
RESEARCH ARTICLE Open Access

A first generation integrated map of the rainbow
trout genome
Yniv Palti1*†, Carine Genet2†, Ming-Cheng Luo3, Aurélie Charlet2, Guangtu Gao1, Yuqin Hu3,
Cecilia Castaño-Sánchez1,4, Kamila Tabet-Canale2,5, Francine Krieg2, Jianbo Yao4, Roger L Vallejo1 and
Caird E Rexroad III1

Abstract

Background: Rainbow trout (Oncorhynchus mykiss) are the most-widely cultivated cold freshwater fish in the world
and an important model species for many research areas. Coupling great interest in this species as a research
model with the need for genetic improvement of aquaculture production efficiency traits justifies the continued
development of genomics research resources. Many quantitative trait loci (QTL) have been identified for
production and life-history traits in rainbow trout. An integrated physical and genetic map is needed to facilitate
fine mapping of QTL and the selection of positional candidate genes for incorporation in marker-assisted selection
(MAS) programs for improving rainbow trout aquaculture production.

Results: The first generation integrated map of the rainbow trout genome is composed of 238 BAC contigs
anchored to chromosomes of the genetic map. It covers more than 10% of the genome across segments from all
29 chromosomes. Anchoring of 203 contigs to chromosomes of the National Center for Cool and Cold Water
Aquaculture (NCCCWA) genetic map was achieved through mapping of 288 genetic markers derived from BAC
end sequences (BES), screening of the BAC library with previously mapped markers and matching of SNPs with BES
reads. In addition, 35 contigs were anchored to linkage groups of the INRA (French National Institute of
Agricultural Research) genetic map through markers that were not informative for linkage analysis in the NCCCWA
mapping panel. The ratio of physical to genetic linkage distances varied substantially among chromosomes and
BAC contigs with an average of 3,033 Kb/cM.

Conclusions: The integrated map described here provides a framework for a robust composite genome map for
rainbow trout. This resource is needed for genomic analyses in this research model and economically important
species and will facilitate comparative genome mapping with other salmonids and with model fish species. This
resource will also facilitate efforts to assemble a whole-genome reference sequence for rainbow trout.

Background
Rainbow trout (Oncorhynchus mykiss) are the most-
widely cultivated cold freshwater fish in the world and
are considered by many to be the “aquatic lab-rat”.
Interests in the utilization of rainbow trout as a model
species for genome-related research activities focusing
on carcinogenesis, toxicology, comparative immunology,
disease ecology, physiology, transgenics, evolutionary
genetics, and nutrition have been well documented [1].

Rainbow trout are cultured on every continent except
Antarctica, with 2008 global production estimated at
576,289 metric tons and valued at $2.39 billion [2]. Cou-
pling great interest in this species as a research model
with the need for genetic improvement for aquaculture
production efficiency and product quality justifies the
continued development of genome resources facilitating
selective breeding.
The rainbow trout genome is large and complex. Gen-

ome size estimates derived from determining the molecu-
lar weight of DNA per cell for rainbow trout and other
salmonids vary from 2.4 to 3.0 × 109 bp [3,4]. As with
most salmonids, rainbow trout experienced a recent
genome duplication event resulting in a semi-tetraploid
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state (i.e. after an autotetraploid event in the salmonids,
their genome is undergoing reversion to a diploid state)
[5]. All ray-finned fishes share an additional (3R) round
of ancestral genome duplication in their evolutionary his-
tory compared to mammals and birds, but the salmonids’
common ancestor underwent an additional recent (4R)
whole genome duplication event and more than half of
the loci are still duplicated [6]. In addition, it is estimated
that 50% to 60% of the rainbow trout genome contains
interspersed repeat sequences (Genet et al.: Analysis of
BAC-end sequences in rainbow trout: content characteri-
zation and assessment of synteny between trout and
other fish genomes, submitted).
Current genomic resources available for rainbow trout

research include multiple bacterial artificial chromosome
(BAC) libraries and a BAC fingerprinting physical map
[6-8]; a database of ~200,000 BAC end sequences (BES)
(Genet et al.: Analysis of BAC-end sequences in rainbow
trout: content characterization and assessment of syn-
teny between trout and other fish genomes, submitted);
doubled haploid (DH) clonal lines [9-12]; multiple
genetic maps based on clonal lines and outbred popula-
tions [4,13-16]; large expressed sequence tag (EST) data-
bases and a reference transcriptome [17-19]; a
microRNAs database [20] and high density DNA micro-
arrays [21,22].
Two microsatellite-based genetic maps with medium

to high marker densities were recently developed for
rainbow trout by INRA [13] and the NCCCWA [16].
The INRA map is based on a panel of two DH gynoge-
netic lines. It has more than 900 microsatellites over 31
linkage groups and a total length of 2,750 cM (average
resolution of 3 cM). The NCCCWA map is based on a
panel of five families that represent the starting genetic
material of the NCCCWA selective breeding program. It
has 1,124 microsatellite loci over 29 linkage groups and
a total length of 2,927 cM (average resolution of 2.6
cM). The linkage groups from the two microsatellite
genetic maps were anchored to the physical chromo-
somes using fluorescent in-situ hybridization and were
found to represent 52 chromosome arms [23,24].
Qualitative/quantitative trait loci (QTL) mapping

experiments in rainbow trout have been very successful
because of their high fecundity, external fertilization,
and ease of gamete handling and manipulation. Many
QTL have been identified for production and life-history
traits including resistance to the parasite C. shasta [25],
resistance to IHNV [26,27] and to IPNV [28], whirling
disease resistance [29], Killer cell-like activity [30],
upper thermal tolerance [31,32], embryonic development
rate [9,33,34], spawning time [35,36], confinement stress
response [37], early maturation [38] and smoltification
[39]. The availability of a BAC physical map integrated
with the genetic map will facilitate fine mapping of

QTL, the selection of positional candidate genes and the
incorporation of marker-assisted selection (MAS) into
rainbow trout breeding programs. A major shortcoming
of QTL studies is that they are limited to the variation
present in a limited number of families and typically do
not detect loci with small effects. This can be overcome
by whole genome association studies and other
approaches, such as genomic selection, that capture the
effects of most QTL that contribute to the population-
wide variation in a trait. Recently we demonstrated the
feasibility of low resolution LD association studies in
rainbow trout [40,41]. In the absence of a reference gen-
ome sequence assembly, a robust integrated physical
and genetic map will provide better resolution than the
current genetic maps for ordering of genetic markers
and estimating physical distances between markers, thus
facilitating future whole genome association studies in
rainbow trout.
The first BAC-based physical map of the rainbow

trout genome was recently assembled using DNA finger-
prints of 154,439 clones from the 10X HindIII Swanson
library [8]. The map contains 4,173 contigs and 9,379
singletons. The physical length of the map contigs was
estimated to be approximately 2.0 Gb, which represents
approximately 80% of rainbow trout genome. Here we
report the construction of the first integrated physical
and genetic map of the rainbow trout genome using
microsatellites isolated from BAC end sequences and
PCR superpools for library screening and identification
of BACs that harbor previously mapped markers. This
integrated map provides a frame work for a robust com-
posite genome map and future reference genome
sequence assemblies.

Results and Discussion
BAC end sequencing (BES) microsatellites
We screened the BES reads from 184 of the largest BAC
fingerprinting contigs and selected 205 microsatellites
from 117 contigs for PCR optimization and genotyping
(Table 1). Of the 205 markers genotyped, 128 markers
appeared to amplify single marker regions and were
polymorphic. Ten markers were monomorphic, and 58
markers could not be resolved and unambiguously
scored. Fifteen markers generated duplicated patterns, of
which 8 could be scored for a single marker region and
1 produced a scorable duplicated pattern. Hence, 7 of
the duplicated markers produced a monomorphic or an
unresolved pattern for one of the two marker regions.
Two of the 128 informative markers could not be
assigned to linkage groups (i.e. 126 markers were
mapped using the NCCCWA mapping families). The
BES reads from which the 126 mapped markers were
isolated represent 88 unique BAC FPC contigs. The 205
BES microsatellites are listed in Additional file 1, sheet

Palti et al. BMC Genomics 2011, 12:180
http://www.biomedcentral.com/1471-2164/12/180

Page 2 of 9



1, with the corresponding PCR primers and conditions
for each marker, number of alleles and size range, Gen-
Bank accessions, primers sequences and physical map
contigs. We have also mapped an additional six BES
microsatellites onto linkage groups of the INRA genetic
map (Additional file 1, sheet 1).

Library screening with PCR superpools
Previously mapped microsatellites
The 10x Swanson BAC library was screened with the
NCCCWA PCR super-pools using 137 markers that
were previously mapped with high confidence to the
NCCCWA genetic map representing 25 of the 29 chro-
mosomes and the INRA super-pools were screened with
265 markers that were previously mapped onto the
INRA genetic map representing all linkage groups. The
result of the combined effort was that 146 markers cov-
ering all linkage groups were localized to one or two
BAC FPC contigs (Table 2). The list of the markers with
positive hits is shown in Additional file 1, sheet 2, with
the corresponding positive clones and physical map
contigs.
Immune response genes
The BAC library was also screened with PCR primers
from 12 immune response genes that were not pre-
viously mapped to the rainbow trout genome (Addi-
tional file 2, Table S1). Positive clones were verified by

PCR of the individual clones and direct sequencing from
the BAC DNA. The BAC clones that were positive and
their corresponding physical map contigs are listed in
Additional file 1, sheet 3.

Single nucleotide polymorphism (SNP) markers
The experimental design and results of SNPs discovery
in rainbow trout using a reduced representation library
(RRL) were recently published [42]. Of the 183 SNPs
that were validated, 167 were polymorphic in the
NCCCWA genetic mapping panel and 159 were mapped
to chromosomes on the genetic map (Table 3). The
HaeIII RRL SNP discovery database was aligned with
the BES database (Genet et al.: Analysis of BAC-end
sequences in rainbow trout: content characterization
and assessment of synteny between trout and other fish
genomes, submitted) to find matches that can be useful
for the integration of the genetic and physical maps. We
found 618 unique matches using SSAHA2 [43]. Assum-
ing 48% validation rate for this SNPs database [42] we
expect that approximately 300 of the matched SNPs will
be useful for integration between the physical and
genetic maps. Two of the matching SNPs were among
the 183 validated by Castaño-Sánchez et al. [42]. One
marker (OMS00144) was among the 159 that were
mapped. The other SNP (OMS00174) was not informa-
tive for linkage analysis in the NCCCWA panel, but it
had two positive hits on end sequences from two BACs
that overlap in contig number 431 of the physical map
(Additional file 1, sheet 3).

The genetic map
Information from 1,486 genetic loci was used for linkage
analysis (Table 3). Two-point linkage analysis placed
1,229 loci in 29 linkage groups at LOD ≥8.75. An addi-
tional 192 markers with two-point LOD <8.75 were
added to linkage groups manually, of which only six
markers had a two-point LOD <3.0 (2.90, 2.89, 2.64,
2.12, 2.10 and 1.80). The specific best of two-point LOD
score for each marker is provided in Additional file 3,
Worksheet 1. The total combined sex averaged map dis-
tance was 3,346.3 cM (Kosambi). A sample map repre-
senting chromosome 2 is presented in Figure 1, and
maps representing all chromosomes are presented in
Additional file 4. Multipoint linkage analysis was con-
ducted on individual linkage groups to assign LOD
scores for the specific position of each marker within
the linkage group. The number of markers included in a
framework map created at LOD ≥4 for the specific posi-
tion of the marker in the linkage group was 460. The
only chromosome that did not contain any framework
markers at LOD ≥4 was OMY21, for which a framework
map was created at LOD ≥3. Additional loci were added
at LOD ≥3 (77), ≥2 (80) ≥1 (56), and ≥0 (748) (Table 3).

Table 1 Summary of genotyping results of microsatellite
markers isolated from BAC end sequences for integration
between the genetic and physical maps

No. of markers identified 205 (from 117 contigs)

Informative for linkage analysis 128 (63%; 88 contigs; 129 loci)

Mapped to linkage groups 127 loci (98.5%; 88 contigs)

PCR optimization failed 58 (28%)

Monomorphic in mapping panel 10 (5%)

Duplicated 15 (9 informative for mapping
and 6 non-informative)

Redundancy in contig coverage
(optimized, but panel not genotyped)

3 markers

Table 2 Summary of BAC library screening results with
previously mapped microsatellites using PCR super-pools

INRAa USDAb Combined

No. of markers tested 265 137 396

Localized to a single FPC contig 98 41 135

Localized to two FPC contigs 7 5 11

Singletons or failed DNA fingerprinting 21 15 35

Not validated by single clone PCR 4 12 16

Not positive by PCR screening of
superpools

135 64 199

No. of chromosomes covered 29 22 29
aMarkers previously mapped on the INRA genetic map [13].
bMarkers previously mapped on the USDA-NCCCWA genetic map [16].
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Additional file 3, worksheet 1 contains this information
and can be used to recreate maps using MapChart soft-
ware [44]. The average resolution of the genetic map
was 2.35 cM with inter-marker distances ranging from
1.31 to 3.59 cM for individual chromosomes (Additional
file 3, Worksheet 2).
The female:male recombination ratio was 1.65:1, with
the female having a map length of 4,775.7 cM and the
male map 2,897.8 cM. This ratio varied by chromosome,
ranging from 0.53:1 to 11.87:1 (Additional file 3, Work-
sheet 2). It is noteworthy that this type of sex recombi-
nation ratio estimates do not take into account the
larger differences in recombination rate that exist
between males and females throughout most of the
length of the linkage groups. It is likely that female:male
ratios will be elevated throughout most of the length of
the chromosome arms, while they will be much lower in
the more contracted telomeric ends of the linkage
groups because of elevated male recombination rates in
these regions [15]. It should be pointed out that overall
estimates of recombination rate may not be accurately
depicted in the current study, because recombination
estimates were not obtained by direct comparisons of
adjacent intervals. Therefore, the reported recombina-
tion distances given in this study are likely an underesti-
mate of the real recombination ratio values.
In this version of the map, we have added to the map

of Rexroad et al. [16] through multipoint linkage analy-
sis 159 RRL SNPs, 126 microsatellites from BES and 9
microsatellites isolated from BACs that harbor immune
response genes (Additional file 2, Table S2). The SNPs
were distributed in all the chromosomes (2-10 per chro-
mosome; Additional file 3, worksheet 3) and the BES
microsatellites were mapped to all but chromosome 24
(1-10 per chromosome; Additional file 3, worksheet 4).
Twenty seven loci that were previously mapped to
expand the length of linkage groups [16] were not
mapped in this version, and 29 loci that were previously
genotyped but were not linked, were assigned to linkage
groups in the current version. A high frequency of

duplicated microsatellite loci was observed as previously
reported [16], but in many cases only one locus was
successfully ordered on the map. Overall, 88 duplicated
markers were successfully mapped to two loci (176 loci),
which means that the total number of markers mapped
was 1,333.

The integrated map
Anchoring of 203 BAC contigs from the physical map to
linkage groups was accomplished through mapping of
266 loci onto the NCCCWA genetic map. The marker
loci were derived from the PCR screening of the BAC
superpools, BES microsatellites (OMY4000), microsatel-
lites isolated from BACs that harbor genes of interest
(OMM3000) and one SNP marker matched with BES
(OMS00144). A schematic illustration of a BAC finger-
printing contig anchored to a linkage group is presented
in Figure 2. Markers from 12 of the anchored contigs
were mapped to two different linkage groups as a result
of PFC assembly errors or linkage mapping errors as we
have previously discussed [8]. The fraction of contigs
that are in disagreement between the physical map and
genetic map is used to estimate the error rate in the
FPC assembly. This error rate of 6% (12/203) is similar
to the 5% estimated for the catfish physical map of Qui-
niou et al. [45] or the 4% rate detected in the 3-color
HICF physical map of the maize genome [46]. The
number of contigs anchored per chromosome ranged
from 3 to 17 with an average of 7.4. Chromosomes
OMY18, 24 and 28 had the lowest number of 3
anchored contigs each, and OMY12 had the highest
number with 17 anchored contigs.
The combined physical length of the 203 anchored

contigs was 138,525 consensus bands (CB) which is
equal to 235,493 Kb based on a conversion ratio of 1
CB = 1.7 Kb [8]. Therefore, we estimate that the inte-
grated map covers ~12% of the physical map, or ~10%
of the rainbow trout genome, assuming haploid genome
size of 2.4 × 109 bp. The length of anchored contigs
ranged from 119 Kb to 4,590 Kb with an average length

Table 3 Genetic loci sources and linkage mapping statistics

Marker Source Inputa Mapped LOD4 LOD3 LOD2 LOD1 LOD0 % of Input

Rexroad et al. 2008 [16] 1180 1126b 396 62 57 43 568 95%

SNPs (OMS) 167 159 21 5 13 8 112 95%

OMY4000 (BES) 128 127 40 10 10 5 62 98%

Immune Genesc 10 9 3 0 0 0 6 90%

Total 1485 1421d 460 77 80 56 748 96%

Percent 100% 32% 5% 6% 4% 53%
aLoci that were genotyped and were informative for linkage analysis in the NCCCWA mapping panel.
bTwenty seven loci that were previously mapped to linkage groups in the genetic map version of Rexroad et al. (2008) were not linked to other loci in this
version, and 29 loci that were previously genotyped but not linked were assigned to linkage groups in the current version.
cMicrosatellites or SNPs isolated from immune response genes (Additional file 2, Table S2).
dEighty eight duplicated loci were mapped to linkage groups in the current version (total number of markers was 1,333).
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of 1,160 Kb (Additional file 3, worksheet 5). The ratio of
physical to genetic linkage distances varied substantially
among the 33 anchored contigs that contained spaced
markers, which is similar to other vertebrate genomes
[45,47]. The 33 contigs represent segments from 21 of
the 29 chromosomes (Additional file 3, worksheet 6).
The Kb/cM ratio ranged from 37 to 17,000 with an

average of 3,033. In addition, 35 contigs were anchored
to linkage groups of the INRA map through markers
that were not informative for linkage analysis in the
NCCCWA mapping panel (Additional file 3, worksheet
7), bringing the total number of anchored contigs to
238.
An FPC map with all the genetic markers that we

have assigned to BAC contigs can be viewed and
searched online through: http://www.genome.clemson.
edu/activities/projects/rainbowTrout
The integrated map we developed for the rainbow

trout genome will facilitate comparative genomics stu-
dies with other salmonids and with model fish species.
Many microsatellite markers can be used for genetic
mapping across salmonid species which is very useful
for comparative genome mapping [23,48] and can bene-
fit research in species with less developed genome maps.
In addition, the rainbow trout BAC end sequences can
be used to infer conserved synteny with other fish gen-
omes as we have previously shown (Genet et al.: Analy-
sis of BAC-end sequences in rainbow trout: content
characterization and assessment of synteny between
trout and other fish genomes, submitted), and this inte-
grated map provides a larger frame-work expanding the
size of the syntenic blocks that can be identified
between fish genomes.

Conclusions
The first generation integrated map of the rainbow trout
genome is composed of 238 BAC contigs anchored to
chromosomes of the genetic map. It covers more than
10% of the genome across segments from all 29 chro-
mosomes. This map provides a frame work for a robust
composite genome map. The availability of an integrated
physical and genetic map will enable detailed compara-
tive genome analyses, fine mapping of QTL, positional
cloning, selection of positional candidate genes for eco-
nomically important traits and the incorporation of
MAS into rainbow trout breeding programs. A compre-
hensive integrated map will also provide a minimal tiling
path for genome sequencing and a framework for whole
genome sequence assembly.

Methods
BAC end sequencing and markers development
The 10X HindIII Rainbow trout BAC library [6] was
used for BAC-end sequencing (BES) as previously
described (Genet et al.: Analysis of BAC-end sequences
in rainbow trout: content characterization and assess-
ment of synteny between trout and other fish genomes,
submitted). Briefly, BAC culture was conducted using
standard protocols and end sequencing with SP6 and
T7 primers was done using standard Sanger technique.
The raw, untrimmed files were processed by PHRED

Rainbow Trout Chr. 2 

Figure 1 Chromosome 2 from the new NCCCWA linkage map
is shown as an example. Annotation of genes linked to the
marker or BAC contig from the 1st generation physical map are
connected to the marker name by underscore (e.g.
OMM3080_TAP1_ctg260). Annotation of “or_?” means that the
marker is duplicated and only one of two BAC contig was identified
for the marker. Blue, Green, Red, Black and Italicized font markers
were mapped to their specific location on the linkage group at LOD
scores of 4, 3, 2, 1 and 0, respectively. Sex average distances
between markers are shown in cM.
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software [49]. The PHRED quality score cut-off value
was set at 20 for the acquisition of Q20 values. The
BESs were trimmed of vector sequences (pBeloBAC11
vector [50]) and filtered of E. coli sequences. Microsatel-
lites and other simple sequence repeats (SSR) were ana-
lyzed using Tandem repeat Finder software [51]. We
examined ten classes of SSRs by using a maximum per-
iod size of 10. BES reads harboring at least 50 base pairs
(bp) flanking sequences on either side of the SSRs were
selected for PCR primer design. Primers for BESs con-
taining microsatellites were designed using Primer3 soft-
ware [52]. The primer product size range was chosen
between 150 and 450 nucleotides. The optimum size of
primers was set to 20 nucleotides (range from 18 to 27
nucleotides) with an optimum melting temperature of
60.0°C (range from 57 to 63°C).

Microsatellites Genotyping
The NCCCWA mapping panel of 5 families was geno-
typed with microsatellites as previously described [16].
A total of 205 microsatellite markers isolated from BAC
end sequences (Additional file 1, sheet 1) were genotyped
using the tailed protocol of Boutin-Ganache et al. [53].
Primers were obtained from commercial sources (Alpha
DNA, Montreal, Quebec, Canada). Three oligonucleotide
primers were used in each DNA amplification reaction
(Forward: 5’ GAGTTTTCCCAGTCACGAC-primer
sequence 3’; reverse: 5’ GTTT-primer sequence 3’; fluor-
escent labeled primer with FAM: 5’ GAGTTTTCCCA
GTCACGAC 3’). Primers were optimized for amplifica-
tion by varying annealing temperatures and MgCl2

concentrations. PCR reactions (12 μl total volume)
included 50 ng DNA, 1.5-2.5 mM MgCl2, 2 pmol of for-
ward primer, 6 pmol of reverse primer, 1 pmol of fluores-
cent labeled primer, 200 μM dNTPs, 1X manufacturer’s
reaction buffer, and 0.5 unit Taq Polymerase (ABI, Foster
City, CA, USA). Amplifications were conducted in an MJ
Research DNA Engine thermal cycler model PTC 200
(MJ Research, Waltham, MA) as follows: an initial dena-
turation at 95°C for 10 min, 30 cycles consisting of 94°C
for 60 sec, annealing temperature for 45 sec, 72°C exten-
sion for 45 sec; followed by a final extension of 72°C for
10 min. PCR products were visualized on agarose gels
after staining with ethidium bromide. Three μl of each
PCR product was added to 20 μl of water, 1 μl of the
diluted sample was added to 12.5 μl of loading mixture
made up with 12 μl of HiDi formamide and 0.5 μl of
Genscan 400 ROX internal size standard. Samples were
denatured at 95°C for 5 min and kept on ice until loading
on an ABI 3730 DNA Analyzer (ABI, Foster City, CA,
USA). Output files were analyzed using GeneMapper
version 3.7 (ABI, Foster City, CA, USA), formatted using
Microsoft Excel and stored in a Microsoft Access
database.

Library screening with PCR superpools
The 10x Swanson BAC library was screened using the
NCCCWA or the INRA PCR superpools with microsa-
tellites that were mapped to the NCCCWA or INRA
genetic maps [13,16] as previously described [54,55].
The screening results were cross-referenced with the
physical map to localize the positive clones onto contigs.
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Figure 2 A schematic illustration of a BAC fingerprinting contig anchored to the rainbow trout Chr. 2 using microsatellites isolated
from BACs. The four microsatellite markers from Ctg260 (224 clones; 1,584 CB or approximately 2.7 Mb) were mapped to Chr. 2 and the TAP1
positive BACs (highlighted in green) were previously identified by probe hybridization and confirmed by PCR and direct sequencing. The
microsatellites order shown is based on the FPC map (not the genetic map). Markers in bold blue (OMY4005 and 4006) were localized on the
linkage group at LOD4 and markers in regular font at LOD0. The genetic distance between the LOD4 markers is marked by a solid-line arrow
and between markers that were localized at lower confidence by broken-line arrows.
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For microsatellite markers that did not have at least two
positive clones from the same FPC BAC contig, the
individual positive clones were picked from glycerol
stock and confirmed by PCR as previously described [6].

SNPs discovery using reduced representation libraries
(RRL)
Protocols developed and used for SNPs discovery in cat-
tle and swine [56-58] were adapted for rainbow trout
using RRL libraries and high throughput parallel 454 GS
FLX pyrosequencing. The experimental design and
results of the rainbow trout work were recently pub-
lished [42]. Briefly, DNA from 96 unrelated individuals
representing the families of the NCCCWA broodstock
was pooled into one sample. The reduced representation
library consisted of 440 bp fragments resulting from
complete digestion of the pooled DNA with the restric-
tion enzyme HaeIII; sequencing produced 2,000,000
reads providing an average 6 fold coverage of the esti-
mated 150,000 unique genomic restriction fragments
(300,000 fragment ends). Three independent computa-
tional data analyses identified 22,022 to 47,128 putative
SNPs on 13,140 to 24,627 contigs. A set of 384 putative
SNPs, randomly selected from the sets produced by the
three analyses were genotyped on individual fish to
determine the validation rate of putative SNPs among
analyses, distinguish apparent SNPs that actually repre-
sent paralogous loci in the semi-tetraploid genome,
examine Mendelian segregation, and place the validated
SNPs on the rainbow trout linkage map.

Alignments between SNPs and BES
To find matches we aligned the HaeIII RRL SNP discov-
ery database of Castaño-Sánchez et al. [42] with the BES
database (Genet et al.: Analysis of BAC-end sequences
in rainbow trout: content characterization and assess-
ment of synteny between trout and other fish genomes,
submitted). Matches were found using SSAHA2 [43]
(http://www.sanger.ac.uk/Software/analysis/SSAHA2/)
for pairwise sequence alignment with a threshold Smith-
Waterman score of 160 (very restrictive and conserved
to avoid matches between paralogous loci).

Linkage analysis
The microsatellites and SNPs were placed on the rain-
bow trout genetic map using the genetic linkage map-
ping programs MULTIMAP [59] and CRI-MAP [60].
First, genotype data combined for both sexes were for-
matted into the standard LINKAGE [61] file format and
checked for Mendelian inheritance using PEDCHECK
[62]. RECODE [63] was then used to convert the allele
sizes into number-coded alleles. Using an in-house Perl
script, make_gen, the genotype data and the locus
names were assembled into CRI-MAP input format. The

resulting file was then added to that of Rexroad et al.
[16] using another in-house Perl script, join_gens, and
MULTIMAP was used to conduct two-point linkage
analyses to identify the closest markers with LOD ≥8.75
and recombination fraction r ≤0.2. An additional 192
markers with two-point LOD <8.75 were added to link-
age groups manually, of which only six markers had a
two-point LOD <3.0 (2.90, 2.89, 2.64, 2.12, 2.10 and
1.80). The specific best of two-point LOD score for each
marker is provided in Additional File 3, Worksheet 1.
Multipoint linkage analysis was conducted on individual
linkage groups to assign LOD scores for the specific
position of each marker within the linkage group. Fra-
mework maps were constructed at LOD ≥4 for all link-
age groups but OMY21, for which the framework map
was created at LOD ≥3. Markers were added to compre-
hensive maps by lowering the LOD threshold one inte-
ger at a time and starting with the previous order.
Resulting maps are consensus maps, accounting for co-
informative meiosis across the five families. Chromo-
some numbers were assigned to linkage groups using
the integrated cytogenetic/linkage map of Phillips
et al. [24].

Additional material

Additional file 1: BES microsatellites.

Additional file 2: Table S1.

Additional file 3: Additional material.

Additional file 4: chromosome maps.
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