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Abstract

Background: A major goal of metagenomics is to characterize the microbial composition of an environment. The
most popular approach relies on 16S rRNA sequencing, however this approach can generate biased estimates due
to differences in the copy number of the gene between even closely related organisms, and due to PCR artifacts.
The taxonomic composition can also be determined from metagenomic shotgun sequencing data by matching
individual reads against a database of reference sequences. One major limitation of prior computational methods
used for this purpose is the use of a universal classification threshold for all genes at all taxonomic levels.

Results: We propose that better classification results can be obtained by tuning the taxonomic classifier to each
matching length, reference gene, and taxonomic level. We present a novel taxonomic classifier MetaPhyler (http://
metaphyler.cbcb.umd.edu), which uses phylogenetic marker genes as a taxonomic reference. Results on simulated
datasets demonstrate that MetaPhyler outperforms other tools commonly used in this context (CARMA, Megan and
PhymmBL). We also present interesting results by analyzing a real metagenomic dataset.

Conclusions: We have introduced a novel taxonomic classification method for analyzing the microbial diversity
from whole-metagenome shotgun sequences. Compared with previous approaches, MetaPhyler is much more
accurate in estimating the phylogenetic composition. In addition, we have shown that MetaPhyler can be used to
guide the discovery of novel organisms from metagenomic samples.

Background
Microorganisms comprise the majority of Earth’s biolo-
gical diversity, and they play essential functional roles in
virtually all ecosystems [1]. In particular, human-asso-
ciated microbial communities play a fundamentally
important role in health and disease [2]. In many envir-
onments, however, more than 99% of the microorgan-
isms cannot be cultured by standard techniques [3]. In
order to understand the genetic diversity, population
structure, and ecological roles of novel organisms, meta-
genomic approaches analyze the microbial genomic
DNA obtained directly from the environment [4]. The
number and scope of metagenomic studies have
increased dramatically [5] due to the rapid advance of

sequencing technologies, which enable large amounts of
DNA sequencing to be performed quickly and cheaply.
One fundamental goal in metagenomics is to charac-

terize the taxonomic diversity of a microbial community
- taxonomic profiling. This is usually achieved by the
targeted sequencing of the 16S rRNA gene, either as a
whole, or focused on a hypervariable region within the
gene [6]. Then the sequences are classified based on
similarity against a curated reference 16S rRNA database
[7]. This approach has been a powerful research tool
allowing biologists to explore the majority of previously
unknown microorganisms populating our world.
Approaches based on 16S rRNA sequencing, however,
provide a biased estimate of microbial diversity due to
the wide variability in copy number of the 16S gene
even within closely related organisms (Figure 1a), and
due to amplification biases inherent in PCR.
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(a) Targeted sequencing of 16S rRNA

(b) Metagenome shotgun sequencing
Figure 1 Estimating taxonomic profiles using 16S rRNA targeted sequencing or metagenome shotgun sequencing. Figure1a shows that
the taxonomic profile estimated from 16S rRNA targeted sequencing is biased because of copy number variation. Figure 1b shows that
classification of whole-metagenome shotgun sequences may produce biased estimation because of the variations in genome size.
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A more direct approach for taxonomic profiling is to
classify metagenomic reads through homology search
against a reference genes database. MEGAN [8] maps
query sequences to the NCBI nr database using BLAST,
and assigns them taxonomic labels according to the low-
est common ancestor of the top database hits. CARMA
[9] first searches for conserved Pfam domains and pro-
tein families within the unassembled reads of a sample,
then constructs a phylogenetic tree of each matching
Pfam family and the corresponding query reads, and
finally the reads are classified into a higher-order taxon-
omy depending on their phylogenetic relationships with
respect to the database sequences that have known taxo-
nomic origins. In contrast to homology-based
approaches, machine learning and statistical methods
[10,11] have been used to classify DNA sequences based
on DNA base composition signatures (usually k-mer
frequencies).
Further, a hybrid approach PhymmBL [10] has

demonstrated that the combination of machine learning
(Phymm) and homology information (BLAST) produces
higher accuracy than either method alone. Despite the
difficulties in accurately classifying whole-metagenome
shotgun sequences, the estimated taxonomic profiles
may be biased because of variations in genome size
(Figure 1b).
In this paper, we present a novel taxonomic profiling

tool (MetaPhyler) for metagenomic sequences, which
relies on 31 phylogenetic marker genes [12] as a taxo-
nomic reference. We extend the database described by
Wu and Eisen [12] by including marker genes from all
complete genomes, the NCBI nr protein database and
60 draft genomes. One major limitation of prior meth-
ods used in this context is the use of a universal classifi-
cation threshold for all genes at all taxonomic levels (e.
g., BLASTP E-value=0.1 used by AMPHORA [12]).
However, individual bacterial genomes and proteins can
have different evolutionary rates, and metagenomic
reads contain gene fragments of different lengths. We
propose that better classification results can be obtained
by tuning the taxonomic classifier to the length of each
HSP (high-scoring segment pairs in BLAST), to the
reference gene, and to the taxonomic level. Our classi-
fier, based on BLAST, uses different thresholds for each
of these parameters, which are automatically learned
from the structure of the reference database. A side-
effect, and an important feature of our tool, is the ability
to identify novel organisms or taxa. Results on simulated
metagenomic datasets demonstrate that MetaPhyler out-
performs previous tools used in this context (CARMA,
Megan and PhymmBL). Further, MetaPhyler is much
faster than previous tools for two reasons: (1) the size of
the reference database is much smaller than the NCBI
nr database; and (2) our classifier based on BLAST bit

scores involves much less computation than some pre-
vious approaches which build phylogenetic trees
[9,12,13]. Finally, we present several interesting results
obtained by applying MetaPhyler to the gut micro-
biomes of obese and lean twins [14].

Results and discussion
Performance evaluation using simulated datasets
Classification performance
We carried out a simulated metagenomic study by com-
paring MetaPhyler with three other widely used tools:
WebCarma [9], MEGAN [8] and PhymmBL [10]. We
have randomly simulated around 300K 60bp and 70K
300bp DNA sequences from 31 phylogenetic marker
genes. Figure 2 compares the sensitivity (number of
correct predictions / number of simulated reads) and
precision (number of correct predictions / number of
predictions) of the phylogenetic assignments at five taxo-
nomic levels. The query sequence itself was removed
from the reference dataset when running MetaPhyler,
MEGAN and PhymmBL. We can see that MetaPhyler,
MEGAN and PhymmBL have comparable precisions in
almost all cases, and MetaPhyler is a little bit better
than others at the genus level. However, the sensitivity
of MetaPhyler is significantly better than other tools in
all situations, perhaps due to the fact that the classifiers
are explicitly trained at each taxonomic level.
One of the major challenges of metagenomic analysis

is the presence of novel DNA sequences which do not
match well any data in current databases. One major
goal of metagenomic analysis is to discover and classify
such novel sequences. For example, we asked the follow-
ing question: given a read from an organism whose gen-
ome has not been sequenced before, and also no
sequences from the same genus are available, can we
classify this sequence correctly at the family level pro-
vided that we have sequences from other organisms
within the same family? We further examined the per-
formance of MetaPhyler using progressively less data
from organisms related to those from which the query
sequences were simulated. Table 1 summarizes the sen-
sitivity and precision performance evaluated on 60bp
and 300bp simulated metagenomic reads. Overall the
classification precision is still very high when fewer
reference marker genes are available. This is especially
true for the 300bp reads: even if no sequences in the
database originate from the same genus as the query
reads, the precision is still higher than 92% when classi-
fying at higher taxonomic levels.
Estimating bacterial composition
As we have discussed in the Introduction section, esti-
mating the abundance of taxonomic groups in a sample
through the classification of phylogenetic marker genes
is more accurate than that obtained through 16S rRNA
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analysis or classification of all of the metagenomic shot-
gun sequences. In order to validate our hypothesis, we
have created a simple simulated metagenomic sample
comprising 5 genomes (Table 2). We compared the
accuracy of the taxonomic profiles estimated by different
approaches (Figure 3). The genomes, which are present
in the simulated sample, are eliminated from MetaPhy-
ler reference database. MetaPhyler outperforms other
approaches dramatically, and is very close to the true
taxonomic profile. While for approaches based on classi-
fying 16S rRNA and all the shotgun sequences, even if
we assume that the classification is perfect (”16S Ideal”
and ”Shotgun Ideal” in Figure 3), the resulting taxo-
nomic profile is still highly biased.

Taxonomic profiling of gut microbiomes from obese and
lean twins
To demonstrate the capabilities of MetaPhyler in analyz-
ing real metagenomic datasets, we used MetaPhyler to
analyze the microbial diversity of the gut microbiome
from lean and obese subjects, relying on data from [14].
This metagenomic dataset comprises 6 samples from
obese subjects and 6 samples from lean subjects. In the
original study, the taxonomic profiles for different indi-
viduals are estimated from the analysis of full-length
16S rRNA gene, V2 and V6 hypervariable regions, and
shotgun sequencing of community DNA. To compare
the results with the original paper, after running Meta-
Phyler on the shotgun sequences, we have used the
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Figure 2 Evaluation of classification performance Comparison of phylogenetic classification performance of MetaPhyler, MEGAN, CARMA and
PhymmBL. The sensitivity and precision are calculated across five taxonomic levels using 60bp and 300bp simulated metagenomic reads. During
the classification with MetaPhyler, MEGAN, and PhymmBL, reference sequences that are from the same genome as the query reads are excluded.
CARMA results are from the classifications based on WebCARMA server. This figure shows that the sensitivity of MetaPhyler significantly
outperforms the other three methods, and that the precision is also slightly better at the genus level.
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modified t-test [15] to compare the taxonomic profiles
between obese and lean groups at the phylum level
(Table 3). As a result, we have identified three phylum-
level clades (out of ten) to be differentially abundant:
Actinobacteria, Euryarchaeota and Verrucomicrobia.
The higher proportion of Actinobacteria in obese com-
pared with lean individuals confirm the observations in
the original paper [14]. Also we have determined Firmi-
cutes not to be differentially abundant, which agrees
with the original findings. In contrast with the original
study, we found the lower proportion of Bacteroidetes
in obese (relative abundances are 29.80% and 21.73% in
lean and obese individuals) not to be significant because
of large variances within the two groups under compari-
son. Furthermore, we have discovered that the Verruco-
microbia bacteria are highly enriched in the lean group,
which was not revealed in the original study but is con-
sistent with the findings from another human gut meta-
genomic study [16]. By applying MEGAN to these data
we only identified Actinobacteria (p = 0.02) to be
enriched in obese subjects.

Detecting novel organisms
As mentioned in the Introduction (see Methods for
details), MetaPhyler can help to identify novel bacteria

from metagenomic sequences. Here we show a con-
crete example based on sample F10T1Ob1 from the
above-mentioned human gut metagenome dataset. We
have identified a set of reads belonging to the order
Clostridiales, but novel at the family level. We then
used Minimus [17] to assemble 9 reads that are
mapped to the rplB gene. One of the resulting contigs
(comprising 5 reads) contained the full-length rplB
gene. We searched the contig against the NCBI nr
database and identified as the best hit the rplB gene
from species Ruminococcussp. SR1/5 with 94% and 86%
similarity at the amino acid and nucleotide levels,
respectively. In addition, our assembly of another con-
tig containing a fragment of rplB gene had 93% and
82% similarity with BlautiahanseniiDSM20583 at the
amino acid and nucleotide levels, respectively. Given
the low level of similarity at the nucleotide level
between the genes extracted from the dataset and all
previously characterized genes, we can be fairly confi-
dent that the rplB genes we identified are novel and
likely belong to previously unsequenced members of
the Clostridiales order. It is important to note that this
discovery was made possible by the stringent strategy
we employ which avoids assigning an organism to a
lower-level taxonomic group if the evidence does not

Table 1 MetaPhyler performance using fewer and fewer training dataset

Exclude Training 60bp 300bp

Genus Family Order Class Phylum Genus Family Order Class Phylum

Genome 90.72
33.45

97.18
54.22

98.10
59.59

99.11
70.72

99.56
75.30

97.90
52.39

99.14
70.17

99.15
78.09

99.34
84.52

99.64
91.18

Genus 77.15
16.47

86.32
23.16

94.92
34.60

96.72
43.48

92.55
31.06

95.71
48.63

98.23
64.22

98.84
77.35

Family 63.62
13.19

90.31
24.64

94.65
34.99

85.25
26.65

96.78
53.15

97.66
69.42

Order 80.04
17.73

90.29
27.80

93.69
39.97

96.26
58.86

Class 78.16
16.59

90.94
42.62

MetaPhyler phylogenetic classification performance on 60bp and 300bp simulated metagenomic reads. For each prediction, the top and bottom numbers are
precision and sensitivity in percentage, respectively. Different taxonomic levels are excluded when evaluating the classification, e.g., ’Genus’ means genes that
have the same genus label as the query read are excluded from the reference training dataset.

Table 2 Simulated metagenomic sample

Species Coverage Abundance Genome Size # 16S rRNA

Bifidobacterium bifidum PRL2010 25 50% 2.2Mbp 3 copies

Bacteroides fragilis NCTC 9343 10 20% 5.1Mbp 6 copies

Staphylococcus aureus USA300 5 10% 2.8Mbp 5 copies

Enterococcus faecalis V583 5 10% 3.2Mbp 4 copies

Clostridium difficile 630 5 10% 4.2Mbp 11 copies

To evaluate the performance of different approaches in estimating the bacterial composition, we have created a simulated metagenomic sample consisting of 5
species with 100bp reads. ”Coverage” indicates the depth of the coverage of the simulated reads in the simulated sample for the genomes.
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support this assignment, a feature not available in
other taxonomic profiling tools.

Comparison of running times
We compared the running time of MetaPhyler with
three other tools (PhymmBL, MEGAN and WebCarma)
on 70K 300bp simulated phylogenetic marker gene frag-
ments (Table 4). On a single 2.4GHz processor, the run-
ning times (including BLAST search) of MetaPhyler,
PhymmBL and MEGAN for analyzing the simulated
dataset are 8 hours, 4 days, and 34 days, respectively.
On the same dataset WebCarma [18] took 24 hours.
MetaPhyler is much faster than other tools in estimating
the taxonomic compositions from metagenome shotgun
sequences.

Conclusions
We have introduced a novel taxonomic classification
method for analyzing the microbial diversity of metage-
nomic sequences. Compared with previous approaches,
MetaPhyler provides significantly higher sensitivity when
classifying 60bp and 300bp simulated reads; MetaPhyler
has slightly higher classification precision at the genus
level, and comparable precision at higher taxonomic
levels. More importantly, the taxonomic profiles esti-
mated by MetaPhyler are much more accurate than those
estimated by other tools. In addition, MetaPhyler is much
faster than other tools for taxonomic profiling because
(1) the reference marker genes database is much smaller
than a general reference genes database (e.g., the NCBI
nr database), (2) and also our classifier based on BLAST
statistics involves much less computation than building
phylogenetic trees (another approach used for taxonomic
profiling). The high performance of MetaPhyler makes it
suitable for large scale metagenomic studies, e.g., the
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Figure 3 Comparison of bacterial compositions estimated from different approaches. We have created a simulated metagenomic sample
(Table 2) with 100bp reads to evaluate the performance of different approaches in estimating the bacterial compositions. ”16S Ideal” and
”Shotgun Ideal” represent results obtained by analyzing 16S rRNA genes and whole genome shotgun sequences assuming the classification
accuracy is perfect. Genus ”Other” indicates that sequences have been classified into genera other than that in the simulated sample. Different
approaches are ranked by their correlation coefficients (shown in legend) between the estimated and true taxonomic profile. When running
MetaPhyler, the genomes from which the reads were simulated are removed from the reference database.

Table 3 Estimation of taxonomic profiles in obese and
lean gut microbiomes

Phylum p value Enriched Notes

Actinobacteria 0.03 Obese Confirms original study

Bacteroidetes 0.48 Lean Large variance

Euryarchaeota 0.04 Obese Novel

Firmicutes 0.41 Lean Confirms original study

Verrucomicrobia < 0.01 Lean Confirms [16]

Comparison of taxonomic profiles, estimated by MetaPhyler, between obese
and lean gut microbiomes at the phylum level.

Table 4 Running time comparison of different tools

Dataset CPU hours

MetaPhyler PhymmBL MEGAN WebCarma

70K reads 8 hours 4 days 34 days 24 hours

On a single 2.4GHz processor, the computation time (CPU hours) used by
MetaPhyler, PhymmBL and MEGAN for analyzing 70K 300bp simulated
sequences. CPU hours for WebCarma are calculated using its web server.
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Human Microbiome Project. Furthermore, analysis of
publicly available metagenomic data agrees with previous
observations, and also provides new insights into the
microbial diversity of the human gut ecosystem. Finally,
we have demonstrated that MetaPhyler can be used to
guide the discovery of novel organisms from metage-
nomic sequences.
The novel classification algorithm for short DNA

reads we have introduced in this paper can also be
applied to other conserved genes. We are planning to
release a general gene fragment classifier, which can
learn classification thresholds automatically from a user
provided dataset. In addition, instead of providing a bin-
ary result for each classification, we will also explore
techniques for generating ”fuzzy” classifications based
on confidence scores. The software described in this
paper is freely available under an open-source license
from http://metaphyler.cbcb.umd.edu.

Methods
Building a reliable phylogenetic marker genes database
To use metagenomic sequences for taxonomic profiling,
we analyzed 31 protein coding marker genes previously
shown to provide sufficient information for phylogenetic
analysis [12]. These phylogenetic marker genes are uni-
versal, present only once in most genomes, and are
rarely subject to horizontal gene transfer. Hence, they
provide a more accurate estimation of the microbial
composition than methods relying on 16S rRNA alone.
In order to create an accurate and comprehensive refer-
ence dataset, we used the manually curated marker
genes from AMPHORA as a seed dataset, and extended
them by including marker genes from all complete gen-
omes, the NCBI nr protein database and 60 draft gen-
omes. Specifically, we first build MetaPhyler classifiers
(see below) on the seed dataset, and then use them to
classify potential marker genes. In addition, we have
also included phylogenetic marker genes from Archaea,
whose information is not available in the seed dataset
from AMPHORA. As a result, our final marker genes
dataset covers 581 genera, 214 families, 99 orders, 46
classes and 27 phyla.

Building MetaPhyler classifiers
Many previous metagenomic studies employ homol-
ogy-based classification methods, and apply a universal
threshold for all genes. The taxonomic label of the
best similarity hit is then transferred to the query
sequence. An improved variant of this approach
involves combining the top hits instead of only using
the best one [8]. We propose that better classification
results can be obtained by tuning the taxonomic classi-
fier to each BLAST HSP length, reference gene, and
taxonomic rank. Specifically, by learning parameters

from the reference database, we build a taxonomic
classifier for a particular reference gene G as follows
(Figure 4):
1. Simulate 60bp metagenomic reads from all refer-

ence marker genes that were curated as described in the
previous section and, as a negative set, from genomic
sequences that do not contain marker genes.
2. Map these simulated reads against reference gene G

using BLASTX.
3. To build a classifier for gene G at a specific taxo-

nomic level, say order, in vector Border we store BLASTX
bit scores between gene G and the simulated reads that
are from the same order; in vector Belse we store bit
scores for alignments of all other reads against G. Then,
we find the bit score cutoff bcut that minimizes the fol-
lowing error function:

I b b I b bi cut

b B

j cut

b Bi order j else

( ) ( )< + >
∈ ∈
∑ ∑ (1)

where I is an indicator function, which equals 1 when
the condition is met, and 0 otherwise. The taxonomic
tree used in our analysis is downloaded from the NCBI
taxonomy database, however our analysis can be redone
with a different taxonomic tree.
4. Repeat the previous three steps to find bit score

cutoffs for simulated reads of lengths 120bp, 180bp and
up to the length of gene G in 60bp increments.
5. To find cutoffs for sequences of arbitrary matching

lengths, we build a linear regression: b a bLcut
L = + (see

below for why we choose linear regression), where L is
the sequence length, bcut

L
is the bit score cutoff for

length L, and a and b are parameters estimated from
the data.
6. Repeat steps (3), (4) and (5) to build bit score cutoff

regressions for other taxonomic levels (genus, family,
class and phylum) for gene G.
We, then, repeat the above procedures to build classi-

fiers for all reference marker genes in our database. In
step (3), we assume that bit scores from close phyloge-
netic neighbors are higher than distant neighbors. This
is generally true because marker genes, which are more
closely related phylogenetically, tend to have more simi-
lar sequences. However the phylogenetic relationships of
the marker genes are not fully consistent with the corre-
sponding taxonomic tree, which is downloaded from the
NCBI taxonomy database. Ideally we would expect to
see the cutoff bcut to be lower than all the scores in Bor-

der, but higher than scores in Belse. The error metric
(Equation 1) we used is a count of the number of mis-
classified points, which is similar to the 2-norm distance
used by SVM classifiers.
Next, we show that in step (5) linear regression is a

reasonable approximation of bit scores based on the
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(1) Simulate 60bp 
metagenomic reads

bp 
eads

(2) Map simulated reads against 
reference gene G using BLASTX.

(3) Minimize error function
bcut

(4) Repeat (1), (2) and (3) to find 
cutoffs for longer simulated reads.

(5) Build linear regression
at each taxonomic level.

Figure 4 Building MetaPhyler classifier To build MetaPhyler for a particular phylogenetic marker gene G and for length 60bp, we first simulate
metagenomic reads from all reference marker genes, and as a negative set, from genomic sequences that do not contain marker genes. We
then map these simulated reads against reference gene G using BLASTX. To build a classifier for gene G at a specific taxonomic level, say order,
in vector Border we store BLASTX bit scores between gene G and the simulated reads that are from the same order; in vector Belse we store bit
scores for aligning all other reads against G. We then find the bit score cutoff bcut that minimizes Equation 1. Finally, we repeat the previous
steps to find bit score cutoffs for simulated reads of other lengths and for other genes.

Liu et al. BMC Genomics 2011, 12(Suppl 2):S4
http://www.biomedcentral.com/1471-2164/12/S2/S4

Page 8 of 10



matching HSP length. As described in [19], the bit
score is

S S Kbit = −( ln ) / ln 2 (2)

where S is the raw score of the BLAST alignment, and
l and K are parameters depending on the database. In
addition, the raw score S equals the sum of the scores
of matching amino acids [19]

S S q p pij ij i j= =∑ log( )/ (3)

which is the log-odds ratio of the observed and
expected frequencies. For gene G of length L, we can

rewrite Equation 3 as
S L S Lij= ∑ /

. For metagenomic

read G’ of length L’(L’ ≤ L), which only contains a sub-
sequence of the full-length gene G, the raw score

′ = ′ ∑ ′S L S Lmn / . Further, if we assume that the

evolutionary mutations and amino acid compositions
are randomly distributed across gene G, then

S L S L Smn ij
ij

/ /′ ≈ =∑∑ (4)

which indicates that
′ = ′S L Sij . Hence, we can rewrite

equation 2 for a gene fragment as

′ = ′ −S L S Kbit ij( ln ) ln / 2 (5)

where Sij is a constant for a particular gene G. As a

result, the bit score ( )′Sbit of a subsequence of gene G

is linearly correlated with the HSP length (L’), and we
can estimate this relationship with a linear regression as
in step (5).

Classifying metagenomic sequences
The query metagenomic sequences are initially mapped
to the reference marker genes using BLASTX. MetaPhy-
ler classifies each sequence individually based on its best
reference hit. For example, assume that a query
sequence Q has gene G as its best hit, the BLAST bit
score is b and the HSP length is L. First we try to clas-
sify Q at the genus level by calculating the bit score cut-
off bcut of gene G using the pre-computed linear
regression function. If the bit score is higher than the
cutoff (b ≥ bcut), then we transfer the genus label of
reference G to query Q. Otherwise, we try to classify Q
at higher taxonomic levels (family, order, class and phy-
lum) using level-specific classifiers built for gene G,
until either the classification is successful at one of the
taxonomic levels or the query can not be classified.
A side-effect of this algorithm, specifically the strin-

gent classification strategy that can avoid assigning an
organism to a lower-level taxonomic group if the evi-
dence does not support this assignment, is the ability to
identify novel organisms or taxa. The presence of novel
organisms leads to a detectable discrepancy between the
number of sequences assigned to a lower taxonomic
level, and the number of sequences assigned to a higher
(less specific) taxonomic level. For example, if a set of
query sequences are classified into a particular order,
but cannot be classified into any existing families under
this order, then this indicates that these reads come
from novel family-level clades (Figure 5). These
sequences can be further analyzed using a de novo
approach, e.g., using Minimus [17], which will poten-
tially recover the full-length gene and, thus, help charac-
terize the novel bacterium. In order to help the users
easily identity novel bacteria from MetaPhyler output,
we used the following naming rule for example: if a
sequence is classified at the family level as Enterobacter-
iaceae, but can not be classified to any genera under it,

Figure 5 Detecting novel organisms Because MetaPhyler uses
different classification thresholds for different phylogenetic levels,
it can avoid assigning an organism to a lower-level taxonomic
group if the evidence does not support this assignment. The
presence of novel organisms leads to a detectable discrepancy
between the number of sequences assigned to a lower taxonomic
level, and the number of sequences assigned to a higher (less
specific) taxonomic level.

Table 5 An example of MetaPhyler output

Genus Coverage Abundance # Reads
Mapped

Bifidobacterium bifidum
PRL2010

24.98 49.97% 3765

Bacteroides fragilis NCTC
9343

10.19 20.37% 1806

Staphylococcus aureus
USA300

5.12 10.24% 879

Enterococcus faecalis V583 5.03 10.06% 823

Clostridium difficile 630 4.68 9.36% 748

MetaPhyler output at the genus level for the simulated metagenomic sample
in Table 2.
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then we name this sequence as Enterobacteriaceae
{family} at the genus level.

Estimating bacterial composition
After taxonomic classification of phylogenetic marker
genes from metagenomic sequences in the previous
step, for each taxonomic unit, we have a set of reads
assigned to each phylogenetic marker gene. The depth
of coverage of this taxonomic unit is calculated as the
median of that of the 31 phylogenetic marker genes.
Then the relative abundances of all taxonomic units are
computed using the depth of coverage instead of the
number of reads classified. Table 5 shows an example of
MetaPhyler output at the genus level for the simulated
metagenomic sample in Table 2.
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