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Abstract

Background: Exosomes are nanoscale membrane vesicles released by most cells. They are postulated to be
involved in cell-cell communication and genetic reprogramming of their target cells. In addition to proteins and
lipids, they release RNA molecules many of which are not present in the donor cells implying a highly selective
mode of their packaging into these vesicles. Sequence motifs targeting RNA to the vesicles are currently unknown.

Results: Ab initio approach was applied for computational identification of potential RNA secretory motifs in the
primary sequences of exosome-enriched RNAs (eRNAs). Exhaustive motif analysis for the first time revealed unique
sequence features of eRNAs. We discovered multiple linear motifs specifically enriched in secreted RNAs. Their potential
function as cis-acting elements targeting RNAs to exosomes is proposed. The motifs co-localized in the same transcripts
suggesting combinatorial organization of these secretory signals. We investigated associations of the discovered motifs
with other RNA parameters. Secreted RNAs were found to have almost twice shorter half-life times on average, in
comparison with cytoplasmic RNAs, and the occurrence of some eRNA-specific matifs significantly correlated with this

eRNA feature. Also, we found that eRNAs are highly enriched in long noncoding RNAs.

Conclusions: Secreted RNAs share specific sequence motifs that may potentially function as cis-acting elements
targeting RNAs to exosomes. Discovery of these motifs will be useful for our understanding the roles of eRNAs in
cell-cell communication and genetic reprogramming of the target cells. It will also facilitate nano-scale vesicle
engineering and selective targeting of RNAs of interest to these vesicles for gene therapy purposes.

Background

Exosomes are small (50-150 nm) membrane vesicles
released from various cell types, e.g. from hematopoietic
cells (B-cells, T-cells, dendritic cells, mast cells), endothe-
lial, fibroblastic, neuronal and tumor cells [1]. The secre-
tion of exosomes is a conserved process in animal cells
that plays an important role in a number of physiological
processes including immune surveillance [2], inflammatory
response [3] and development [4]. Exosome function
depends on the cell type from which they are derived.
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Besides a constitutive release of exosomes by the cells,
their secretion is enhanced upon activation by various sti-
muli, e.g by changes in intracellular calcium in platelets
and mast cells [5] or cell depolarization in neurons [6].
Exosomes contain a spectrum of specific suRNAce mole-
cules that allows their interaction with particular cells in
the body. For example, the vesicles shed from neutrophils
interact with platelets [7], but those shed from platelets
interact with monocytes, but not with neutrophils [8].
While the existence of exosomes has been known for
over three decades [9], they have recently attracted a great
interest because of their increasingly recognized role in
intercellular communication [10]. In addition to proteins,
lipids and their bound carbohydrates, exosomes were

© 2011 Batagov et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:arsenb@bii.a-star.edu.sg
mailto:igork@bii.a-star.edu.sg
http://creativecommons.org/licenses/by/2.0

Batagov et al. BMC Genomics 2011, 12(Suppl 3):518
http://www.biomedcentral.com/1471-2164/12/S3/S18

found to contain mRNA and miRNA [11]. Moreover, in
the recipient cells RNA can be translated into protein in
the case of mRNAs [11], or repress the expression of other
genes in the case of miRNAs [12]. The fact that exosomes
contain RNA suggests their important role in the horizon-
tal transfer of genetic information between cells in the
body. This has important implications for the processes of
development and disease. For example, exosomes released
from murine embryonic stem cells induce an epigenetic
reprogramming of target cells [13]. Tumor-derived exo-
somes have been found to contain a subset of mRNAs
associated with signaling pathways relevant for tumor cell
survival, growth, host tissue invasion, and metastasis [14].
Exosomal miRNA expression profiles have been shown to
have signatures related to tumor classification, diagnosis,
and disease progression [15]. Thus exosomal RNAs
(eRNAs) provide potential new targets for diagnostic and
therapeutic applications [16]. Exosomes are also being
considered as promising nanoscale machines for the deliv-
ery of therapeutic RNAs for the treatment of various con-
ditions ranging from cancer to diabetes [17].

Intriguingly, several studies detected many of the
mRNAs and miRNAs exclusively in exosomes suggesting
a nonrandom fashion of packaging of the RNAs into these
microvesicles. These observations raise a number of
mechanistic questions regarding the pathways for targeting
of RNA into exosomes. In the case of cell-bound mRNAs,
their targeting is a highly selective process contributing to
the formation of sub-cellular domains and cell asymmetry
[18]. A high-throughput in situ hybridization screen in a
model organism Drosophila revealed that 71% of the tran-
scripts are localized in a large number of different pat-
terns, suggesting that specific mRNA localization is a
widespread phenomenon [19].

mRNA localization depends on interactions between
cis-acting elements in the mRNA sequence referred to as
“zipcodes” and trans-acting factors, the RNA-binding
proteins. A number of cis-acting elements have been
identified in localized RNAs [18]. These elements are
recognized by the transporting machinery based on
sequence, structure, or both, although it is often difficult
to probe sequence and structural requirements indepen-
dently. Perhaps the best studied example of structural
localization element in mRNA is that of the Drosophila
bicoid (bcd) mRNA [20]. This element is represented by
a helix in which nucleotide identities are not important
[20]. In the case of the TLS, an RNA sequence element
that mediates the subcellular localization of K10 and Orb
transcripts in Drosophila oocytes, both a stem—loop sec-
ondary structure and specific nucleotide sequences are
required for the recognition by trans-acting cellular fac-
tors [21]. Each localized mRNA contains one [22] or
more [23] cis-acting sequence elements and most known
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localization signals so far found are present in the
untranslated regions [18].

Several experimental approaches have been successfully
utilized to identify zipcodes - observation of localization of
the mRNA molecules following fragment deletions or
point mutations in their sequence. Computational predic-
tion of zipcodes proved to be very difficult for several rea-
sons. First, the same RNA may interact with a large
number of trans-acting factors, each utilizing particular
mode of target recognition [18]. Second, RNA localization
signals operate at the level of both primary and secondary
structure. In addition to the fact that RNA secondary
structure depends on the context, many prediction meth-
ods ignore non-canonical base pairings and pseudoknots
[24]. Even prediction methods for the sequence-based
motifs had very limited success because of the short length
of these motifs and their combinatorial organization [18].
It should be noted that all previous attempts to computa-
tionally predict mRNA localization signals were based on
a priori knowledge of experimentally verified motifs,
which they mapped on to novel RNA sequences. However,
despite increasing interest in exosome biology in the past
years, no experimental studies on elements targeting RNA
for secretion have been performed and thus RNA secre-
tory zipcodes remain unknown. Therefore computational
prediction of sequence motifs responsible for RNA secre-
tion is a very challenging task. Apart from its academic
interest, discovery of these motifs will be useful for engi-
neering and selective targeting of RNAs of interest to exo-
somes for the gene therapy purposes.

In this work, we have applied ab initio approach for
computational identification of potential RNA secretory
motifs that does not require any prior knowledge of motif
structure and is based on the comparison of primary
sequence of eRNAs with cell-bound RNAs. We describe
for the first time short linear motifs specifically enriched
in secreted RNAs and discuss their potential function as
cis-acting elements targeting RNAs to exosomes.

Results

At present, only few studies reporting quantitative mea-
surements of RNA secretion exist. The most detailed set,
obtained by Skog with colleagues, was used in the present
study [25]. In this report, only the fraction of transcripts
present exclusively in secreted vesicles was analyzed. We
aimed at a more informative analysis whereby transcripts
could be classified according to their level of enrichment
and other quantitative parameters of eRNAs in compari-
son with intracellular RNAs. The following parameters
were considered: i) transcript length, ii) half-life in host
cells, iii) base composition, iv) gene ontology (GO), v)
RNA class (messenger or non-protein coding). No signifi-
cant difference in base composition and GO were found
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for eRNAs (data not shown). We detected a statistically
significant, but small difference for RNA length (Addi-
tional File 1).

The eRNAs expression was compared with the expres-
sion of cell-bound RNAs and exosomic to cell-bound
expression ratio (ECER) was calculated. Exosome-
enriched RNAs with expression values 100 and higher
were stratified into i) exosome-specific (present in exo-
some, but not in cell), ii) strongly enriched, with
ECER>33, iii) moderately enriched, with 2<ECER<33, iv)
weakly enriched, with 1.5<ECER<2.

The proportion of long non-protein coding RNAs is
increased in eRNA fraction

Out of 757 cell-bound RNAs (ECER from 0.75 to 1.5), 720
(95%) were mRNAs and 37 (5%) were non-protein coding
transcripts. As the ECER number increased, the fraction of
mRNAs decreased from 95 to 80% (Figure 1A), while the
complementing fraction of long non-protein coding RNAs
increased from 5 to 20% (75/376). Thus, the fraction of
non-protein coding RNAs increased 5 times in secreted
RNA fraction, in comparison with intracellular. A strong
negative correlation (-0.9) was observed between the
mRNA content and ECER, while for non-protein coding
RNAs this correlation was strongly positive (0.9).

eRNAs have shorter half-life time than intracellular RNAs

We analyzed previously published transcriptome-scale
experimental data on RNA half-lives in fibroblasts and B-
cells [26] and found a significant difference in half-life
time distribution between eRNAs and intracellular RNAs

Page 3 of 14

(Figure 2). The largest difference was observed in B-cells
(P=0.0021) with the mean half-life time 1.8-times longer
for intracellular RNAs. In fibroblasts, intracellular RNAs
half-life was only 1.3-times longer, but still the difference
with eRNA fraction was statistically significant (P=0.011).

Multiple alignments and position-specific scoring do not
reveal long or short sequence elements specific to eRNAs
Due to unknown nature of potential cis-acting motifs
enriched in secreted RNAs, as a starting point of the
study, two traditional approaches were considered to
identify common cis-elements in secreted RNAs - multi-
ple sequence alignment (MSA) and position-specific
scoring matrix (PSSM) models. Multiple alignment strat-
egy aims to reveal position-independent regions similar
in a large fraction of sequences. The span of such regions
can be very long and their expected span can be con-
trolled, as in Clustal [27], or defined by a search heuristic,
as in MUSCLE [28]. This approach favoring searches for
sparse and/or long regions, is sensitive to over-represen-
tation in multiple sequences, but is insensitive to posi-
tional context information within the same sequence.
This can be compared with PSSM approaches, imple-
mented in tools like BioProspector [29] and MEME [30],
which are specified at discriminating over-represented
sequence regions based on their positional context. Such
tools are used for discovery of short elements in a single
or multiple sequence contexts, such as transcription fac-
tor binding sites. Thus, both strategies complement each
other and could potentially be successful to discover
novel signals in eRNAs.
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Among the multiple alignment algorithms, Clustal was
selected as a method for which the expected scarcity and
length of potential eRNA-specific motifs could be con-
trolled by setting score penalties for opening and extend-
ing gaps in the alignment. Among PSSM approaches,
BioProspector was selected, since, unlike most of PSS
algorithms, it features high-order Markov models, which
allows one to discover longer and more interspersed
sequence motifs [31].

Neither Clustal nor BioProspector could reveal any sig-
nificant motifs in all ECER ranges, apart from poly(A)
sequences (data not shown). Thus the application of both
multiple alignment and PSSM strategies was unsuccess-
ful. Therefore, an exhaustive motif search, which is not
biased to neither positional, nor multiple sequence con-
text, was applied.

Exhaustive motif search

Oligonucleotide representation is a specific approach of
motif search recently emerging with increasing accessibil-
ity of computational power. It is unbiased both in the
sense of positional context and multiple sequence sets. For
example, it was implemented in RSAT, a popular tool for
motif discovery [32]. In the current study, a higher level of
flexibility was required in comparison with RSAT, mainly
due to the large number of oligonucleotides to be tested

as described below and the diversity of statistical para-
meters to be estimated.

The exhaustive algorithm generates all possible oligo-
nucleotides of a given length and ranks them by their
statistical properties in each data set. Varying the oligo-
nucleotide length from 1 to 8 can retrieve a wide range
of information about the studied sequences -from the
position-dependent biases in base composition to poten-
tial motif repeats with hundreds nucleotides repeat per-
iod, which can not be captured with other methods.
Short element position-specific oligonucleotide biases
revealed by this method can potentially be used as start-
ing points for further more detailed study of these
features as discriminative characteristics of a sequence
set, as it is demonstrated in the present study. This
approach, however, has some limitations. For instance, it
is not feasible to use for studying degenerate motifs, such
as AC[UAC]AA, [UA]JAAU, where square brackets sur-
rounding a nucleotide position stand for all possible sub-
stitutions at this position with a letter surrounded by the
brackets. Evaluation of such cases is possible. However, if
we would like to keep our strategy exhaustive, making
even a single position degenerate to m possible nucleo-
tide types, this approach would result in m" times more
combinations to be screened. In addition, this type of
motif does not add as much information about sequence
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specificity as analysis of co-localization of shorter motifs,
which are contained within a given long motif. And mul-
tiple motif positional co-localization was out of scope of
the present study as well.

For each oligonucleotide combination (motif) of length
from 1 to 8, we analyzed the frequency of occurrence in a
given set of sequences, the fraction of mRNAs (according
to Refseq annotation), the skewness of motif location dis-
tribution along the length of the motif-containing RNAs
and other parameters (see Additional File 2). The motifs
were ranked first by skewness and second- by representa-
tion in the RNA sequences. Based on cutoff values of
these parameters (skewness absolute value greater than
0.6, fraction of RNAs greater than 15%) and enrichment in
eRNAs, motif classes were defined as i) associated with
eRNAs, ii) associated with intracellular RNAs. An in base
pair distribution along the length of the RNAs was
observed. Adenine was enriched in the 3’-region repre-
senting a significant fraction of polyadenylated RNAs
(Figure 1B). G/C-rich sequences were found with higher
frequencies in 5’-region. This tendency was observed for
both cell-bound and secreted RNAs. No significant
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enrichment in exosomes and correlation with ECER were
observed for any base pair.

Short eRNA motifs negatively correlate with RNA life time
and mRNA fraction

Surprisingly, all 3-5-nt-long motifs correlated negatively
with secretion and had a strong negative correlation with
RNA half-lives in both fibroblasts and B-cells (Figures 3
and 4). Thus, it can be concluded that the observed short
intracellular life time of secreted RNAs does not depend
on their base pair composition, but is rather their universal
property. Negative correlation of secretion with mRNA
fraction was observed in general (see above). Motifs mark-
ing RNA polyadenylation correltated negatively as well.
The fraction of mRNAs decreased from 95% in non-
secreted fraction (ECER from 0.75 to 1.5) to 75% in
strongly secreted fraction (ECER > 33) (Figure 3C).

Repetitive short motifs have a distribution skewed to 5'-
and 3’- ends of eRNAs

To assess the impact of short (3-5-nt-long) motif
repeats, we also analyzed longer motifs (8-nt-long)
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3’-poly(A), 5°-poly(GGC) content did not correlate with
the mRNA fraction.

Secretion-specific long motifs with high complexity
account for 30% of eRNAs

Since a negative correlation between RNA secretion and
RNA half-lives time in our data was observed to be a gen-
eral rule, it could be used as a parameter indicating RNA
secretion specificity of the long motifs, rather than their
biological function. We used RNA half-life time correla-
tion coefficient, along with the fraction of motif-containing
RNAs, as primary parameters for selection of the top
secretion-specific motifs. In addition, skewness was used
to assess the specificity of the motifs to particular locations
within the RNA sequence span, attributing to their rela-
tionship to spatial RNA structure.

We identified 145 8bp-long motifs satisfying the above
parameters with both RNA secretion fraction and half life-
time correlation coefficient absolute values not less than
0.7 and 0.4, respectively. Among them, only 12 motifs
positively correlated with secretion and only 6 positively
correlated with the half-life time. The sequence locations
of 76 motifs were skewed towards 5’-end of RNAs (skew-
ness > 0.2 at ECER > 33), while only 22 motifs were
skewed towards 3’-end. Although the motifs strongly cor-
related with secretion, the fraction of the RNAs containing
them did not exceed 24%, except for AAAAAAAA. This
fraction was above 10% for only 62 of them. Thus, most of
the motifs could be associated with only a small fraction
of eRNAs. Overall, only three motifs (ACCAGCCU,
CAGUGAGC and UAAUCCCA) satisfying all four criteria
were chosen for further evaluation as potentially specific
for RNA secretion (Figure 5). It is remarkable that RNAs
containing these motifs show divergent correlation pat-
terns between secretion and half-life time, with two of
them (UAAUCCA and CAGUGAGC) correlating nega-
tively and one (ACCAGCCU) positively in fibroblasts
(Figure 6A). No significant correlation of these motifs with
RNA half-life time was observed in B-cells (Figure 6B).

Although each motif was found only in a small fraction
of highly secreted RNAs (ACCAGCCU - 24%, CAGU-
GAGC - 20%, UAAUCCCA - 19%, ECER > 33), the sets
of secreted RNAs containing them together, revealed a
remarkably significant overlap (32 RNAs) (Figure 5C and
Additional File 3). Thus, the combination of these 3 motifs
is preferred in eRNAs over single and double motif co-
occurrence. The fraction of eRNAs (ECER > 33) contain-
ing, at least, one of these motifs was only 36% (135 RNAs)
because of the strong co-occurrence of these motifs within
the same transcripts. GO analysis did not reveal any func-
tional group significantly over-represented within this set
of eRNAs. Only 67% (91/135) of the RNAs were present
in GO databases. These RNAs include both mRNAs and
non-protein coding RNAs (Additional File 2). The results
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suggest that the only observed specificity of this three
motif combination is RNA secretion.

To test if the presence of discovered motifs in eRNAs
was associated with some larger (hence, more general)
primary RNA structures, the 32 RNAs containing all 3
motifs were aligned using Clustal. Surprisingly, both
mean sequence similarity and the density of motifs loca-
lization were increased towards 3’-end of these RNAs
(Figure 7). This result demonstrates that the discovered
specific sequence motifs mark a larger and sparser
structure specific for eRNAs.

Secondary structure analysis reveals similarities in the
folds of secretion-specific motifs within different RNA
molecules

To investigate if the secondary structure of the motifs
and their adjacent sequences are conserved in this region
as well, a computational analysis of RNA secondary
structures was carried out. RNA sequences spanning 100
nucleotides that include a particular 8-nt-long motif were
analyzed using the program RNAfold (see Methods for
details). Among the RNA folds for all the 8-nt-long
motifs found in the 32 eRNAs (see above) (Additional
files 3, 4 and 5), we focused on the secondary structures
derived from the sequence region 0.7 to 1.0 of full length
transcripts (Fig. 7). We ranked all the RNA secondary
structures in this region according to their lowest free
energy (Additional file 5) and selected for a detailed ana-
lysis the most highly ranked and more frequently occur-
ring centroid and minimum free energy (MFE)
predictions. Remarkably, each of the 3 identified motifs
was predicted to form strikingly similar secondary struc-
ture within different RNAs, even when those RNAs had
distinct overall structures (Figure 8). The ACCAGCCU
motif was found most often as a part of a structure com-
prising a stacked pair, an internal loop and a helix of
three base pairs (Figure 8A). The CAGUGAGC sequence
was typically embedded in a highly paired stem inter-
rupted by a bulge loop at position 6 of the motif (Figure
8B). The UAAUCCCA motif was found as a part of an
internal loop followed by a 5-base-paired helical region
(Figure 8C).

Discussion

Current study is focused at discovering motifs enriched
in eRNAs. To confirm that the described motifs are spe-
cific to eRNAs, rather than to their biological functions,
general RNA parameters were assessed. Secreted fraction
of RNAs is inhomogeneous in all major aspects —
amount of RNA, vesicle enrichment ratio, features of pri-
mary structure. Since exosome secretion of RNAs
diminishes their intracellular concentration, quantitative
reverse relationship between intracellular and secreted
RNA concentration is naturally expected, however, has
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never been demonstrated before. It is generally assumed
that cellular RNA levels are determined by the interplay
of processes for RNA production (transcription) and
degradation. Despite the fact that RNA secretion is
already accepted phenomenon, the significant implica-
tions of this statement are not taken into account by var-
ious models analyzing regulation of cellular RNA levels.
We report here for the first time that secreted RNAs
have almost twice shorter half-life times in average than
intracellular RNAs.

We found characteristic sequence features, distin-
guishing eRNAs from intracellular RNAs: i) mRNA and
3’-polyadenylated RNA fractions are decreased, ii) RNAs
with short (3-4-nt-long) repetitive elements in the 5'-
end are less frequent, iii) multiple long sequence motifs,
specific to eRNAs, are present in up to 25% of eRNAs,

iv) the presence of some specific long motifs in eRNAs
correlates strongly with their short intracellular life time.

Using exhaustive search, we proved for the first time
that there is no single motif specifically associated with
the majority of eRNAs. Rather than that, there are com-
binations of multiple motifs which are specific. We stu-
died in detail one such combination of 3 long motifs
specifically located at the 3’-end of eRNAs. We found
that this motif combination is a part of a larger region
with strong sequence similarity in 32 top secreted
eRNAs. Since we observed multiple motif combinations,
we hypothesize that this structure may serve as a sub-
strate of several RNA-binding proteins, parts of a large
RNA-targeting machinery directing eRNAs to exosomes.
Each of the 3 identified in this study motifs was predicted
to form very similar secondary structures within different
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ACCAGCCU

LOC441258 KIIAA1751 ENSTO00000360041
(AK024602) (AB051538) (AK093303)

B) CAGUGAGC

KIIAA1751 PDE4C LOC202181
(ABO51538) (NM_000923) (AKD21623)

UAAUCCCA

a

AK098134 PRO0478 PDE4C
(cDNA FLJ40815 fis) (AF090930) (NM_000923)

Figure 8 Predicted RNA secondary structure of the identified motifs. RNA sequences spanning 100 nucleotides that include 46 nt upstream
and 46 nt downstream of the particular 8-nt-long motif were analyzed by RNAfold. The centroid structures predominant for the given motif are

shown. The 8-nt-long motif sites are indicated by red bars.
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types of RNAs. These secondary structure elements may
serve as binding sites for cognate RNA-binding factors.

Interestingly, intracellular mRNAs have been shown to
contain more than one linear motif used for subcellular
localization. In some cases, these could be clusters of the
same motif like the repeated motif UUCAC essential for
localization of the Vgl mRNAs in Xenopus oocytes [33]
or GCAC motif identified in Xpat mRNA, fifteen copies
of which are present in a 526-nt window [34]. Single
short motifs have typically very weak localization func-
tion on their own, while multiple tandem copies confer
substantial localization. This organization of RNA locali-
zation elements is reminiscent of cis-regulatory elements
in DNA that are usually composed of clusters of repeated
binding sites for transcription factors [35]. Organization
of RNA localizing motifs could be highly combinatorial.
The presence of multiple motifs may reflect discrete
pathways working at sorting RNA to exosomes. Consis-
tent with this notion, motif utilization in localized
mRNAs is often separated in time and space. For exam-
ple, transport of rat protein kinase M mRNA is specified
by two cis-acting dendritic targeting elements. First ele-
ment, located at the 5’-UTR, directs somato-dendritic
export of the mRNA and second element, in contrast, is
located in the 3’-UTR and is required for delivery of the
mRNA to distal dendritic segments [36]. Although the
intracellular traffic of RNAs prior to entry into exosomes
is unknown, it is likely to be a very complex process
operating through a consecutive exchange of carrier pro-
teins, each recognizing its cognate RNA motif. Exosomes
are generated by multiple different pathways and the pic-
ture is complicated by the fact that a single cell may pro-
duce a mixed population of exosomes [1].

The motifs identified in this study might be necessary
but not sufficient for RNA sorting to exosomes. Recogni-
tion of these motifs by various trans-acting factors may
depend on the sequence context, spacing, location or ter-
tiary structural features. These can be better understood
when data on three-dimensional structure of RNA-trans-
port protein complexes become available. The motifs
enriched in secreted RNA appear to be distinct from
known RNA elements. This implies that the trans-factors
that recognize them may be distinct from known RNA-
binding proteins.

Our analysis revealed that long non-protein coding
RNAs are enriched in a fraction of eRNAs. Moreover, as
the ECER number increased, the proportion of long non-
coding RNAs also increased. Long noncoding RNAs are
increasingly being recognized as having important role in
a number of cellular processes [37]. The emerging evi-
dence indicates that these RNAs may control the epige-
netic states of cells by targeting chromatin modification
complexes and that their expression is deregulated in
cancer and other complex diseases [38]. Thus, similarly
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to secreted miRNAs, long noncoding RNAs may perform
regulatory functions in the target cells.

Conclusions

Computational discovery of motifs in sequences is a funda-
mental problem of molecular biology. This study provides
the first attempt of bioinformatics analysis of enriched
motifs in secreted RNA and discusses their utility as poten-
tial cis-acting elements targeting them to exosomes. Asso-
ciation of the discovered motifs with other RNA
parameters has been revealed. Secreted RNAs were found
to have almost twice shorter half-life times on average in
comparison with intracellular RNAs. The occurrence of
some eRNA-specific motifs significantly correlated with
this eRNA feature. Prediction accuracy of RNA exosome-
targeting signals will improve as new information is added.
The methodology applied in this study will be helpful
when new data sets for eRNA from different cell types
under various conditions become available. The results of
this study facilitate the prioritization of targets for further
experimental validation. Finally, understanding mechan-
isms of RNA targeting to exosomes may give us a way to
devise artificial secreted vesicles with the desired set of
RNAs that can be transferred to recipient cells to modulate
their function.

Methods

Data sources

The expression data on intracellular and exosomal RNAs
used in the current study was previously published in [25]
and is publicly available at Gene Expression Omnibus
(GSM339549 and GSM339550). The RNA expression
values for 40812 transcripts were measured with Agilent
microarrays in duplicates. The data on half-lives of 8342
B-cell RNAs and 8173 fibroblast RNAs were obtained
from previously published work [26]. RNA sequences
were retrieved from GeneBank and stored by their GI
accession IDs.

Data partitioning by exosomal expression

5723 transcripts with average exosomal expression values
above 100 and with concordant expression (exosomal vs.
intracelluar fractions) in two technical replicates were cho-
sen for further analysis. The transcripts were separated
into 8 categories by the ranges of their ratios of exosomal
to intracellular expression values (ECER) averaged across
the duplicates. The following ranges of ECER values were
chosen: 0.75-1.5, 1.5-2, 2-3, 3-5, 5-9, 9-17, 17-33 and >33.
The number of transcripts in each category was from 376
(ECER>33) to 918 (1.5<ECER<2). The sets of the genes for
which exosomal expression was different from intracellu-
lar expression less than 1.5-times (0.75<ECER<1.5)
and larger than 33 times (ECER>33) were considered as
reference “cell-enriched” and “exosome-enriched” sets,
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respectively. The partitions above the intracellular refer-
ence range were chosen with a simple rule of doubling the
ECER range span. This choice of partition boundaries
resulted in comparable sample sizes within the partition,
while staying scalable in respect to the ECER ranges.

Motif search

To test the data for a possible presence of long common
motifs over-represented in the sequences of eRNAs, Clus-
tal algorithm [27] was used with gap open and gap extend
penalty parameters varying from 1 to 10. To find short
over-represented motifs which sequences are statistically
different (in Markov model) from the surrounding back-
ground, Bioprospector software tool [29] was used with
the background being calculated from the input sequences
and motif length varying from 4 to 10. Exhaustive motif
search algorithm included the search of all possible combi-
nations of motifs up to 8-nt-long motif as the first step. To
characterize the representation of each motif in a given
data set, descriptive statistics, as well as expected enrich-
ment and correlations with ECER were calculated (Addi-
tional File 2). In addition, a spatial representation of each
motif along the length of sequences containing it was cal-
culated. A relative scale of RNA length was used in this
case, with 1 taken as the total RNA length. The above pro-
cedure was applied to the exosome-enriched sequences
and the sequences from the control set. In each set, the
motifs were ranked by their occurrence frequencies.
Motifs changing their ranks most significantly were
selected as having the biggest enrichment in the eRNA
sequences.

Statistical analysis

The significance of the motifs enrichment in a given set
of RNA sequences was assessed relative to the following
background distributions: Pm - the observed number of
occurrences of the motif in given sequences vs. expected
number of occurrences of a random motif with the same
base composition in given sequences; Ps - the observed
number of given sequences containing, at least, 1 given
motif versus the expected number of given sequences
containing, at least, 1 random motif with the same base
composition. The enrichment P-values were estimated
based on Fisher’s exact test and were corrected for FDR
[39]. Quantitative relationship between the RNA
sequences containing a given motif and their ECER
values was assessed with Kendall correlation coefficients.
Comparisons between cumulative distribution curves
(motif-containing RNA sequence fraction, mRNA frac-
tion, and half-life times) were made as follows. For each
motif, median values for the mentioned RNA parameters
were calculated. Data were generated for all motifs of a
given length from the sequences of RNAs belonging to a
particular range of ECER values. Comparisons were
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made between cumulative distributions of motifs with
the same length, belonging to different ECER ranges,
using Mann-Whitney U- test. The problem of imbal-
anced statistical design and large data sets was addressed
with bootstrap resampling procedure. For each compari-
son, a sample of either a) 100 values or b) the size of the
smallest sample was randomly selected from each of 2
compared distributions. The P-value resulting from this
comparison was recorded and the distributions were
resampled. Resampling continued until the standard
deviation of the resulting P-values did not exceed 10% of
the resampled P-value, or until both the resampled stan-
dard deviation and the mean P- values decreased to 1.0E-
15. Gene ontology analysis was performed with DAVID
web tool [40].

Sequence similarity analysis

To calculate the similarity function of the selected 32
eRNAs, a multiple sequence alignment was performed
with Clustal (gap open 1, gap extend 5) as the first step.
The resulting alignment was read sequence-wise. At the
second step, for each sequence the nucleotide span was
separated into 100 bins. For every base pair in every bin
(covering a region of several base pairs in a given
sequence), the fraction of sequences (out of 32) aligned
to it was found. Mean values of the fraction of the aligned
sequences were calculated for every bin. At the third step,
the bins belonging to different sequences were stacked
and for every bin the mean value was calculated again.
The resulting function was considered as a sequence
identity function defined on a given sequence set.

RNA secondary structure analysis

RNA sequences spanning 100 nucleotides that include
46 nt upstream and 46 nt downstream of the particular
8-nt-long motif were selected for the secondary struc-
ture analysis. The secondary structures were predicted
using the program RNAfold from Vienna package v.1.8
[41] with parameters -p and -d2. Among the predicted
centroid and MFE predictions, predominant (most fre-
quently occurring) structures were identified by visual
inspection.

Additional material

Additional file 1: Figure S1. Statistical characteristics of eRNA motifs.
The number of sequences in the ECER partitions.

Additional file 2: Table S1. Motifs enriched in eRNAs.

Additional file 3: Figure S2. Secondary structures for sequence region 0
to 0.3 of full length for the selected 32 eRNAs (see Fig. 7).

Additional file 4: Figure S3. Secondary structures for sequence region
0.3 to 0.7 of full length for the selected 32 eRNAs (see Fig. 7).

Additional file 5: Figure S4. Secondary structures for sequence region
0.7 to 1.0 of full length for the selected 32 eRNAs (see Fig. 7).
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