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Abstract

Motivation: Identification of differentially expressed genes from microarray datasets is one of the most important
analyses for microarray data mining. Popular algorithms such as statistical t-test rank genes based on a single
statistics. The false positive rate of these methods can be improved by considering other features of differentially
expressed genes.

Results: We proposed a pattern recognition strategy for identifying differentially expressed genes. Genes are
mapped to a two dimension feature space composed of average difference of gene expression and average
expression levels. A density based pruning algorithm (DB Pruning) is developed to screen out potential
differentially expressed genes usually located in the sparse boundary region. Biases of popular algorithms for
identifying differentially expressed genes are visually characterized. Experiments on 17 datasets from Gene
Omnibus Database (GEO) with experimentally verified differentially expressed genes showed that DB pruning can
significantly improve the prediction accuracy of popular identification algorithms such as t-test, rank product, and
fold change.

Conclusions: Density based pruning of non-differentially expressed genes is an effective method for enhancing
statistical testing based algorithms for identifying differentially expressed genes. It improves t-test, rank product,
and fold change by 11% to 50% in the numbers of identified true differentially expressed genes. The source code
of DB pruning is freely available on our website http://mleg.cse.sc.edu/degprune

Introduction
Statistical methods for identifying differentially
expressed genes are now routinely used by biologists.
There are two main categories of algorithms. The first
category includes single gene testing approaches such as
fold change [1], rank product [2], t-test and its variants
[3]. These methods are characterized by a single statis-
tics score used to rank genes from significantly differen-
tially expressed genes to no- change ones. The second
category includes gene set testing approaches such as
gene set enrichment analysis [4,5]. These methods are

featured by exploiting externally determined gene sets to
rank a group of genes. The shortcoming of these meth-
ods is that in many cases such gene set information is
not available, especially for under-studied species.
Despite increasing usage of gene set analysis methods
[4], single-gene based identification algorithms for dif-
ferentially expressed genes (DEGs) still dominate the
practice of biological differential gene expression analy-
sis [6-9] from microarray data. This is partially due to
their simplicity as well as little requirement on gene
annotation. Thus improving single-gene DEG identifica-
tion algorithms still has great implication for DEG
microarray analysis practice in biology. Currently, a
major purpose of DEG algorithm design is to reduce
their false positive and false negative errors since
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experimental biologists usually only afford to test only a
very limited number of predicted DEGs.
Biologically interesting DEGs are those genes that

have significant phenotypic changes along with their
change of gene expression levels. Most current single-
gene DEG identification algorithms, however, take it as
a statistical significance test problem without referring
to the real characteristics of differentially expressed
genes [10]. Unfortunately, limited number of samples of
microarray datasets in most biological studies makes
such statistical test methods ineffective [11,12]. This
issue has been addressed recently using multiple strate-
gies. A popular strategy is to gather information across
similar genes to improve DEG identification. This
includes the Bayes t-test approach [13], the local pooled
error algorithm [14], the famous SAM algorithm [15],
and et cetera. Another strategy is to use external infor-
mation to improve variance estimation. Wille et. al. [16]
proposed an external variance estimation algorithm
called EVE, which exploits the relationships between
variances of gene expression and gene function. Kim
and Park [17] proposed a normalization method to
make multiple microarray datasets with different chips
comparable, which then facilitates the estimation of
gene variance with those external datasets. Their
method showed big improvement over the basic regular-
ized t-test algorithm on experiments with 1x1, 2x2 and
3x3 samples. Hack- stadt and Hess [18] investigated
three filtering methods for pruning genes before statisti-
cal tests: MAS detection call, variance, and average sig-
nal. They showed that gene filtering by MAS detection
call and mean signal lead to increased performance of
DEG identification. They also suggested that filtering
50% of probe sets is reasonable due to majority genes
are expected to be equally expressed.
Here we propose a pattern recognition strategy for

improving DEG identification algorithms. This pruning
algorithm shares some similarity to all-gene-analysis
DEG identification algorithms as discussed in [19]. The
first step of our algorithm is to apply pattern recognition
algorithms to prune non-DEGs from the whole gene list
based on the characteristics of experimentally verified
differentially expressed genes. In this paper, a density
based pruning (DB Pruning) is developed based on two
features of DEGs: the average difference of gene expres-
sion level between two classes and the average gene
expression level. It is motivated by the observation that a
majority of true DEGs experimentally verified by RT-
PCR tend to have high expression levels in 38 real-world
datasets [20]. The tendency for high expression genes to
be over-represented in the list of DEGs is also suggested
in [18]. And we found that the true DEGs tend to be
sparsely located in the boundary regions in the average-
difference—expression level space (peripheral areas of

the gene distribution map) as shown in Fig. 1. In the sec-
ond step, common statistics-based DEG identification
algorithms such as t-test are applied to rank genes. The
non-DEG pruning will be able to enrich true DEGs in the
remaining gene lists. This is especially desirable for
small-size microarray datasets. It can also be used to
greatly reduce the computational cost of DEG algorithms
that search gene combinations [21], in which all gene-
pairs need to be ranked. Based on systematic evaluation
on 17 real-world microarray datasets with a total of 184
true DEGs applied to four existing DEG algorithms, we
showed that DB pruning can significantly improve the
performance of these traditional algorithms for both
large and small datasets in terms of false positive rates.
For example, DB Pruning can prune 83% (19156) genes
out of 22283 while keeping 89% (164) true DEGs out of
184 for 17 datasets we tested. The enrichment of true
DEGs in the pruned gene list is almost six times of the
original gene list. DB pruning is also shown to increase
the AUC score of rank product by up to 21% and helps it
to find 33% more true DEGs when the cutoff top K=550.
For fold change and t-test, it can find 11% and 15.8%
more true DEGs. When the sample size is 4x4, DB prun-
ing improves t-test by 26.8% in terms of the number of
identified true DEGs. When the sample size is 2x2, t-test
is improved by 50%.

Methods
Differentially expressed genes are those genes with sig-
nificant difference in expression levels among two or
more classes/conditions. Such expression changes
should not be caused by random variation in gene
expression. DEGs resulting from a specific perturbation
to corresponding pathways tend to share some func-
tional or physiological characteristics. It is thus justified
that DEG identification can be improved by considering
the characteristics of true DEGs. One characteristic is
that true DEGs experimentally identified to date tend to
have high average expression values across all conditions
[20]. The resulting WAD algorithm is very competitive
compared to other DEG algorithms based on evaluation
over 38 GEO microarray datasets. In WAD, the product
of the gene expression ratio and relative gene expression
level are used to rank genes. The limitation of this rank-
ing scheme is that it biases to genes with balanced
expression ratios and expression levels.
The main idea of the proposed DB pruning is that dif-

ferentially expressed genes between two conditions are
usually located in the boundary region in the 2-D feature
space of average gene expression (AG) versus average dif-
ference of gene expression (AD). Fig.1. shows the distri-
bution of true DEGs in the 2D space for four datasets:
GSE9499, GSE6342, GSE6740_1, and GSE6740_2 from
GEO database [22]. Based on the fact that boundary
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region is characterized with scarcity of genes, a density
based pruning algorithm is proposed here for pre-filter-
ing non-DEG genes located outside the boundary region
so that the false positive rate of current DEG algorithms
can be improved.

Density-based pruning algorithm for DEG identification
The main idea of density based pruning is to remove
non-DEGs that usually appear within the dense part of
the AG-AD space. Assume M is a microarray matrix
with N genes (rows) and P profiles (columns). There are
total P1 profiles in P corresponding to condition A and
P2=P-P1 profiles corresponding to condition B. The aver-
age expression level (AG) of a gene Xi is defined as (Xi

A +
Xi

B)/2, where Xi
A and Xi

B are the average expression level
(log-scaled) of gene Xi under condition A and B. The
average difference of gene expression of a gene Xi is
defined as |Xi

A - Xi
B| Since the expression values used in

calculating |Xi
A - Xi

B| are log-transformed, the average
differences of expression calculated here are actually
equivalent to expression ratios as in fold change method.
The density based pruning algorithm works as follows:

each gene Xi is mapped into the (AG, AD) feature
space. Pairwise Euclidian difference between two genes
Xi and Xiis calculated, where i ≠ j. If the distance is
smaller than a user-defined radius threshold R0, these
two genes will be declared as neighbors. Then the num-
ber of neighbors (ni) will be calculated for each gene. If
ni ≥ N0 then gene Xi will be pruned from the gene list,
where N0 is a user-specified density parameter. The
final output gene list is composed of genes that are
mostly outliers located in the boundary region of the
AG-AD feature space.
For different datasets, an important step of our algo-

rithm is to determine appropriate parameters R0 and N0

such that all or most DEGs are kept in the final list and

Figure 1 Distribution of true DEGs in the boundary regions of the AG-AD feature space for four datasets. Most DEGs are located in the
boundary regions in the figure. Screening out boundary genes has the potential to improve the power of gene ranking methods such as t-test
for DEG identification.
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that a maximum number of non-DEGs are pruned.
Through our experiments, we found that Nn = 4 is an
appropriate parameter for most of 17 datasets used in
our experiments. The value of threshold radius R0 has a
large effect on the number of pruned genes. The mini-
mum value of R0 is 0 and maximum value is the max
AD value. A binary search procedure is used to identify
R0 value that can generate the desired number (K) of
candidate DEGs.

DEG identification algorithms
We tested four popular DEG identification algorithms
on the 17 GEO datasets with or without DB pruning.
• Fold Change (FC) is one of early DEG identification

algorithms that are still widely used by biologists. It was
recently recommended to be used with a non-stringent
P cutoff to generate more reproducible DEG lists
[11,23]. FC ranks genes based on the ratio of average
gene expression under two conditions. Usually a 2-fold
change is regarded as significant in many biological stu-
dies. A major criticism of FC is that it doesn’t consider
the case that genes with low expression level in both
conditions but with small variances can be ranked high.
• Rank Product (RP) [2,24] ranks genes based on pro-

duct of rank ratios for multiple A-B conditions. The
results and simplicity of RP is similar to FC but over-
comes its most significant limitations. It also provides a
statistically rigorous estimation of significance. It was
reported to have good performance for small or noisy
datasets.
• T-statistics (tTest) is one of the earliest and popular

methods used in DEG identification. The major advan-
tage is that it considers the variation of genes in its
ranking. The limitation is that the estimation of gene
expression variances is not reliable for small datasets,
which can lead to poor performance.
• Weighted Average Difference (WAD) [20] is a DEG

algorithm based on the observation that experimentally
verified true DEGs tend to have high expression level
across the conditions. Genes are ranked by the product
of fold change times normalized expression level. It was
shown to have significantly better and robust perfor-
mance than most other standard algorithms including
FC, RP and tTest.
For each of these methods, we compare their DEG

prediction performance with or without DB pruning.
Comprehensive evaluation is conducted on 17 real-
world microarray datasets from GEO database with
experimentally verified DEGs.

Results
Data set preparation
Most DEG identification algorithms are tested using
unverified “statistically” significant genes plus a few

(if any) experimental verifications [2,3,16,25,26]. These
unverified DEGs may be quite different from biologically
meaningful DEGs and have bias toward statistical algo-
rithms. In this paper, we used real-world microarray
datasets with experimentally verified DEGs as collected
by Kadota et. al. [20]. They collected 38 microarray
datasets with experimentally determined true DEGS by
real-time polymerase chain reaction (RT-PCR). Thirty
six of the datasets are downloaded from GEO database
[22]. Without losing generality, we experimented with
17 disease or dose response datasets of Homo sapiens
out of the 36 GEO datasets (Table 1). The 17 datasets
are reported just for convenience so that we can use a
single set of DB pruning parameters. Other datasets
have also been tested with different DB pruning para-
meters and similar results are obtained. All 17 datasets
are normalized and transformed into log scale. Table 1
shows the statistics of the datasets with the sample sizes
of normal and disease conditions and also the number
of true DEGs. Out of the 17 datasets, only 7 have more
than 10 samples for both conditions. Four datasets have
less than 5 samples per condition. These datasets show
that real-world GEO datasets, especially historical ones,
tend to have small sample size.
The 17 Datasets used here cover a variety of biological

or medical studies: GSE1462 (mitochondrial DNA muta-
tions), GSE1615_1 (Valproic acid treatment), GSE1650
(chronic obstructive pulmonary disease), GSE2666_2
(bone marrow Rho level effect), GSE3524 (tumor of

Table 1 17 Datasets with 284 DEGs in total. Each dataset
has 22833 genes

Dataset Conditions True DEG

A B

GSE1462 4 4 4

GSE1615_1 4 5 8

GSE1650 18 12 8

GSE2666_2 5 5 6

GSE3524 16 4 4

GSE3860 9 9 8

GSE4917 3 3 5

GSE5667_1 5 6 3

GSE6236 14 14 7

GSE6344 10 10 19

GSE6740_1 10 10 40

GSE6740_2 10 10 62

GSE7146 6 6 6

GSE7765 3 3 13

GSE8441 11 11 9

GSE9499 15 7 77

GSE9574 15 14 5
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epithelial tissue), GSE3860 (Hutchinson-Gilford progeria
syndrome), GSE4917 (breast cancer), GSE5667_1 (atopic
dermatitis), GSE6236 (Adult vs. fetal reticulocyte tran-
scriptome comparison), GSE6344 (renal cell carcinoma
disease), GSE6740_1 (HIV-infection), GSE6740_2 (HIV-
infection, disease state), GSE7146 (hyperinsulinaemic,
does response), GSE7765 (dose response, DMSO or 100
nM Dioxin), GSE8441 (dietary intake response),
GSE9574 (breast cancer), and GSE9499 (hypomorphic
germline mutations). The diversity of these datasets
ensures that the observed performance of the proposed
pruning algorithm is not due to some specific character-
istics of the data.

Bias of DEG identification algorithms
DEG identification algorithms such as t-test and fold
change all have different bias in their ranking schemes.
Three factors have been commonly used in their gene
ranking criteria: r(y) = (d, e, v) where d is the difference
of expression levels between two conditions; v is the
overall gene expression level of the gene; and v is the
variance of the gene’s gene expression. T-statistics based
algorithms may make false positive prediction for genes
with low d because of small v. Fold change algorithm
instead suffers from the fact that a gene with large var-
iances tend to have larger fold changes. Both methods
may make mistakes by neglecting the overall gene
expression levels, which has been explicitly addressed by
the WAD algorithm which rank genes by d × e. Indeed,
it is shown that when the expression level was consid-
ered, the WAD algorithm achieves significantly better
prediction performance than all previous methods based
on extensive tests on 38 datasets with known true
DEGs. This shows that expression levels of true DEGs
are usually high. It is thus interesting to visualize the
bias of different DEG algorithms in the (d, e) feature
space. For simplicity, the variancev feature is neglected
as it is not correlated to true DEGs as strongly as (d, e)
features.
In Fig. 1, it is shown that most true DEGs are outliers

located in the sparse boundary region in the (d, e)
space. A smaller portion of true DEGs are mixed with
other non-DEGs in the dense regions and cannot be dif-
ferentiated by the algorithms such as WAD and FC. To
illustrate the bias of popular DEG identification algo-
rithms, Fig. 2 shows true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) DEGs
for dataset GSE9499 which has 77 true DEGs. Fig.2. (a)
shows that fold change (FC) misses most true DEGs
(FN genes), which are located in the region below the
threshold average difference and with high expression
levels. This is because FC uses a fixed ratio as cutoff
value. It also made many false positive predictions
mostly in the region with low expression levels (see FP

genes). Rank product (Fig.2b) misses similar true DEGs
as fold change algorithm does but the false positive
genes have different distributions. Fig. 2 (c) shows the
predicted DEGs of t-test. This method misses many true
DEGs that have high average difference between two
conditions. Most of its false positives are located across
the expression level with low average difference, reflect-
ing the fact that it can be misled by genes with small
variances. Fig.2 (d) shows the distribution of predicted
DEGs of WAD algorithm. WAD has a better perfor-
mance in terms of capturing true DEGs located in the
boundary region. The main false positives are mixed
together with the true DEGs, which are difficult to dis-
tinguish without extra information.

Improving DEG identification algorithms using density
based pruning
Effect of density based pruning of non-DEGs
One way to test the performance of DB pruning is to
calculate the enrichment score of true DEGs after prun-
ing. It is defined as the ratio of true DEGs and the num-
ber of all genes. We applied DB pruning algorithm to 17
microarray datasets each having 22283 genes. For sim-
plicity, we use the same set of parameters (N0 = 4 and
R0 = 0.0017) to prune all the datasets. The idea is that
by pruning those non-DEGs, true DEGs are more
enriched in the remaining gene list and should be easier
to be identified by current DEG algorithms. The
reduced search range of candidate DEGs can also greatly
reduce computational cost for detecting combinatorial
gene sets. Table 2 shows the effect of applying DB prun-
ing. It shows that this procedure can prune more than
≥86% (19156) genes out of 22283 while keeping ≥89%
(164) out of 184 true DEGs. The enrichment of true
DEGs in the pruned gene sets is 6 times of original gene
list. Note that a binary search procedure is available to
determine the DB pruning parameters for obtaining a
user-specified number of candidate DEGs.
Improvement of ranks of true DEGs in the rank list by DB
pruning
Here we check how DB pruning can improve existing
DEG identification algorithms. We compare the ranks of
true DEGs in the original gene list and in the pruned
gene list ranked by different algorithms including t-test,
fold change, rank product and Wad. Table 3 shows that
after DB pruning, ranks of most true DEGs by t-test
and fold change statistics are improved, usually with sig-
nificant improvements. For example, ranks of true DEG
were improved from 1404 to 808, 3800 to 1713, 1321 to
768 and etc by the t-test after DB pruning. We also
observe considerate improvements of DEG ranks for
fold change and rank product algorithms via DB prun-
ing. The improved enrichment of true DEGs toward top
of gene rank lists implies that it can help current DEG
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algorithms to achieve better performance as shown in
next subsections. DB pruning has moderate effect on
Wad algorithm since Wad also used the feature of true
DEGs, namely, the tendency of true DEG to have high
expression levels and high expression difference.
Improving standard DEG algorithms using DB pruning
To evaluate the improvement of prediction performance
of DEG identification algorithms with DB pruning, we
used the receiver operating characteristic (ROC), or sim-
ply ROC curve. It is a graphical plot of the fraction of
true positives (TPR = true positive rate) vs. the fraction
of false positives (FPR = false positive rate) as the K (the
number of genes predicted to be DEGs) varies. We use
the area under curve (AUC) value of the ROC curve as
the criterion for comparison, which has been used in
previous work [20]. To make the comparison relevant to
real-world practice, we only plot and compare the AUC
value with K varies from 1 to 1000 rather than to the
total number of genes (22832) as done previously. The
reason is that biologists rarely have the resources to
check all 22832 genes and usually only care about top K
predicted DEGs for experimental verification.

Table 2 Comparison of No. of missing true DEGs after DB
pruning. (N0 = 4, R0 = 0.0017)

Total Gene: 22283 After DP-pruning True DEG DP missed

GSE1462 2054 4 0

GSE1615_1 2449 8 3

GSE1650 1317 8 2

GSE2666_2 1618 6 2

GSE3524 814 4 0

GSE3860 2073 8 0

GSE4917 785 5 1

GSE5667_1 1316 3 0

GSE6236 2231 7 0

GSE6344 3127 19 0

GSE6740_1 1183 40 1

GSE6740_2 1801 62 5

GSE7146 1274 6 1

GSE7765 1607 13 1

GSE8441 978 9 1

GSE9499 1805 77 3

GSE9574 1448 5 0

Figure 2 Visualization of bias of popular DEG identification algorithms. FC has many false positive predictions for genes with low average
expressions or small expression differences. RP’s false positives are sparsely located in low expression and small average difference region. tTest’s
false positives are dominated by genes with low average difference. WAD has less false positives than other algorithms.
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We calculate AUC values with K up to 1000 for four
DEG algorithms with or without DB pruning. The
experiments are conducted on all 17 datasets with a
total of 284 true DEGs. DB priming is run with the fol-
lowing parameters: neighborhood radius R0 = 0.03, no.
of neighbors, N0 = 4. Table 4 shows that DB pruning
significantly increased the AUC values for all four popu-
lar DEG algorithms especially for rank product algo-
rithm with 21% increase of AUC score. The smallest
improvement is for WAD algorithm, which is reasonable
considering that WAD uses the same information as DB
pruning, though in different way. To obtain more intui-
tive understanding of how DB pruning improves current
DEG algorithms, we showed in Table 5 the total num-
bers of true DEGs out of top K predictions identified by
different algorithms from the 17 datasets with or with-
out DB pruning. First, the results showed that rank pro-
duct and fold change have worse performance than
tTest and WAD algorithms in the number of identified
true DEGs. For example, tTest and WAD can detect
132 and 156 true DEGs from the 17 datasets when
K=150 predictions are allowed for each dataset. Instead,
RP and FC can only detect 74 and 97 true DEGs respec-
tively. When the no. of predictions K increases, all algo-
rithms retrieve more true DEGs with the highest
coverage by WAD algorithm which retrieves 240 out of
284 true DEGs when 550 genes are allowed to predict
for each dataset. A major observation of Table 4 is that
all 4 algorithms can benefit from DB pruning with the
maximum improvement for tTest and the minimum
improvement for WAD. When DB pruning is used, the
38 true DEG discrepancy between tTest and WAD is
reduced to 6 when K=550. In other words, DB pruning
can significantly improve the performance of t-statistics
based DEG identification algorithms up to level of the
most competitive DEG algorithm-WAD. In the case of

RP, DB pruning helps RP to find 35 (nearly 33%) more
true DEGs for K=550. For FC and tTest, 11% and 15.8%
more true DEGs are identified with the help of DB
pruning. The DB pruning shows only moderate to zero
improvement for WAD algorithm because they use the
same information, the gene expression levels and aver-
age difference of gene expressions.
To further investigate the improvement of DB pruning

over classic DEG algorithms, Fig. 3. shows the ROC
curves of the algorithms with and without pruning with
K=1 to 1000. It is shown that WAD algorithm has the
best performance and there exists dominance relation-
ship of WAD>t-test>FC>RP. It also shows that after DB
pruning, the performance of t-test was significantly
improved up to that of WAD algorithm. Both RP and
FC were also greatly improved. Indeed, Fig.3 clearly
demonstrates that DB pruning is able to significantly
improve the AUC values with improvements across all
K values ranging from 1 to 1000. Compared to the
improvements of ROC curves as shown by the variance
estimation algorithms [22], our improvement is much
more significant.
DB Pruning’s performance on microarray datasets with a
small number of samples
A major issue of current DEG algorithms is that they
have difficulty to deal with small-size microarray data-
sets. Unfortunately, many biological studies only gener-
ate limited profiling samples due to cost or labor
constraints. Here we show DB pruning can help
improve the performances of popular DEG algorithms
for such small datasets. Four algorithms were applied to
17 datasets with a total of 284 true DEG. These full
datasets are sub-sampled to generate small datasets with
2, 3, and 4 samples for each condition. Each algorithm

Table 3 Ranks of true DEGs in original gene list and pruned gene list. Genes are sorted by four DEG identification
algorithms on the GSE1577 dataset. Increase of ranks of true DEGs means that DB pruning have correctly filtered out
many non-DEGs

t-test/tTest’ 1404/808 7/6 1321/768 3800/1713 4741/1975 3633/1659 4145/1828 606/388 210/155

FC/FC’ 167/153 154/142 39/33 18/13 1/1 22/17 6/5 1601/1249 80/72

Rp/Rp’ 111/85 91/70 18/12 9/8 1/1 16/15 6/6 4520/980 97/68

Wad/Wad’ 31/31 25/25 32/25 7/7 3/3 15/15 6/6 515/515 10/10

Table 4 Increase of AUC values for DEG algorithms after
DB pruning: Rp, Wad, Fc, and tTest

Partial AUC (up to K=1000) Percentage of Improvement

Rp/Rp’ 0.0162/0.0196 21%

Fc/Fc’ 0.0245/0.0263 7.3%

tTest/tTest’ 0.0284/0.0310 9.2%

Wad/Wad’ 0.032/0.033 3.1%

Table 5 Increase of No. of identified true DEGs out of top
K predictions with or without DB pruning. Rp’, Wad’,
tTest’, FC’ are algorithms with DB pruning. The total
number of true DEGs of the 17 datasets is 284

K=150 K=250 K=350 K=450 K=550

Rp/Rp’ 74/78 81/91 92/104 98/122 106/141

Fc/Fc’ 97/98 120/137 146/159 164/184 178/198

tTest/tTest’ 132/150 163/181 179/206 191/218 202/234

Wad/Wad’ 156/156 195/198 221/221 227/227 240/240
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was also run with different K, the number of predicted
DEGs by DEG algorithms. Table 6 shows how the num-
ber of samples of the data set affects the number of true
DEGs predicted by current algorithms with or without
DB pruning.
Firstly, the table shows that with the increase of K,

more true DEGs will be predicted. For each specific K,

decreasing the number of samples reduces the number
of true DEG identified. For example, when the number
of samples of each condition decreases from 4 to 2, the
number of predicted true DEGs will drop from 119 to
92 for WAD, from 60 to 45 for RP, from 62 to 43 for
FC, and from 67 to 16 for tTest, which has the largest
reduction of performance. DB pruning is shown to be

Figure 3 Comparison of ROC curves of DEG algorithms with/out DB pruning. It shows that WAD and t-Test have higher AUC values than FC
and RP. Using DB pruning, tTest’s AUC value can be improved to be close to that of WAD. Actually, DB pruning significantly improves all DEG
algorithms.

Table 6 The no. of predicted true DEGs using partial samples from condition A and B with or without using DB
Pruning. Rp’, Wad’, tTest’, FC’ are algorithms with DB pruning. The total number of true DEGs of the 17 datasets is
284

K=150 K=250 K=350 K=450 K=550

2x2 samples Rp/Rp’ 45/46 61/61 68/71 78/79 86/92

Fc/Fc’ 43/44 58/62 62/71 69/82 74/89

tTest/tTest’ 16/32 24/47 31/60 37/77 45/88

Wad/Wad’ 92/92 116/116 127/128 140/141 149/149

3x3 samples Rp/Rp’ 52/53 60/64 71/75 76/81 81/90

Fc/Fc’ 54/54 61/63 71/77 79/87 90/100

tTest/tTest’ 32/52 48/76 62/98 72/115 82/132

Wad/Wad’ 91/91 128/129 150/150 166/166 171/175

4x4 samples Rp/Rp’ 60/63 70/74 78/86 85/97 97/105

Fc/Fc’ 62/63 74/81 86/92 94/108 115/128

tTest/tTest’ 67/85 83/111 100/141 108/157 119/174

Wad/Wad’ 119/119 155/155 173/174 189/190 193/196
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able to significantly improve the prediction performance,
especially for tTest, RP and FC. With 4x4 samples, DB
pruning helps tTest to identify 18 more true DEGs, a
26.8% improvement. When the sample size is reduced
to 2x2, the improvement is 16, or a 50% improvement.
Improvement upon RP and FC is less significant, but
still achieves 20% improvement when K=550 for FC
with 2x2 samples and 14% for RP with K=450 and 3x3
samples. All these prove that the DB pruning is a useful
procedure for DEG identification.

Discussion
We have proposed a density based pruning algorithm
for removing non-differentially expressed genes with
high confidence from the total gene list. This pruning
procedure can significantly improve the prediction accu-
racy of popular DEG identification algorithms such as
fold change, t-test, and rank product. The key idea of
DB pruning is based on the observation that DEGs tend
to have high average expression values across
conditions.
In this paper, the golden standard true differentially

expressed genes are those verified by the RT-PCR
method, which may comprise of only a portion of true
DEGs. The fact that most true DEGs used here show
high average expression levels may be due to the techni-
cal limitation of RT-PCR and/or microarray: only highly
expressed genes can be identified. In this case our
method should be qualified to be able to improve DEG
identification algorithms for these types of true DEGs.
DB pruning has two parameters to set to pre-filter

non-DEGs. Even though there is no theoretical guideline
for setting their perfect parameter values, these two
values can be easily set to achieve significant improve-
ments. Both parameters can be set such that an
expected number of predicted DEGs are obtained. In
our experiments, a single set of R0 (=0.0017) and N0
(=4) have been able to reduce the DEG prediction accu-
racy for all 17 datasets. This demonstrates the stability
of the algorithm in terms of the parameters for different
datasets. In addition, an improved pruning algorithm
based on Pareto set concept is being developed which
can completely remove the parameters in DB pruning.
There are several further improvements following this

pattern recognition based DEG identification. One com-
mon problem of DEG identification is lack of sufficient
data points for reliable estimation of gene expression levels
and their differences. This usually hurt the performance of
most DEG algorithms including our pruning algorithm.
One potential is to use additional external datasets to help
estimate gene expression levels and their differences for
the dataset of the study. Our preliminary experiments
showed that estimating gene expression levels using exter-
nal datasets is straightforward and feasible but estimating

difference of gene expression needs more study. Another
improvement is to introduce additional features of DEGs,
e.g. the variance of gene expressions across multiple data-
sets. For example, the variance estimation method using
multiple datasets [16] can be combined with DB pruning
algorithm. Functional annotation information from gene
ontology or pathways can also be integrated to aid gene
pruning. Current DB pruning focuses on identifying DEGs
between two groups. The extension to multiple groups is
straightforward since calculation of average expression
level remains the same. And the average difference of
expression can be defined as sum of average difference
among pairwise comparisons.
Our DB pruning is implemented using C++ and Perl

and can be downloaded from http://mleg.cse.sc.edu/
degprune.
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