q11.2 (genomic coordinates: 22, 766. 90 to 25, 931.27

Table 1: P values obtained by pair-wise comparisons of matrices for five genes in the SFGM group and six ‘neighbouring’ genes

Breast cancer grade SFGM matrix 1 NG matrix 1 SFGM matrix/NG matix 2

U S U S U S

G3 1.5E-12 2.7E-10 7.6E-01 5.9E-01 1.0E-16 1.0E-16
G3-like 3.4E-11 8.9E-03 2.1E-01 8.8E-01 1.0E-16 1.1E-01
G1-like 2.1E-14 9.9E-02 4.5E-01 6.7E-01 1.0E-16 1.0E-16
G1 1.1E-04 1.6E-14 9.1E-01 7.7E-01 1.0E-16 1.0E-16
Total group 1.2E-16 1.3E-15 8.3E-01 6.1E-01 1.0E-16 1.0E-15

1 – P values were calculated using Bartlett's bootstrap test. 2 – averaged P values were calculated using Box's M test (see description of procedures in
Materials and methods section). U – Uppsala cohort; S – Stockholm cohort.

Table 2: Individual genes selected among the TNFAIP1/POLDIP2 SFGM and 6 “neighbouring” genes which proved to be survival
significant in at least one cohort (P value ≤ 0.05).

Affymetrix U133 (A&B)
probeset

Gene Symbol Uppsala cohort(individual) Stockholm P value (individual)

Wald statistic
P value

FDR corrected
P value = 4.2E-03

Wald statistic
P value

FDR corrected
P value = 5.1E-03

B.222425_s_at POLDIP2 1.5E-05 Significant 2.4E-02 Not significant
A.210312_s_at IFT20 4.1E-04 Significant 2.4E-02 Not significant
A.212282_at TMEM97 1.1E-03 Significant 3.0E-03 Significant
B.225375_at TMEM199 2.2E-02 Not significant 7.2E-04 Significant

The Uppsala cohort P value correction pu
∗ = 4.2E - 03; the Stockholm cohort P value correction ps

∗ = 5.1E - 03.
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Table 3: Selected non-redundant survival-significant gene pairs identified in both cohorts of breast cancer patients

Affymetrix U133 (A&B)
probeset

Gene Symbol P value (individual) Affyprobeset* GS* P value(individual) P value(gene pair)

U S U S U S

222425_s_at POLDIP2 1.50E-05 0.024 A.201207_at TNFAIP1 0.00011 0.081 3.10E-07 0.00046
201208_s_at TNFAIP1 0.022 0.11 A.214283_at TMEM97 0.074 0.081 0.00022 0.0029
213259_s_at SARM1 0.011 0.074 B.225375_at TMEM199 0.022 0.00072 0.00085 2.90E-05
204534_at VTN 0.024 0.11 A.210312_s_at IFT20 0.00041 0.024 0.00021 0.00052
204534_at VTN 0.024 0.11 A.212279_at TMEM97 0.0042 0.0035 1.00E-04 0.00062
210312_s_at IFT20 0.00041 0.024 A.212281_s_at TMEM97 0.0028 0.0051 1.60E-05 0.0036
213259_s_at SARM1 0.011 0.074 A.212281_s_at TMEM97 0.0028 0.0051 0.00039 0.004
217806_s_at POLDIP2 4.30E-05 0.12 A.212281_s_at TMEM97 0.0028 0.0051 2.60E-05 0.0036
225375_at TMEM199 0.022 0.00072 A.201207_at TNFAIP1 0.00011 0.081 9.30E-05 0.00021
225375_at TMEM199 0.022 0.00072 A.212279_at TMEM97 0.0042 0.0035 2.00E-04 0.00032

Bold italics indicates gene pairs where the P values for a gene pair are at least ten times lower than that for either of the individual gene's of the pair
for both the Uppsala and Stockholm cohorts. U, Uppsala cohort; S, Stockholm cohort.

Figure 4
Survival analysis for the TNFAIP1/POLDIP2 gene pair in breast cancer patients. A, B and C – plots and histogram
for the Stockholm cohort; D, E and F - plots and histogram for the Uppsala cohort. Black indicates the low-risk prognosis
group, red indicates the high risk prognosis group. A and D - correlation of gene expression and optimal partition of
expression domains and patients grouping. The horizontal lines are the cut-offs of 2D data-driven grouping. B and E - Kaplan-
Meier survival curves for TNFAIP1 and POLDIP2 when analyzed separately (TNFAIP1 - dotted line; POLDIP2 – dashed line) as well
as together (solid line). C and F – separation of breast cancer patients based on expression data of the TNFAIP1/POLDIP2 gene
pair in different grades [15]: Y axis – frequency of patients in different groups; X axis – patient distribution in different breast
cancer grades (white column - total group; black column – low-risk prognosis group; red column – high risk prognosis group).
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kb [22]). We call this the 17q11.2 SRA to distinguish it
from the TNFAIP1/POLDIP2 SFGM. Correspondingly, the
smallest region of amplification that includes the ERBB2
core region (CR; see below) as well as many other
neighboring genes we call the 17q12 SRA (genomic
coordinates: 34, 730.32 to 35 476.80 kb) [30]).

In order to elucidate whether the mRNA expression
levels of members of the TNFAIP1/POLDIP2 SFGM
correlate with the DNA copy number of the correspond-
ing region of the 17q11.2 SRA, we estimated Kendall-Tau
correlation coefficients between DNA copy number
values for selected SNPs and microarray expression
data for the genes of the TNFAIP1/POLDIP2 SFGM as
well as their neighbors. For this purpose we used high-
resolution SNP microarray profiling together with
microarray gene expression data (see Materials and
methods) for 38 breast cancer cell lines for which both
sources were available [12] (Additional file 3). Correla-
tion matrix analysis with these 38 cell lines (Figure 5A)
confirmed the clear co-regulatory pattern of the
TNFAIP1/POLDIP2 SFGM, which was primarily identi-
fied in two breast cancer cohorts.

For the analysis of the TNFAIP1/POLDIP2 SFGM we
selected four SNP markers covering the genomic region
between 23, 333.55 and 24, 116.08 kb on the 17q11.2
SRA; the region of the TNFAIP1/POLDIP2 SFGM and
neighboring genes covers the region between 23, 598.60
kb (the start of the PPY2 gene in the UCSC browser) and
23, 889.23 kb (the end of the FOXN1 gene). The results
of the correlation analysis are presented in Table 4 that
shows significant correlations of expression with DNA
copy number for all genes of the TNFAIP1/POLDIP2
SFGM. Hence, amplification of the 17q11.2 SRA can be
an important driver of expression for the genes of the
TNFAIP1/POLDIP2 SFGM in breast cancer.

Expression of gene-members of the TNFAIP1/POLDIP2
SFGM strongly correlates with expression of gene-
members of the ERBB2 core region
The TNFAIP1/POLDIP2 SFGM is located on 17q11.2
centromeric to the region of the ERBB2 locus on the
17q12 cytoband. The ERBB2 locus has been extensively
studied and has been proposed to be one of the most
important loci in breast cancer [31]. It is widely accepted,
that the most common mechanism for ERBB2 activation
in breast cancer is gene amplification [32-34]. It is also
well established that the amplified DNA segment
(amplicon) in breast cancer is often rather large and
typically covers many genes [35].

In our analysis we found that the genes composing the
TNFAIP1/POLDIP2 SFGM are located in a much wider

region of the 17q11.2 SRA (see above for definition)
[30]. According to Arriola et al. [30], this region (together
with 20 other regions in the human genome) is
associated with HER2 (ERBB2)- and HER2/TOP2A-
amplified breast tumors. In another study it was
suggested that predominantly luminal and HER2
(ERBB2) cancers display a characteristic ‘firestorm/
amplifier’ genomic pattern [36], that is, when coampli-
fication of many regions in the genome is observed as a
common phenomenon.

Previous studies on the ERBB2 amplicon have utilized
several different approaches. One of these was based on
detection of a correlation between DNA copy number
and mRNA expression [32,33]. This approach was
successfully used for characterization of the ERBB2
amplicon and determination of its smallest minimal
region of amplification, the core region of the ERBB2
amplicon (the ERBB2 CR) which is a 280 kb long
[32,33]. The analysis showed that the ERBB2 CR includes
the following genes: ERBB2, GRB2, STARD3, PP1R1B,
PNMT, NEUROD2, TCAP, ZNFN1A3, PERLD1 and
C17orf37. Real-time RT-PCR confirmed the correlation
between amplification and expression levels [32] for
genes comprising the ERBB2 CR. Finally, the ERBB2 CR
was suggested to include the genes ERBB2, GRB2,
STARD3, PNMT, PERLD1 and C17orf37 [32,33]. There-
fore, the borders of the ERBB2 CR could be defined by
the STARD3 gene centromerically and the GRB7 gene
telomerically.

In our study, we performed DNA copy number analysis
of the ERBB2 CR together with several flanking genes; for
this purpose we used seven SNP markers covering the
region from 34, 693.02 to 35, 229. 99 kb on the 17q12
SRA [12,30]. For the Affymetrix microarray expression
analysis the data for the genes of the ERBB2 CR as well as
their closest neighbor genes (the region between 34,
610.06 (the start of RPL19) and 35, 337. 38 kb (the start
of ORMDL3)) were utilized. Correlation analysis of the
expression profile with DNA copy number was per-
formed exactly as for the TNFAIP1/POLDIP2 SFGM (see
the previous section) [12]. The results of the correlation
analysis of the ERBB2 CR are presented in Table 4. As
expected, the expression-copy number correlation pat-
tern for the genes of the ERBB2 CR in our analysis
demonstrated good consistency with the data of Kaur-
aniemi et al. [32,33].

Another approach originally applied to budding yeast
[37] and Drosophila [38] included searching (or prediction)
for groups of neighboring genes that showed correlated
expression profiles. The same idea was utilized for the
human genome [39]. The transcription correlation score
was calculated for each gene in the genome. The score was
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Figure 5
Correlation matrices analysis of TNFAIP1/POLDIP2 SFGM in 38 breast cancer cell lines (see materials and
methods). Due to the small sample size (38 cell lines) Kendall-Tau correlation coefficients were calculated. Only significant
correlation coefficients (a = 1%) are shown. A. Correlation matrix of the TNFAIP1/POLDIP2 SFGM produced by using original
expression values (Additional file 3A). B. Correlation matrix of the TNFAIP1/POLDIP2 SFGM produced by using expression
values normalized by DNA copy number (Additional file 3A).
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calculated as the sum of the Spearman rank order
correlation values in the tumor samples between the
RNA levels of the gene of interest and the RNA levels of
each of the physically nearest 2n genes (n centromeric
genes and n telomeric genes). Specifically, our analysis of
supplementary material for the ERBB2 amplicon in [39]
showed that this second approach confirmed the data on
the basic members of the ERBB2 amplicon and, therefore,
showed good consistency with the first approach [39].

In our correlation analysis we applied a similar idea as in
[39] but used a different computational apparatus (see
Materials and methods) and performed more detailed
characterization of genomic regions of interest. In order
to validate the reliability of our approach, originally
applied to the characterization of the TNFAIP1/POLDIP2
SFGM, we performed a similar correlation analysis of
matrices for the region of the ERBB2 amplicon which has
been well-characterized previously.

We produced correlation matrices that included 6
validated genes of the ERBB2 CR (see above) and 12
neighboring genes based on data from the Uppsala and
Stockholm cohorts. Genes in a matrix were placed one
by one in the order of their chromosome localization
(from RPL19 centromerically to ORMDL3 telomerically;
Figures 6 and 7). Interestingly, we reproducibly (in both
cohorts) observed a clear co-regulatory pattern (as we
did for the TNFAIP1/POLDIP2 SFGM) of a transcrip-
tional module that included not only the genes that were
validated as members of the ERBB2 CR (see above and
[33]), but also - the genes TCAP and PPP1R1B (Figures 6
and 7, Z-value correlation, a = 1%). The neighboring
genes NEUROD2, IKZF3 (ZNFN1A3) and ZPBP2 were
‘dropped’ from the module due to a lack of significant
correlations with any member of the module and matrix.

Independently, for the 38 breast cancer cell lines for
which both expression and DNA copy number data were

Figure 6
Correlation matrix for ERBB2 amplicon (Uppsala cohort). A – correlation matrix (Pearson, a = 1%); B - heat map
analysis in different breast cancer grades.
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available [12] (and which were used in our DNA copy
number analysis shown in Table 4) the correlation
matrix for the ERBB2 CR and its neighboring genes was
very similar (Additional file 4) to those produced for the
breast cancer cohorts (Figures 6 and 7).

Previously, Kauraniemi et al. [33] excluded TCAP and
PPP1R1B as well as NEUROD2 and IKZF3 (ZNFN1A3)
from the ERBB2 CR based on their weak or absent
expression and lack of correlation with copy number.
Therefore, the results of our ERBB2 CR matrix correlation
analysis demonstrate good consistency with the data of
Kauraniemi et al. [32,33], who used a different approach.
Similarly, in the study of Reyal et al. [39] only genes
NEUROD2, PPP1R1B, IKZF3 and ZPBP were absent from
the list of genes for which the transcription correlation
score was above the threshold for the transcription
correlation map of 130 invasive ductal carcinomas.

Our correlation analysis of the ERBB2 CR and neighbor-
ing genes in the chosen genomic window is not only in a

good agreement with previous studies based on different
approaches, but also adds new information that could be
methodologically important. In this context, we suggest
that the correlation matrix analysis we have applied in
the present work could be a new independent tool for
studying of amplified and/or co-regulated genomic
regions in cancer.

Due to the previously documented fact of co-amplifica-
tion of broad genomic regions of the 17q11.2 and 17q12
SRAs [30] at the DNA level, we proposed that expression
of the genes composing the TNFAIP1/POLDIP2 SFGM
(located inside the 17q11.2 SRA) and genes composing
the ERBB2 CR (located inside the 17q12 SRA) could also
be correlated at the level of transcription. We produced
correlation tables that included both the genes of the
TNFAIP1/POLDIP2 SFGM and the ERBB2 CR and their
neighboring genes in the Uppsala and Stockholm breast
cancer cohorts. We found that the mRNA expression
levels of all members of the TNFAIP1/POLDIP2 SFGM
were significantly correlated with those of at least two or

Figure 7
Correlation matrix for ERBB2 amplicon (Stockholm cohort). A – correlation matrix (Pearson, a = 1%); B - heat map
analysis in different breast cancer grades.
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more members of the ERBB2 CR (Figure 8A, B). ERBB2
and C17orf37 were significantly correlated with almost
all (except TMEM97) members of the TNFAIP1/POLDIP2
SFGM in both cohorts.

Similarly, in 38 breast cancer cell lines (Additional file
5), the expression of the ERBB2 gene was significantly
correlated with the expression of all the 5 members of
the TNFAIP1/POLDIP2 SFGM, although the total num-
ber of observed significant correlations was less than for
the breast cancer patients (Figures 8A, B).

Therefore, the expression profiles of the genes of the
TNFAIP1/POLDIP2 SFGM and the ERBB2 CR are
correlated in breast cancer and this fact could probably
be explained by co-amplification of their genomic
regions. However, alternative mechanisms could be
considered, including similar epigenetic modifications
of chromatin as well as common upstream regulatory
transcription factors.

Genes of the TNFAIP1/POLDIP2 SFGM are co-regulated
not only through changes in DNA copy number but also
by transcription activation and chromatin remodelling
Figure 2B illustrates several findings that could indicate
histone modification as a possible mechanism of the
observed transcriptional co-regulatory pattern of the
TNFAIP1/POLDIP2 SFGM genes. Custom tracks in the
UCSC Genome Browser for trimethylated histones
H3K4me3 and H3K27me3 (promyelocytic leukemia
cells (HL60) [40], http://www.bcgsc.ca/data/histone-
modification confirmed the transcriptional activation
of the genes involved in the TNFAIP1/POLDIP2 SFGM.
All three CpG-rich putative promoters in the TNFAIP1/
POLDIP2 SFGM showed clear signal for H3K4me3 (a
marker of transcriptionally active chromatin) as well as a
lack of signal for H3K27me3 (a marker for inactive
chromatin). Nevertheless, putative promoters for the
‘neighbouring’ genes SEBOX, VTN, and SARM did not
show any signal of H3K4me3. A similar situation is
observed with the GIS Chip-PET track (embryonic stem

Figure 8
Correlation tables between the genes of the TNFAIP1/POLDIP2 SFGM and its ‘neighbours’ and the ERBB2 CR
and its ‘neighbours’ in breast cancer patients. The central selected area of the matrix represents significant correlations
(Pearson, a = 1%) between the TNFAIP1/POLDIP2 SFGM and the ERBB2 CR. A – Uppsala cohort, B – Stockholm cohort.
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cells hES3) of the UCSC Browser [41] (Figure 2B). A
strong signal for H3K4me3 is observed in all three
putative promoter regions of the TNFAIP1/POLDIP2
SFGM and only weak signal of H3K27me3 is detected
for the TMEM97 and TMEM199/POLDIP2 putative
promoters. Alternatively, the putative promoter for the
SEBOX gene does not show any signal for both
H3K4me3 and H3K27me3; the regulatory region of the
VTN and SARM1 genes reveals moderate signal for
H3K4me3 and H3K27me3 of the same intensity.

Additional custom tracks in the UCSC browser for STAT1
binding in HeLa S3 cells [42] clearly demonstrate the
presence of two functional STAT1 binding sites in the
IFT20/TNFAIP1 bidirectional promoter. Moreover, upon
stimulation by interferon-gamma, the binding signal
intensity for STAT1 increased at least seven-fold (Figure
2B). Recently, Liu at al. [43] reported that another
transcription factor, Sp1, is directly (in vivo) associated
with the TNFAIP1 promoter in HeLa cells. Therefore, the
TNFAIP1/POLDIP2 SFGM is also potentially regulated by
STAT1 and Sp1 as well as stimulated by interferon-
gamma in breast cancer cells. Finally, direct and
independent evidence of the TNFAIP1/POLDIP2 SFGM
activation in breast cancer cells comes from the custom
track for RNA polymerase II binding in the MCF7 breast
cancer cell line (Figure 2B, black arrows) [44].

Results of our additional experiment are presented in
Figure 5B. We produced the correlation matrix of the
TNFAIP1/POLDIP2 SFGM based not on the gene expres-
sion values (for 38 cell lines [12]; Figure 5A), but on
their ratios to DNA copy number values (normalized
expression values). Expression data originally extracted
from [12] as well as data normalized to DNA copy
number are presented in Additional file 3. Because the
values for all four SNP markers utilized in the analysis of
the 38 breast cancer cell lines were identical (Additional
file 3), we were able to perform normalization using
values for any of them. The produced matrix revealed the
typical co-regulatory pattern again, although with fewer
mutual correlations.

Therefore, we have clearly demonstrated that not only
recurrent amplification, but also chromatin remodeling
and/or transcription activation is important for the
establishment and maintenance of the co-regulatory
pattern of the TNFAIP1/POLDIP2 SFGM. Moreover, we
suggest that the co-regulatory pattern of the five member
genes of the TNFAIP1/POLDIP2 SFGM could originally
be established as the result of epigenetic modifications
and/or transcriptional activation rather than by recurrent
amplification in breast cancer cells. Theoretically, the
latter mechanism could serve as an ‘accelerator’ of an
already established preexisting co-regulatory pattern. In

this context, the role of the CSAGA in the TNFAIP1/
POLDIP2 SFGM deserves special attention and compre-
hensive experimental study.

Discussion
A method for the statistical identification of co-regulated
genes organized in complex genome architectures
In the present study, we have developed a new
computational method for the statistical identification
of co-regulated genes organized in complex genome
architectures including more than one SAGP. Our
approach is based on: (i) concordant analysis and
selection of expressed SA genes; (ii) identification of
the boundaries of a genomic region encompassing genes
with similar co-expression patterns; (iii) validation of
the expression pattern using independent patient
cohorts; (iv) evaluation of the clinical significance of
expressed genes that belong to the identified genome
region; and (v) identification of the synergy of the genes
in the context of disease aggressiveness and disease
relapse.

TNFAIP1/POLDIP2 is an essential structural-functional
module in the human genome
We analyzed the TNFAIP1/POLDIP2 CSAGA on 17q11.2
in two breast cancer cohorts. The TNFAIP1/POLDIP2
CSAGA is composed of five genes: TMEM97, IFT20,
TNFAIP1, POLDIP2 and TMEM199. The gene pairs
TMEM97/IFT20, TNFAIP1/POLDIP2 and IFT20/TNFAIP1
produce sense-antisense transcripts; the gene pairs IFT20/
TNFAIP1 and POLDIP2/TMEM199 share corresponding
bi-directional promoter regions. This complex genomic
region exhibits a well-organized transcription apparatus:
3 CpG islands; two experimentally validated (STAT1 and
Sp1) and several putative transcription factor binding
sites in canonical promoter regions - GATA1, TAXCREB,
CREBP1, CREB and SREBP1 Transfac 7.0); strong signals
for RNA polymerase II binding (Figure 2B); and
probable open chromatin regions (H3K4met3(+) and
H3K27met3(-)) (Figure 2B). The TNFAIP1/POLDIP2
CSAGA region could produce a large diversity of
alternative splice variants of the genes it encompasses
(USCS Genome Browser, AceView Gene Models with
Alternative Splicing). Our analysis of correlation
matrices revealed a phenomenon whereby genes struc-
turally organized in the genome in the CSAGA demon-
strate a reproducible co-regulatory pattern in breast
cancer cells (Figure 3). We termed the TNFAIP1/
POLDIP2 CSAGA the TNFAIP1/POLDIP2 SFGM.

Concordant regulation in the TNFAIP1/POLDIP2 CSAGA
We did not observe any significant negative correlations
(discordant regulation) in the TNFAIP1/POLDIP2 SFGM
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in agreement with several previous reports of frequent
concordant regulation of sense-antisense pairs [45-47].

Correlation analysis of the TNFAIP1/POLDIP2 SFGM in
four grades of breast cancer (G1, G1-like, G3-like and G3)
revealed a strengthening of the correlations between the
genes of the TNFAIP1/POLDIP2 SFGM. Survival analysis
of individual genes as well as of gene pairs from the
TNFAIP1/POLDIP2 SFGM and its neighbors was also
performed. Only the genes of the TNFAIP1/POLDIP2
SFGM proved to be survival significant in at least one of
the two cohorts analyzed (Table 2). Among 11 genes
analyzed, 10 survival-significant gene pairs have been
identified and all the genes of the TNFAIP1/POLDIP2
SFGM were involved in these pairs. Each of the 11 pairs
contained at least 1 gene from the SFGM. Moreover, three
top level survival-significant gene pairs demonstrated a
synergistic effect with regard to the prognosis of breast
cancer disease relapse when compared with individual
genes (Table 3). This finding indicates the importance of
this module in breast cancer progression and prognosis.

Protein interaction sub-network
Our analysis of the literature on the members of the
TNFAIP1/POLDIP2 SFGM confirmed a previous sugges-
tion regarding its functional integrity and its possible
importance in cancers.

Liu et al. [23] reported on the physical interaction of the
POLDIP2 protein with the p50 subunit of DNA polymerase
delta and PCNA. PCNA has been called the ‘ringmaster of
the genome', because it has been shown to actively
participate in a number of the molecular pathways
responsible for the life and death of the mammalian cell
[48]. It marker to evaluate cell proliferation and prognosis
when combined with other breast cancer markers, such as
estrogen receptor, progesterone receptor andERBB2 [49-51].

TNFAIP1 belongs to KCTD family of the proteins
containing T1 domain capable of regulation of the
voltage-gated potassium channels. It was shown that rat
TNFAIP1 is highly homologous to polymerase delta-
interacting protein (PDIP1) as well as to KCTD10 and all
three proteins can directly interact with PCNA. In the rat,
PDIP1, TNFAIP1 and KCTD10 can stimulate DNA
polymerase delta activity in vitro in PCNA-dependent
way [25,52]. Of note, down regulation of KCTD10 can
inhibit cell proliferation in carcinoma A549 cells [53].
Direct indications of involvement of TNFAIP1 in
apoptosis and carcinogenesis include the following
facts: - CK2-mediated phosphorylation of TNFAIP1 in
HeLa cells affects its sub-cellular localization and
interaction with PCNA [54]; RhoB induces apoptosis
by direct interaction with TNFAIP1 in HeLa cells [55].

TMEM97 cytoplasmic expression was shown to be posi-
tively correlated to expression of PCNA; this gene is
considered a prognostic factor in themetastasis of colorectal
cancer [29]. Another important fact is that in UV-irradiated
human cells, PCNA foci demonstrate striking colocalization
with phosphorylated breast cancer susceptibility protein
BRCA1[56]. Both PCNA and BRCA1 are required for
postreplication repair [57]. Therefore, at least three mem-
bers of the TNFAIP1/POLDIP2 module could be function-
ally associated in the same PCNA complex.

Two interesting recent publications support the idea
about the involvement of the TNFAIP1/POLDIP2 mod-
ule in the cell cycle and cell proliferation: POLDIP2 was
shown to be associated with spindle organization and
aberrant chromosome segregation [58]; and tissue-
specific deletion of floxed IFT20 in the mouse kidney
causes mis-orientation of the mitotic spindle in collect-
ing duct cells, prevents cilia formation and promotes
rapid postnatal cystic expansion of the kidney [59].

Interesting pleiotropic effects of POLDIP2 also include
interaction with cell-cell adhesion receptor CEACAM1
[60] and involvement in transcription and metabolism
of mitochondrial DNA [61].

Co-regulatory pattern of the TNFAIP1/POLDIP2 SFGM
with the ERBB2 amplicon
It is important to note that the TNFAIP1/POLDIP2
module is located outside of the well-known ERBB2
amplicon on 17q12, over-representation of which in the
genome is often associated with the occurrence of the
ERBB2-positive breast cancer subtype. In the present
work, we demonstrated reproducible correlations of the
TNFAIP1/POLDIP2 SFGM with the ‘core region’ of the
ERBB2 amplicon (Figure 8). This finding is in good
agreement with data from a recent report on HER2
(ERBB2) co-amplified regions in breast cancer patients
and cell lines [30]. In fact the TNFAIP1/POLDIP2 SFGM
is located inside the smallest region of recurrent
amplification on 17q11.2 and expression of its members
strongly correlates with DNA copy number (see the
Results section). Significant correlations between mem-
bers of both modules could be explained, at least
partially, by a co-amplification mechanism. Neverthe-
less, the correlation of the expression profiles of these
modules would not imply a direct association with
similar breast cancer subtype.

It is well established that overexpression of the ERBB2
amplicon is predominantly associated with the ERBB2
breast cancer subtype [13,14]. Preliminary data obtained
in our pilot study (not shown) indicate that the
TNFAIP1/POLDIP2 SFGM demonstrates stronger
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correlation pattern not with the ERBB2 breast cancer
subtype but rather with luminal A and B subtypes.

Therefore, we suggest that the TNFAIP1/POLDIP2 SFGM
could be used potentially as a new integrative indicator
in breast cancer diagnosis, prognosis and treatment
monitoring. This issue requires comprehensive study and
will be addressed in future publications.

Taken together, our analysis suggests that the TNFAIP1/
POLDIP2 SFGM is composed of genes that are not only
closely organized in a complex genomic architecture and
co-regulated at the transcription level, but also could be
involved in essential common biochemical pathways as
well as protein-protein and protein-DNA interactions
forming molecular complexes important for many
cellular processes, including cell division, proliferation,
apoptosis, intracellular transport and cell binding. Such
diverse structural and functional properties suggest the
biological importance and clinical significance of the
TNFAIP1/POLDIP2 CSAGA.

Conclusion
We conclude that the methods of computational
identification of novel structural and functional gene
modules and the grouping of clinically heterogeneous
(cancer) patients based on the expression patterns of
genes of these modules could provide broad perspectives
for the development of computational systems biology
strategies for understanding the genetics and pathobiol-
ogy of many complex genetic diseases.

Due to concordant regulation of the genes in such
modules, one could target just the antisense transcript
(s), resulting in reduction of sense mRNA transcripts, or
also the adjacent genes of the module, thereby achieving
additive and even synergistic reduction of expression of a
specific group of neighboring genes [62]. Pharmacologi-
cal strategies aimed at either stimulation or suppression
of expression of a specific group of genes that are
influenced by natural SA regulation could also be
developed. A discovery of biologically meaningful and
clinically significant CSAGAs, instead of the conven-
tional finding of ‘gene signatures', might be more
promising in the context of the appropriate translation
of microarray analyses into clinical practice and the
identification of new drug development strategies.
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