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Abstract

Background: Dynamic Bayesian Network (DBN) is an approach widely used for reconstruction of gene regulatory
networks from time-series microarray data. Its performance in network reconstruction depends on a structure
learning algorithm. REVEAL (REVerse Engineering ALgorithm) is one of the algorithms implemented for learning
DBN structure and used to reconstruct gene regulatory networks (GRN). However, the two-stage temporal Bayes
network (2TBN) structure of DBN that specifies correlation between time slices cannot be obtained by score
metrics used in REVEAL.

Methods: In this paper, we study a more sophisticated score function for DBN first proposed by Nir Friedman for
stationary DBNs structure learning of both initial and transition networks but has not yet been used for
reconstruction of GRNs. We implemented Friedman’s Bayesian Information Criterion (BIC) score function, modified
K2 algorithm to learn Dynamic Bayesian Network structure with the score function and tested the performance of
the algorithm for GRN reconstruction with synthetic time series gene expression data generated by
GeneNetWeaver and real yeast benchmark experiment data.

Results: We implemented an algorithm for DBN structure learning with Friedman’s score function, tested it on
reconstruction of both synthetic networks and real yeast networks and compared it with REVEAL in the absence or
presence of preprocessed network generated by Zou&Conzen’s algorithm. By introducing a stationary correlation
between two consecutive time slices, Friedman’s score function showed a higher precision and recall than the
naive REVEAL algorithm.

Conclusions: Friedman’s score metrics for DBN can be used to reconstruct transition networks and has a great
potential to improve the accuracy of gene regulatory network structure prediction with time series gene
expression datasets.

Background
High-content technologies such as DNA microarrays
can provide a system-scale overview of how genes inter-
act with each other in a network context. This network
is called a gene regulatory network (GRN) and can be
defined as a mixed graph over a set of nodes (corre-
sponding to genes or gene activities) with directed or
undirected edges (representing causal interactions or
associations between gene activities) [1]. Various

mathematical methods and computational approaches
have been proposed to reconstruct GRNs, including
Boolean networks [2], information theory [3,4], differen-
tial equations [5] and Bayesian networks [6-8]. GRN
reconstruction faces huge intrinsic challenges on both
experimental and theoretical fronts, because the inputs
and outputs of the molecular processes are unclear and
the underlying principles are unknown or too complex.
In the previous work, we compared two important com-
putational approaches, Dynamic Bayesian networks
(DBNs) and Probabilistic Boolean networks for recon-
structing GRNs using a time-series dataset from the
Drosophila Interaction Database, and found that DBN
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outperforms PBN [9]. In this paper, we emphasize the
DBN approach.
Dynamic Bayesian networks (DBNs) are belief net-

works that represent the stochastic process of a set of
random variables over time. The hidden Markov model
(HMM) and the Kalman filter can be considered as the
simplest DBNs. However, Kalman filters can only handle
unimodal posterior distributions and linear models,
whereas parameterization of HMM grows exponentially
with the number of state variables [10]. Several algo-
rithms have been developed to learn structure for belief
networks from both complete [6,10-12] (without missing
values) and incomplete [13,14] (with missing values)
datasets. Structure Expectation-Maximization (SEM) has
been developed for learning Probabilistic network struc-
ture from data with hidden variables and missing values
[13]. A structure learning algorithm has also been devel-
oped for high-order and non-stationary dynamic prob-
abilistic models [15].
A commonly used structure learning algorithm is

based on REVEAL (REVerse Engineering ALgorithm)
[6,12] which learns the optimal set of parents for each
node of a network independently, based on an informa-
tion theoretic concept of mutual information analysis.
However, the two-stage temporal Bayes network (2TBN)
cannot be well recovered by application of REVEAL. In
this work, we implemented a more sophisticated algo-
rithm, proposed by Friedman [10], to learn the structure
of both initial networks and transition networks, which
specified a stationary correlation between two consecu-
tive time periods. Compared with Murphy’s algorithm, it
improves performance in two ways. First, in score func-
tion, it considers time lags that may happen in biological
processes. Second, it fetches the relationship which gains
the maximum score function in the same time period or
in the two consecutive time periods. Thus, Friedman’s
DBN structure learning algorithm was used in our work
and its performance in terms of reconstruction accuracy
was also evaluated using synthetic gene expression data-
sets and a real yeast time-series benchmark dataset.
In the following sections, we first provide an introduc-

tion to DBN and existing DBN algorithms for recon-
struction of GRNs. We then present an implementation
of Friedman’s DBN algorithm. Finally, we apply the
algorithms to synthetic datasets and a real yeast bench-
mark dataset, and compare its performance to the com-
monly used Murphy’s DBN algorithm [12,16] based on
REVEAL.

Methods
Dynamic Bayesian networks
A DBN is a probabilistic network defined as a pair (B0,
B®) representing the joint probability distribution over
all possible time series of variables X={X1,X2,...,Xn}, where

Xi represents the discretized-valued random variables in
the network. Xi is composed of an initial state of Bayesian
network B0=(G0,Θ0)and a transition Bayesian network
B®= (G®,Θ®). In time slice 0, the parents of Xi[0] are
specified in the prior network B0, the parents of Xi[t+1]

are those specified in time slice t and t+1 in B®. The
structure of a two-stage temporal Bayes network (2TBN)
is showed in Figure 1. DBN theory is generally based on
two assumptions. First, the process is Markovian in X, i.
e. P(X[t+1]|X[0],...,X[t])=P(X[t+1]|X[t]). The other assump-
tion is that the process is stationary, i.e. the transition
probability P(X[t+1]|X[t]) is independent of t .

Bayesian information criterion for DBN
Given a Bayesian network with structure G, parameters
and the observations D, we define a structure prior that
implies a prior probability on different graph structures,
and a parameter prior, that puts a probability on differ-
ent choice of parameters once the graph is given. By
Bayes rule,

P(G|D) =
P(D|G)P(G)

P(D)

where the denominator is simply a normalized factor.
Thus, we define the Bayesian score as:

scoreB(G : D) = logP(D|G) + logP(G)

where

P(D|G) =
∫

θG

P(D|θG,G)P(θG|G)dθG

Figure 1 The basic building block of DBN.
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where P(D|θG,G) is the marginal likelihood of the data
given the network 〈G,θG〉 and P(θG|G) is our pior.
Under Dirichlet distribution prior for all parameters in

the network, when M®∞, we have

logP(D|G) = l(θG : D) − logM
2

Dim[G] +O (1)

where [G] is the model dimension, or the number of
independent parameters in G.
This approximation is called the Bayesian information

criterion (BIC). N. Friedman, et al. deduce BIC for
Dynamic Bayesian Network in his work, which is briefly
described below.
It is assumed the dataset D is composed of Nseq com-

plete observations. The first such sequence has length
Ni and specifies values for the variables xl[0],...,xl[Nl],
which means in different time slice the number of
observations can be different. With such a dataset, we
can learn B0 from Nseq observations of initial slice, and
learn B® by N =

∑
l
Nl transactions of transition slices.

We use the following notations,

θ
(0)
i,j′i,k

′
i
= Pr(Xi[0] = k′

i|Pa(Xi[0]) = j′i)

θ→
i,j′i,k

′
i
= Pr(Xt[t] = k′

i|Pa(Xi[t]) = j′i)

N(0)
i,j′i,k

′
i
=

∑
l
I(Xi[0] = k′

i,Pa(Xi[0]) = j′i; x
l)

N→
i,j′i,k

′
i
=

∑
l

∑
t
I(Xi[t] = ki,Pa(Xi[t]) = j′i; x

l)

where I(·;xl) is an indicator function which equals 1 if
the corresponding event occurs in sequence xl, and 0
otherwise.
The likelihood function decomposes as:

Pr(D|G, θG) =
∏

i

∏
j′i

∏
k′
i

(θ (0)
i,j′ ,k′)

N(0)
i,j′ ,k′ ×

∏
i

∏
ji

∏
ki
(θ→

i,j,k)
N→

i,j′,k′

and the log-likelihood is given by

L(B : D) =
∑

i

∑
j′i

∑
k′
i

N(0)
i,j′ ,k′ log θ (0)

i,j′ ,k′ +
∑

i

∑
ji

∑
ki
N→

i,j′ ,k′ log θ→
i,j,k

Such decomposition implies that B0 is independent
from B®, so we can give BIC score as BIC(G:D) = BIC0

+BIC®
where,

BIC0 =
∑

i

∑
j′i

∑
k′
i

N(0)
i,j′i,k

′
i
log θ

(0)
i,j′i,k

′
i
− logNseq

2
#G0

BIC→ =
∑

i

∑
ji

∑
ki
N→

i,ji,k′
i
log θ→

i,ji,ki −
logN
2

#G→

Learning network structure
Under Friedman score metrics, the maximized score can
be exploited by any Bayesian structure learning

procedure, such as hill-climbing search procedures. In
this paper, we modify K2 algorithm, and adapt it to learn
structure for DBN, as described in Figure 2. K2 algorithm
was described by Gregory E. Cooper [11]. It begins by
making the assumption that a node has no parents, and
adds gradually with those that most increase the score of
the structure. Different from the K2 Bayesian structure
learning algorithm, an additional constrain must be

Figure 2 Modified K2 algorithm for use in Friedman’s
algorithm on structure learning for dynamic Bayesian network
(DBN).
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imposed which is that the transition network structure
must repeat between time slices over time. Furthermore,
we learn best structure of B0 independently of that of
B®. We find the maximum score function and add a cor-
relation between the factors in consecutive time slices or
the same time slice if the relationship increases the score
function. We stop adding parents to the node, when the
addition of no single parent can increase the score.

Existing approaches for comparison
For convenience of performance analysis in the next
section, we briefly describe Murphy and Zou’s previous
work here and present results in the next section. The
widely used DBN implementation developed by Murphy
and Mian (called Murphy’s DBN hereafter) is based on
REVEAL [12]. Given an unknown structure with full
observations, the algorithm learns the parent set for
each node independently. There are 2n such sets, which
can be arranged in a lattice for the permutation of fac-
tors. The problem is to find the highest score in the lat-
tice. The approach taken by REVEAL is started from the
bottom of the lattice, and evaluates the score at all
points in the successive level until a point is found with
a score of 1.0. Zou and Conzen [17] proposed a method
to generate a preprocessed network for potential regula-
tors by biological interpretation of time course microar-
ray data. It assumes that the gene with earlier initial up-
regulation is the potential regulator of those with later
initial up-regulation. This preprocessed network is used
to narrow down the search space for Murphy’s DBN
algorithm because it requires excessive time to find a
permutation for each node even when imposing a maxi-
mum number of parents for the nodes if the network
dimension is large.

Results and discussion
The Friedman’s algorithm described in the method sec-
tion was implemented based on Murphy’s BNT tool box
(Bayes Net Toolbox for Matlab). We tested four cases of
DBN algorithms on reconstruction of synthetic net-
works. The four methods are: (1) Zou’s preprocessed
networks consisting of potential regulators by biological
interpretation of time course microarray data (Zou&-
Conzen), (2) Murphy’s DBN, implemented in conjunc-
tion with the preprocessed networks (Kevin Murphy +
Zou&Conzen), (3) Friedman’s algorithm (Nir Friedman),
and (4) Friedman’s algorithm combined with the prepro-
cessed networks (Friedman + Zou&Conzen).
Precision (P) and recall (R) were used as the metrics

for performance comparison. Here, R is defined as Ce/
(Ce + Me) and P is defined as Ce/ (Ce + Fe), where Ce

denotes true positive edges that exist in both the true

network and the predicted network, Me false negative
edges that exist in the true network but not in the
inferred network, and Fe false positive edges that do not
exist in the true network but do exist in the predicted
network.

Synthetic data
The synthetic datasets and network were generated
using GeneNetWeaver from DREAM (Dialogue for
Reverse Engineering Assessments and Methods) projects
[18]. We used sub-networks of different sizes (i.e., 10,
20, 50 and 100 genes) with randomly picked factors
from a high-dimensional yeast GRN with 4441 nodes
and 12873 edges. A model consisting of ordinary and
stochastic differential equations and Gaussian noise
model was used to generate synthetic gene expression
data with a total of 21 time points and 10 replicates for
each time slice.
An example of the 10-gene transition network recon-

structed using Friedman’s algorithm is shown in Figure
3a. This network was converted to a GRN (Figure 3b)
by forming a relationship between two genes if the two
are related in time t and time t+1 as the DBN theory
suggests.
The second example is the GRNs with 50 genes as

shown in Figure 4 where the dashed lines indicate false
positive edges, and solid lines true positive edges. The
true network used to generate synthetic data in Gene-
NetWeave is given in Figure 4(a). The preprocessed net-
work includes a large number of false positive edges
(dashed lines), resulting in a lower accuracy. The GRN
reconstructed by Murphy& Zou, as given in Figure 4(c),
is a sparse network that has a lower recall, compared to
the true network.
The GRN reconstructed by the modified Friedman

method (Method 3) without a preprocessed network is a
dense network, as given in Figure 4(d). It is noted that
the two regulators (YOR383C and YAL051W) were suc-
cessfully reconstructed and they interact with 24 and 6
target genes, respectively. The GRN reconstructed by
the Friedman method has a much higher structure simi-
larity to the true network than Murphy & Zou (Method
2). In Method 4, the preprocessed network also used
Friedman method to reduce the search space. The
reconstructed GRN is also a sparse network with only
one regulator gene identified, as demonstrated in Figure
4(e). It is seen that Zou&Conzen’s algorithm can gener-
ate a preprocessed network to narrow down the search
space, which is meaningful. While it rules out around
86% of the edges from the complete network, it is also a
relatively loose rule to retain a large network for the
next level learning algorithm. However, when the
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network size becomes larger, the precision of the pre-
processed network (4.0% in the 50-node case and 2.4%
in the 100-node case) gradually drops to the random
guess precision (4.4% and 1.8%, respectively), as shown
in Figure 5.
A complete performance comparison of the four algo-

rithms in terms of precision and recall is given in Figure
5 and the corresponding data given in Table 1, which
shows that Friedman’s method gives higher precision
and recall than the method of Murphy&Zou in all four
networks. These results demonstrate that Friedman’s
method has a great potential in improving the accuracy
of GRNs reconstruction.

Real yeast benchmark dataset
We also investigated the performance of Friedman’s
DBN algorithm in reconstruct of GRNs from real bio-
logical datasets. We tested it on the benchmark yeast
time series dataset from Spellman’s experiment [19],
and compared it with Murphy’s DBN algorithm with
Zou’s preprocessed network [17], as well as a modified
Probabilistic Boolean Network algorithm [4]. The data-
set is from Spellman ’s experiment [19], and the

interactions are from Saccharomyces Genome Database
(SGD) database. The networks reconstructed by these
three algorithms are showed as Figure 6 and precision
and recall are given in Table 2. The results show that
the Friedman’s DBN algorithm outperforms Murphy’s
DBN algorithms in terms of accuracy and recall. Mur-
phy’s DBN algorithm shows a sparse network struc-
ture, compared with the rest. It is also found that the
reconstruction accuracy from real biological datasets
(Yeast datasets) is higher than that from the synthetic
data.

Conclusions
In this study, we implemented Friedman’s score
metrics for DBNs by our algorithm, and applied the
algorithm in reconstruction GRNs using both synthetic
time series gene expression data and a real yeast
benchmark dataset. The algorithm is able to capture
the correlation between consecutive time slices in both
score function and learning procedure, thus Friedman’s
score metrics gives a higher precision and recall than
the naive REVEAL algorithm application in the
absence or presence of preprocessed network

Figure 3 (a) A transition network of 10 genes learned by Friedman score metrics. The left column shows the genes at time t, and the
right column the corresponding gene at the next time slice. (b) The gene regulatory network converted from (a).
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generated by Zou&Conzen ’s algorithm. This also
reflects that in real biological processes, time lag regu-
lation might better describe the true regulation
between genes. Also based on the testing results, the

Friedman’s score metrics we implemented has great
potential in improving the accuracy of structure pre-
diction for GRN reconstruction with complete syn-
thetic time series data.

Figure 4 The 50-gene network reconstructed by different algorithms with dashed lines indicating false positive edges, and solid lines
true positive edges. (a) The true network, (b) Zou&Conzen’s prior network algorithm, (c) Murphy’s algorithm, (d) Friedman’s algorithm, (e)
Friedman’s algorithm combined with the prior network.
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Figure 5 Comparison of performance between different structure learning algorithms using synthetic dataset.

Table 1 Comparison of performance between different structure learning algorithms using synthetic dataset (Ce:
Correctly infered edges; P: Precision; R: Recall)

Nir Friedman Nir Friedman + Zou&Conzon Kevin Murphy + Zou&Conzon Zou&Conzon

Network Size Ce P R Ce P R Ce P R Ce P R

10 5 0.50 0.29 3 0.60 0.27 3 0.30 0.18 6 0.38 0.04

20 7 0.15 0.17 3 0.12 0.08 3 0.10 0.08 9 0.09 0.23

50 38 0.23 0.36 6 0.09 0.06 8 0.12 0.07 14 0.04 0.14

100 38 0.10 0.22 25 0.14 0.14 8 0.07 0.05 48 0.02 0.26

Figure 6 The real yeast network reconstructed by different algorithms (dashed lines indicating false positive edges, and solid lines
true positive edges). (a) Murphy + Zou algorithm (b) Probabilistic Boolean Network (c) Friedman’s score metrics.
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Table 2 Comparison of performance between different structure learning algorithms using yeast benchmark dataset
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