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Abstract

Background: Microalgae have the potential to deliver biofuels without the associated competition for land
resources. In order to realise the rates and titres necessary for commercial production, however, system-level
metabolic engineering will be required. Genome scale metabolic reconstructions have revolutionized microbial
metabolic engineering and are used routinely for in silico analysis and design. While genome scale metabolic
reconstructions have been developed for many prokaryotes and model eukaryotes, the application to less well
characterized eukaryotes such as algae is challenging not at least due to a lack of compartmentalization data.

Results: We have developed a genome-scale metabolic network model (named AlgaGEM) covering the
metabolism for a compartmentalized algae cell based on the Chlamydomonas reinhardtii genome. AlgaGEM is a
comprehensive literature-based genome scale metabolic reconstruction that accounts for the functions of 866
unique ORFs, 1862 metabolites, 2249 gene-enzyme-reaction-association entries, and 1725 unique reactions. The
reconstruction was compartmentalized into the cytoplasm, mitochondrion, plastid and microbody using
available data for algae complemented with compartmentalisation data for Arabidopsis thaliana. AlgaGEM
describes a functional primary metabolism of Chlamydomonas and significantly predicts distinct algal behaviours
such as the catabolism or secretion rather than recycling of phosphoglycolate in photorespiration. AlgaGEM was
validated through the simulation of growth and algae metabolic functions inferred from literature. Using
efficient resource utilisation as the optimality criterion, AlgaGEM predicted observed metabolic effects under
autotrophic, heterotrophic and mixotrophic conditions. AlgaGEM predicts increased hydrogen production when
cyclic electron flow is disrupted as seen in a high producing mutant derived from mutational studies. The
model also predicted the physiological pathway for H2 production and identified new targets to further improve
H2 yield.

Conclusions: AlgaGEM is a viable and comprehensive framework for in silico functional analysis and can be
used to derive new, non-trivial hypotheses for exploring this metabolically versatile organism. Flux balance
analysis can be used to identify bottlenecks and new targets to metabolically engineer microalgae for
production of biofuels.
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Background
Microalgae are receiving increased attention as the
search for sustainable and profitable biofuel feedstocks
progresses. Algae-derived hydrogen, methane, triacylgly-
cerols, and ethanol could all serve as potential biofuels
[1-3], but many challenges remain to be addressed [4,5].
In order to realise the rates and titres necessary for
commercial production, system-level metabolic engi-
neering will be required [6].
In modern, system-level microbial metabolic engineer-

ing, genome scale metabolic reconstructions (GEMs) are
used to integrate and analyse large ‘omics datasets as
well as to evaluate designs in silico. A GEM maps anno-
tated metabolic genes and proteins to reactions based
on the current best understanding of a given organism.
A growing number of metabolic engineering studies
have demonstrated the use of well-curated GEMs to
generate strain designs that are neither intuitive nor
obvious [7-12].
Currently there is no genome scale reconstruction

available for algae. The first attempt to reconstruct a
large metabolic reconstruction of algae (based on Chla-
mydomonas reinhardtii) featured 484 reactions and 458
metabolites located in the chloroplast, cytosol and mito-
chondria [13] . An independent model featured 259
reactions and 267 metabolites localized to the cytosol,
mitochondria, chloroplast, glyoxysome, and flagellum
[14]. Despite the importance of these models, curation
of cellular compartmentalization and genomic informa-
tion was limited to central metabolism. Furthermore, in
their current format, such models do not allow for the
integration of other omics data (proteome, transcrip-
tome and metabolome) for a system-level assessment of
C. reinhardtii. For this, a full GEM is required.
GEMs have been developed for several model eukar-

yotes: yeast [15], mouse [16], human [17] and Arabidop-
sis [18]. For algae and other less extensively studied
eukaryotes, a major challenge is the scarcity of data
regarding compartmentalisation. An approach to over-
come this shortfall in information is to use the compart-
mentalisation data for related organisms (here
Arabidopsis), where no biochemical data for algae exists.
We recently used this approach for the metabolic recon-
struction of GEMs for the C4 grasses, maize, sorghum
and sugarcane, and the resultant model was able to pre-
dict differential protein expression between mesophyll
and bundle sheath, a unique C4 phenomenon [19]. The
metabolism of single-cellular C. reinhardtii, however,
has several features distinct from plants, including the
presence of fermentative pathways, an inability to utilize
sugars and a distinct mechanism for photorespiration.
In this paper, we develop the first compartmentalized,

genome-scale model of algae metabolism (named Alga-
GEM) based on the C. reinhardtii genome and a

comprehensive evaluation of biochemical evidence
found in literature complemented with missing com-
partmentalisation data derived from the GEM for Arabi-
dopsis, AraGEM [18]. AlgaGEM captures the unique
algae phenotypes, identifies pathways known to be
important during anaerobic growth and accurately pre-
dicts the effect of a known mutation on hydrogen pro-
duction. The success highlights the potential of using
chimeric models to access the immensely powerful tools
available for analysing GEMs, when working with bio-
chemically less characterized eukaryotes.

Methods
Genome-scale metabolic reconstruction and functional
annotation
The genome-scale reconstruction process was adapted
from the method applied to the GEM of Mus musculus
[20], Arabidopsis (AraGEM) [18], maize sorghum and
sugarcane (C4GEM)[19] (Figure 1). The core of the
algae genome-scale model (AlgaGEM ver 1.0) was
reconstructed from the C. reinhardtii gene and reaction
database publicly available from Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Release 54.1, May 1,
2010) [21]. The reconstruction retained all reaction
attributes from KEGG, including unique reactions, com-
pound IDs and reaction reversibilities. In a few cases,
KEGG uses multiple labels to describe the same com-
pound, e.g., the use of non-specific and specific refer-
ences to sugar stereoisomers (e.g., D-Glucose versus a-
D-Glucose). Each such multiplicity was resolved as
described previously [18,20]. Another KEGG related
issue addressed is the presence of unbalanced reactions,
typically for (i) the synthesis or breakdown of polymers
(e.g., DNA + nucleotide = DNA), (ii) use of generic
groups “R” and (iii) the consumption or production of
H2O, H+, and redox equivalents (e.g., NAD(P)H). In
AlgaGEM, polymers are described in the form of their
corresponding monomers and the use of the generic
atom “R” was avoided.
In order to capture metabolism accurately, AlgaGEM

was compartmentalised into cytosol, mitochondrion, plas-
tid and microbody (functionally equivalent to peroxisomes
in plants). The available metabolic pathways databases like
KEGG [22] and BioCyc [23] do not capture the compart-
mentalization of metabolism in eukaryotes and we first
attempted to use a protein subcellular localization predic-
tive tool (WPsort, http://wolfpsort.org/)[24]. The predic-
tions, however, were ambiguous or inconsistent across the
organelles and did not produce a biochemically functional
network. Instead, compartmentalisation was performed
based on (a) experimental evidence whenever available
from the literature [25-36] (see additional file 1; Table S1)
and available on line resources (Table 1) or (b) localisation
of enzyme homologs in Arabidopsis (AraGEM) [18].
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Enzymes with no experimental data and no homolog
found in Arabidopsis (e.g., fermentative reactions) were
assigned to the cytosol per default. Transport reactions
between cytoplasm and extracellular space and between
cytoplasm and organelles are poorly annotated and were
added manually based on transport reactions reported in
the literature.

AlgaGEM was compiled and curated in Excel (Microsoft
Corporation) for ease of annotation and commenting
(Figure 1). From this gene centric database, a 2D reac-
tion centric SBML (System Biology Markup Language,
http://www.sbml.org) representation was generated
using an in house Java (Oracle Corporation) application.
As there is currently no specific element in SBML

Figure 1 The process for genome-scale model reconstruction. (1) Metabolic properties including associations between genes, enzymes and
reactions were extracted from the genomic metabolic databases, stored and curated in an Excel spread-sheet; (2) a 2D reaction centric SBML
representation was generated using an in house java application. (3) The stoichiometric matrix, as well as reversibility constraints and the
objective function were extracted from the SBML; (4) the relevant linear programming problems were solved using the COBRA toolbox [37]. (5)
The model was refined in an iterative process, accessing the best available information in the literature and online data sources to achieve
metabolic functionality.

Table 1 Online resources for the reconstruction of the metabolic network of Chlamydomonas reinhardtii

Database Link

Genome Database

DOE Joint Genome Institute (JGI); Chlamydomonas reinhardtii v4.0 http://genome.jgi-psf.org/Chlre4/Chlre4.home.html

An Online Informatics Resource for Chlamydomonas (Chlamy Center) http://www.chlamy.org/chlamydb.html

Pathway Databases

Kyoto Encyclopedia of Genes and Genomes (KEGG) http://www.genome.jp/kegg/pathway.html

ChlamyCyc http://chlamyto.mpimp-golm.mpg.de/chlamycyc/index.jsp

Metacyc http://metacyc.org/

ExPASy Biochemical Pathways http://www.expasy.ch/cgi-bin/search-biochem-index

Enzymes Databases

ExPASy Enzyme Database http://ca.expasy.org/enzyme/

http://www.brenda-enzymes.info/

Enzyme/Protein Localization and others Databases*

AraPerox (Arabidopsis Protein from Plant Peroxisomes) http://www.araperox.uni-goettingen.de/

SUBA (Arabidopsis subcellular database) http://www.plantenergy.uwa.edu.au/applications/suba2/index.php

PPDB (Plant proteome database) http://ppdb.tc.cornell.edu/default.aspx

UniproKB/SwissProt http://ca.expasy.org/sprot/relnotes/relstat.html

Transport DB http://www.membranetransport.org/

*Manual curation based on literature and homology sequence.

Gomes de Oliveira Dal’Molin et al. BMC Genomics 2011, 12(Suppl 4):S5
http://www.biomedcentral.com/1471-2164/12/S4/S5

Page 3 of 10

http://www.sbml.org
http://genome.jgi-psf.org/Chlre4/Chlre4.home.html
http://www.chlamy.org/chlamydb.html
http://www.genome.jp/kegg/pathway.html
http://chlamyto.mpimp-golm.mpg.de/chlamycyc/index.jsp
http://metacyc.org/
http://www.expasy.ch/cgi-bin/search-biochem-index
http://ca.expasy.org/enzyme/
http://www.brenda-enzymes.info/
http://www.araperox.uni-goettingen.de/
http://www.plantenergy.uwa.edu.au/applications/suba2/index.php
http://ppdb.tc.cornell.edu/default.aspx
http://ca.expasy.org/sprot/relnotes/relstat.html
http://www.membranetransport.org/


allocated to store the gene–protein–reaction associa-
tions (e.g. splice-variants, isozymes, protein complexes),
these were added as notes to the reaction elements.
Constraint-based reconstruction and analysis was per-
formed using COBRA toolbox (http://opencobra.source-
forge.net/) [37]; a set of MATLAB scripts for constraint-
based modelling run from within the MATLAB environ-
ment (Version 7.3, The MathWorks, Inc.). Simulated
flux distributions were visualized on a metabolic flux
map (for the visualization of overall changes in the cen-
tral metabolism of a compartmentalized algal cell)
drawn in Excel.
AlgaGEM was evaluated for its ability to produce

major biomass components and cofactors (Table 2)
under autotrophic (photons as energy source, CO2 as
carbon source and nitrate or ammonia as nitrogen
source), heterotrophic (acetate as carbon source, nitrate
and/or ammonia and/or amino acids as nitrogen
sources) and mixotrophic (photons as energy source,
CO2 and acetate as carbon sources and nitrate or
ammonia as nitrogen source) conditions. For each bio-
mass component in Table 2 and each growth condition,
the following linear programming problem was formu-
lated and solved

maximise

subject to

vi
Sv 0

v v vmax

=
≤ ≤min

where vi is the corresponding biomass drain reaction.
Where the maximum production rate of a biomass com-
ponent was zero, gap analysis was performed. Some gaps
were readily filled based on inspection of the corre-
sponding pathways in KEGG, ChlamyCyc [38] and other
available databases (Table 1). Others, such as inconsis-
tent irreversibility constraints, stoichiometry errors,
compound names, compartmentalization errors or miss-
ing transporters, required sequential tracing through the
model to identify breakpoints and careful evaluation of
the possible causes.
Once network gaps were closed, the individual bio-

mass accumulation terms were combined into an overall
biomass synthesis equation, with the appropriate

coefficients assigned to each precursor to define the
composition of biomass. The overall biomass synthesis
equation depends on growth conditions and was
designed to represent autotrophic, heterotrophic and
mixotrophic conditions based on literature data [13].
Trace elements were not included in the biomass equa-
tion, since their contribution to overall flux is trivial.

Model simulations
After curation, AlgaGEM was used as a framework to
test cell optimality and maximum bioproduct perfor-
mance under different conditions. Constraints were
applied and flux balance analysis was performed in
MATLAB using COBRA Toolbox [37]. The COBRA
files can be downloaded from the additional files (see
additional file 2; AlgaGEM-COBRA). The folders
include the SBML file and the respective constraints to
represent each metabolic scenario. The minimum set of
constraints imposed to represent the different growth
conditions are shown in Table 3.
Minimize energy and carbon source
The final model was evaluated through the estimation of
the flux distributions in three growth conditions: auto-
trophic, heterotrophic and mixotrophic. The flux distri-
butions were determined using linear programming

minimize

subject to

photon or acetate utilization

Sv 0

v

=

biomasss =
≤ ≤

b

v v vmaxmin

i.e., the distributions that minimize the use of the key
energy substrate (photons or acetate), while achieving a
specified growth rate.
Maximize bio-product: H2

We also used the model to test the network capacity to
maximize H2 under different growth conditions.

maximize

subject to

H   synthesis2

Sv 0

v b

v v vmax

=
=

≤ ≤
biomass

min

Table 2 List of biomass components

Carbohydrates and
sugars

Starch, sucrose, fructose, glucose, maltose

Protein (amino acids) Alanine, arginine, aspartate, asparagine, cystein, lysine, leucine, isoleucine, glutamate, glutamine, histidine, methionine,
phenylalanine, proline, serine, tyrosine, tryptophan, valine

Nucleotides ATP, GTP, CTP, UTP, dATP, dGTP, dCTP, dTTP

Fatty acids C16:0 (Palmitic acid)

Vitamins and
cofactors

Biotin, coenzyme A, riboflavin, folate, chlorophyll, nicotinamide, thiamine, ubiquinone,
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i.e., the flux distributions that maximize H2 synthesis,
while achieving a specified growth rate under auto-
trophic, mixotrophic or heterotrophic condition.

Results and discussion
Characteristics of the reconstructed network
Genome-scale metabolic models bridge the gap between
genome-derived biochemical information and metabolic
phenotypes in a structured manner. The genome-scale
reconstruction (AlgaGEM, Ver 1.0) contains 2249 gene-
reaction association entries, 1725 unique reactions and
1869 metabolites distributed across 4 cellular compart-
ments (Table 4). The active scope of the AlgaGEM
includes glycolysis (plastidic and cytosolic), the pentose
phosphate pathway (PPP) (plastidic and cytosolic), tri-
carboxylic acid cycle (TCA cycle), light and dark reac-
tions (Calvin cycle), fatty acid synthesis, beta-oxidation,
glyoxylate cycle, photorespiratory cycle and fermentative
reactions. The current version of AlgaGEM has not
been tested for its coverage of secondary metabolism
and some alternative fermentative pathways that are not
well understood or described at the subcellular level for
algae.
Forty two (42) biomass drain equations describe the

accumulation of carbohydrates, sugars, amino acids and
fatty acids, representing the major biomass drains for an

algal cell (Table 2). At present, fatty acid biosynthesis is
limited to palmitic acid biosynthesis in chloroplasts. The
biosynthetic pathways of a limited number of vitamins
and co-factors have been curated to date. Twenty-four
(24) intercellular exchange reactions (cytoplasm–extra-
cellular) have been included to describe the uptake of
light (absorbed photons), and the uptake/secretion of
inorganic compounds (CO2, H2O, HCO3-; O2, NO3,
NH3, H2S, SO4

2–, PO4
3–), translocation of fermentative

products (like acetate, glycolate, lactate and ethanol), H2

and amino acids (glutamine, glutamate, aspartate, ala-
nine and serine). Together with biomass drains (39), the
intercellular exchangers define the broad physiological
domain of the model, that is, the curated aspects of C.
reinhardtii primary metabolism captured by AlgaGEM.
Inter-organelle transporters were added based on the
biochemistry information available for algae (see addi-
tional file 1; Table S1). When not available, we used
information that supports inter-organelle transporters
for Arabidopsis (E.g.; Transport DB, Table 1). A total of
79 inter-organelle transporters were introduced in the
model to achieve metabolic functionality. Apart from
nomenclature and cellular compartmentalization issues,
only three additional reactions without gene associations
(non-enzymatic steps) were added during model cura-
tion before the model was able to simulate growth in
silico.

AlgaGEM predicts phosphoglycolate catabolism in algae
The reconstruction of metabolic models for eukaryotes
is challenging due to the scarcity of biochemical infor-
mation at the subcellular level required for cellular com-
partmentalisation. AlgaGEM covers our current
understanding of metabolic functionality and connectiv-
ity through different organelles for C. reinhardtii. It
does rely, however, on AraGEM [18] for the compart-
mentalisation of reactions for which no data exist for C.
reinhardtii. Given that there is a substantial, natural
overlap between AlgaGEM and AraGEM with approxi-
mately 85% of all reactions present in both models, it is
important to establish that AlgaGEM indeed predicts
algae behaviour rather than slightly modified Arabidop-
sis behaviour.
Heterotrophic growth in AlgaGEM differs from Ara-

GEM in that the former can metabolize acetate and gly-
colate, but lacks glucose and sucrose transporters and is
unable to utilize these carbon sources from the media
[33]. Moreover, AlgaGEM has fermentative reactions
and produces a range of fermentative products (like H2,
glycolate, acetate, formate, lactate, etc). These differ-
ences are the direct result of added reactions and
transporters.
A more interesting difference is the way algae and

plants handle the RuBisCO oxygenation reaction.

Table 3 Minimal set of constraints imposed to represent
different growth condition

Inputs, outputs and
constraints

Autotrophic Heterotrophic Mixotrophic

C source: CO2 uptake + - +

C source: Acetate uptake - + +

Photons uptake (free flux) + - +

Optimization 1: minimize
uptake of

Photons Acetate Photons

Optimization 2: maximize
product

H2 H2 H2

Biomass rate (fixed) * 0.059 h-1 0.035 h-1 0.066 h-1

*Biomass rate and biomass equation was used for each growth regime, based
on measurements found in the literature [13].

Table 4 Characteristics of the reconstructed genome-
scale model (AlgaGEM)

Metabolic properties Total

Gene-reaction-association entries 2249

Unique metabolic reactions 1725

Unique ORFs 866

Metabolites 1862

Cellular compartments 4

Biomass drains 39

Intercellular transporters 24

Inter-organelle transporters 79

Gaps (non-enzymatic reactions) 3
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Assuming that plants have evolved to optimise photon
efficiency, AraGEM accurately predicts that phosphogly-
colyate is recycled using the classical photorespiration
cycle involving reactions in plastids, peroxisomes and
mitochondria [18]. Moreover, it accurately predicts that
photon requirements increase by 30-40%, if the ratio of
oxygenation-to-carboxylation is 1:4.
Photorespiration of C. reinhardtii deviates from the

classical plant photorespiration in that instead of oxidiz-
ing glycolate to glyoxylate via glycolate oxidase in per-
oxisomes, C. Reinhardtii and many other microalgae
utilize glycolate in mitochondria [25,39,40]. In addition,
because molecular O2 is not an electron acceptor for
glycolate dehydrogenase, glycolate oxidation catalysed by
this enzyme does not produce H2O2, so catalase should
not be required for the photorespiration cycle in algae.
Instead, glycolate dehydrogenase is expected to contri-
bute electrons to the mitochondrial respiratory electron
transport through reduction of ubiquinone pool [40].
AlgaGEM accurately predicts that algae will catabolise
rather than recycle phosphoglycolate, if sufficient oxygen
is available and energy is needed, or alternatively secrete
glycolate to the environment, as has also been observed
[41,42].

AlgaGEM predicts the physiological pathways used for H2

production in Chlamydomonas under dark condition
Although substantial insights regarding algal H2 produc-
tion exist [1,43], critical aspects regarding the hydroge-
nase activity remain unresolved and new advances are
required to define more clearly the metabolic and enzy-
matic processes influencing algal H2 production. Alga-
GEM was used to capture contrasts in the metabolism
when H2 is maximized during heterotrophic conditions
(dark). Firstly, flux distribution was calculated by linear
programming assuming carbon efficiency and minimum
acetate usage to maintain cell growth under dark condi-
tion (see optimality criterion in methods). Secondly, the
calculated optimum uptake rate of acetate to maintain
biomass growth under heterotrophic conditions was
fixed and H2 production was maximized to find the
main metabolic changes. Ultimately we maximized H2

production under different uptake rates of acetate. Fig-
ure 2 highlights in green the increased fluxes (more
than 20% increased) through different cell compart-
ments when H2 production is maximized. During dark
periods and using acetate as the sole carbon source,
acetate is assimilated and storage compounds like starch
are produced through gluconeogenic conversion [44].
Fluxes are increased through the glyoxylate cycle in the
microbody and mitochondrial reactions, where acetate is
mainly metabolised (showed by red arrows). It is
believed that acetate is primarily converted to acetyl
CoA via the glyoxylate cycle [44]. The glyoxylate cycle

can generate one molecule of succinate as a net product
from two molecules of acetate. As shown in Figure 2,
the model predicts that acetate assimilation proceeds
along the same pathway as gluconeogenic fatty acid con-
version in oil seed. Succinate produced in the glyoxylate
cycle is transported from the microbody and converted
to malate and oxaloacetate in the mitochondrion. Oxa-
loacetate is decarboxilated to phosphoenolpyruvate in
the cytosol, and phosphoenolpyruvate is converted into
sugars phosphates. Our simulations show increased flux
through phosphoenolpyruvate transported to chloro-
plast, and subsequent conversion into sugars and starch.
The blue arrows highlight flux increased through
enzymes involved in H2 synthesis. These steps refers to
chloroplastic glyceraldehyde 3-phosphate dehydrogenase
which supply reducing power during glycolysis and sub-
sequent oxidation of pyruvate in the chloroplast cata-
lysed by pyruvate ferredoxin oxidoreductase (PFR1)
yielding acetyl-CoA, reduced ferredoxin and CO2 and
mediates the observed production of H2 in the dark
[34,45-47] . These steps are also summarized in Figure 3
where red reactions represent catabolism of organic sub-
strates (reducing power supply) and green reactions
represent dark fermentation. Both of C. reinhardtii’s
[Fe]-hydrogenases, HydA1 and HydA2, catalyze H2 pro-
duction using electrons from ferredoxin. In several spe-
cies of anaerobic microbes the decarboxylation of
pyruvate to acetyl-coA by PFR1 is linked to hydrogen
production via the reduction of ferredoxin [34,45-47].
The simulated flux distribution highlights the physiolo-
gical pathways used for H2 production in Chlamydomo-
nas when growing under dark conditions, as reported in
the literature [44][34,45-47]. The identification in C.
reinhardtii of a putative PFR1 gene, evidence of its
coexpression with HydA1 and HydA2 [46][44] and our
flux analysis suggests fermentative carbon metabolism
and dark, anaerobic H2 production may be linked via
ferredoxin. This could explain the source of electrons in
the dark, fermentative H2 production, a discovery with
the potential to improve dark H2 conversion efficiency.
The model suggests that over expression of PFR1 gene
should improve H2 yield under dark conditions by sup-
plying the electron donor to hydrogenase. Further
experimental investigation is required to validate this
hypothesis.

AlgaGEM predicts increased hydrogen production when
cyclic electron flow is disrupted under mixotrophic
conditions
C. Reinhardtii produces hydrogen under heterotrophic
and mixotrophic conditions (Figure 3). The rates are
generally low and metabolic engineering strategies are
being explored to improve production rates. Mutational
studies identified a high producing, state transition
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mutant, Stm6, which is blocked in state 1 photosynthesis
and hence has greatly inhibited cyclic electron flow
around photosystem I [48].
We used AlgaGEM to simulate the metabolic

changes when H2 is produced under mixotrophic
growth. We compared flux distributions for two
optimality criteria: maximization of H2 (hypothetical
H2 producer) and minimum energy resource usage to
maintain normal growth rate (wild type). Flux simula-
tions are provided in detail (see additional file 3; Table
S2) and illustrated in Figure 4. Key changes are sum-
marised in Table 5. Under mixotrophic conditions and
constant illumination (65μE/m2/s), the model predicted
about an 8-fold increase in H2 production, if cyclic
electron flow is inhibited. This is in line with observa-
tions for the stm6 mutant, which produced 5-13 fold
more H2 compared to the wild type [48]. Cyclic elec-
tron flow is normally used to balance requirements for
redox with requirements for ATP. When cyclic elec-
tron flow is inhibited, H2 production becomes a release
valve for excess redox.

Also in line with observations for the Stm6 mutant, the
model predicted increased linear electron flow and
reduced mitochondrial TCA cycle activity (Table 5).
Furthermore, the model predictions agreed with obser-
vations made in other studies regarding the correlation
of hydrogen production with expression of various
genes, including increased activity of reactions directly
involved in hydrogen production (Fe-Hydrogenases, Fer-
redoxin-NADP+ reductase, glyceraldehyde -3-phosphate
dehydrogenase, and pyruvate ferredoxin oxireductase)
and a shift carbon assimilation through Calvin cycle/
CO2 assimilation to acetate assimilation (Table 5). The
model also suggested a number of possible further tar-
gets for investigation, including gluconeogenesis, pen-
tose phosphate pathway, beta oxidation, glyoxylate cycle
and GS/GOGAT.

Conclusions
AlgaGEM is a curated, compartmentalized genome scale
model of algal cell primary metabolism. Continued cura-
tion efforts will focus on closing gaps, especially in the

Figure 2 Increased fluxes through the physiological pathways used for H2 production in Chlamydomonas under dark condition.
Acetate is assimilated (red arrows) and starch is produced through gluconeogenic conversion. Green arrows highlight increased fluxes through
acetate metabolism, starch synthesis/degradation and the physiological pathways for H2 production in Chlamydomonas. The blue arrows are the
increased fluxes through enzymes involved in H2 synthesis. Numbers represent the main enzymatic and transport reactions: (1) acetate
assimilation; (2,4) acetate transporter; (3,5) acetyl-Coa synthetase; (6,7) succinate transporter; (8) phosphoenolpyruvate carboxykinase; (9)
phosphoglucomutase (10) 1,4-alpha-glucan branching enzyme; (11) glyceraldehyde 3-phosphate dehydrogenase; (12) pyruvate kinase; (13)
pyruvate ferredoxin oxidoreductase (PFR1); (14) ferredoxin hydrogenase. GLU: glucose; PEP: Phosphoenolpyruvate; G6P: glucose 6-phosphate;
SUCC: Succinatate; MAL: malate; CIT: citrate; OAA: oxaloacetate; FDX red: reduced ferredoxin; FDX ox: oxidized ferredoxin.
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Figure 3 Simplified illustration of the physiological pathways used for H2 production in Chlamydomonas (Adapted from The
Chlamydomonas Sourcebook [44]). The two photoproduction pathways involving PSII and PSI under the light period are showed in black.
Electrons excited to higher energy (low potential) by PSI are able to reduce ferredoxin (FDX), the physiological electron donor to hydrogenase.
Both the PSII-dependent and NPQR-dependent (red) pathways require reduction of the PQ pool and PSI activity. In the case of the PSII-
independent pathway (reactions in red), reducing power formed by the catabolism of organic substrates is used for reduction of the PQ pool.
During dark fermentation the oxidation of pyruvate catalysed by PFR (green reactions) is used to reduce ferredoxin and putatively mediates the
observed production of H2 in the dark. White reactions show the parallel main fermentative products from pyruvate, competing with H2. Dashed
arrows show linear and cyclic electron flow.

Figure 4 Overall metabolic changes when H2 is maximized under mixotrophic condition. Comparison of fluxes between H2 producer and
no H2 producer type. Solid lines represent fluxes, dashed lines represent transporters and vertices represent the metabolites. Green and red lines
highlight fluxes that have increased and decreased, respectively when H2 is produced. Gray lines represent fluxes that have not changed
significantly.
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secondary metabolism and alternative fermentative path-
ways (not well understood or described at organelle
level for algae) and the resolution of gene product tar-
geting where this is yet to be established. In its current
version, the model covers the primary metabolism
including some of the fermentative pathways. Impor-
tantly, while the model shares 85% of the reactions with
AraGEM and while AraGEM was used to compartmen-
talise many genes, the model predicts distinct algal
behaviours such as the catabolism or secretion rather
than recycling of phosphoglycolate in photorespiration.
The use of AlgaGEM for in silico flux predictions

illustrates the potential of using genome scale models to
explore complex, compartmentalized networks and
develop non-trivial hypotheses. The metabolic changes
highlighted by AlgaGEM to increase H2 yield show
agreement with evidence found in the literature and the
model predicted the magnitude of change observed in a
stage transition mutant, Stm6. Further experimental
investigations are also suggested to test new targets.
Such results support the potential use of this framework
for algae metabolic engineering.

Additional material

Additional file 1: Supplemental material file. Table S1. List of inter-
organelle transporters and enzymes’ localization based on biochemistry
information.

Additional file 2: Supplemental material file. AlgaGEM-COBRA tool
box. The folders include AraGEM (sbml format) and constraints to run
flux balance analysis for different metabolic scenarios using COBRA tool
box.

Additional file 3: Supplemental material file. Table S2. Metabolic flux
simulations.
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