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Abstract

Background: Malaria continues to be one of the most severe global infectious diseases, responsible for 1-2 million
deaths yearly. The rapid evolution and spread of drug resistance in parasites has led to an urgent need for the
development of novel antimalarial targets. Proteases are a group of enzymes that play essential roles in parasite
growth and invasion. The possibility of designing specific inhibitors for proteases makes them promising drug
targets. Previously, combining a comparative genomics approach and a machine learning approach, we identified
the complement of proteases (degradome) in the malaria parasite Plasmodium falciparum and its sibling species
[1-3], providing a catalog of targets for functional characterization and rational inhibitor design. Network analysis
represents another route to revealing the role of proteins in the biology of parasites and we use this approach
here to expand our understanding of the systems involving the proteases of P. falciparum.

Results: We investigated the roles of proteases in the parasite life cycle by constructing a network using protein-
protein association data from the STRING database [4], and analyzing these data, in conjunction with the data from
protein-protein interaction assays using the yeast 2-hybrid (Y2H) system [5], blood stage microarray experiments
[6-8], proteomics [9-12], literature text mining, and sequence homology analysis. Seventy-seven (77) out of 124
predicted proteases were associated with at least one other protein, constituting 2,431 protein-protein interactions
(PPIs). These proteases appear to play diverse roles in metabolism, cell cycle regulation, invasion and infection.
Their degrees of connectivity (i.e., connections to other proteins), range from one to 143. The largest protease-
associated sub-network is the ubiquitin-proteasome system which is crucial for protein recycling and stress
response. Proteases are also implicated in heat shock response, signal peptide processing, cell cycle progression,
transcriptional regulation, and signal transduction networks.

Conclusions: Our network analysis of proteases from P. falciparum uses a so-called guilt-by-association approach to
extract sets of proteins from the proteome that are candidates for further study. Novel protease targets and
previously unrecognized members of the protease-associated sub-systems provide new insights into the
mechanisms underlying parasitism, pathogenesis and virulence.

Background
Malaria remains a major threat to health and economic
development in endemic countries, infecting 300-500
million people yearly and claiming 1-2 million deaths,
primarily of young children. Symptoms of malaria
include high fever, shaking chills, headache, vomiting,

and anemia. If left untreated, malaria can quickly
become life threatening by disrupting the blood supply
to vital organs. Malaria is caused by a group of parasites
from the genus Plasmodium. Five species, P. falciparum,
P. vivax, P. malariae, P. ovale, and P. knowlesi, are
known to cause the disease in humans. P. falciparum is
the most devastating and widespread species.
No effective anti-malaria vaccines are available for use

in humans [13]. For decades, the management of
malaria has relied heavily on chemotherapy, which uses
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a limited number of drugs. However, the rapid evolution
and spread of drug resistance in parasites has led to an
increase in morbidity and mortality rates in malaria
endemic regions. The development of new drug/vaccine
targets is urgently needed.
Thanks to the completion of the genome sequencing

projects for P. falciprum and its sibling species [14-19],
a novel array of proteins have been proposed as poten-
tial drug targets, including (1) proteins like 1-deoxy-D-
xylulose 5-phosphate (DOXP) reductoisomerase [20,21],
and apicoplast gyrase [22] that are located in the apico-
plast, an organelle with its origin close to the chloro-
plast; (2) kinases such as cyclin-dependent protein
kinases (Pfmrk) [23] and the plant-like calcium-depen-
dent protein kinase (PfCDPK5) [24]; (3) transporters
involved in drug resistance and nutrient acquisition
from the host [25-30], and (4) proteases.
Proteases are a group of enzymes that degrade pro-

teins by breaking peptide bonds. They are attractive
antimalarial targets due to their indispensible roles in
parasite development and invasion [31,32]. Previously
we predicted the protease complement (degradome) in
the malaria parasite P. falciparum and its four sibling
species using a comparative genomics approach and a
support vector machine (SVM)-based, supervised
machine learning approach [1-3]. This catalog revealed
a new line of novel proteases for functional characteriza-
tion. Studies on malarial proteases have been focused on
biochemical and molecular characterization [33-46],
structural modeling and analysis [47,48], and inhibitor
design and screening [49-59]. Although significant pro-
gress has been made, much remains to be learned about
the roles played by these proteins, including how they
interact with other proteins in space and time to coordi-
nate important aspects of growth, transmission, inva-
sion, response to drug treatment and pathogenesis of
this devastating pathogen.
One approach to gaining wider views on the roles of

proteins in biological systems relies on network biology.
Known and inferred protein associations are used to
build a network of proteins, thus establishing a map of
all the associations in the organism and allowing deduc-
tions to be made as to the role of proteins that are
poorly understood and poorly annotated. Clearly, both
proposed and demonstrated protein-protein associations
could aid us in understanding the role of a protease in
the parasite. Therefore, we constructed a network of P.
falciparum proteins using the protein-protein associa-
tion data from STRING database [4], and analyzed these
data, in conjunction with the data from protein-protein
interaction assays using the yeast 2-hybrid (Y2H) system
[5], blood stage microarray experiments [6-8], proteo-
mics [9-12], literature text mining, and sequence homol-
ogy analysis. The topology of the protein-protein

association network was analyzed and the results exam-
ined for information as to how the proteases may func-
tion within the parasite. Sets of proteins associated with
specific proteases or protease families were extracted
from the whole-cell network to create protease-asso-
ciated subnetworks and five of these subnetworks were
examined in detail. Novel protease targets and pre-
viously unrecognized members of some sub-systems
could be postulated; these insights help us to better
understand the mechanisms underlying parasite metabo-
lism, cell cycle regulation, invasion and infection.

Results and discussion
Proteases are involved in complex networks
We downloaded and mined the protein-protein associa-
tion data from the STRING database [4] involving pro-
teins from P. falciparum. Seventy-seven (77) out of 124
predicted proteases were found in this set and were
associated with at least one other protein, constituting
2,431 associations (Additional Files 1 and 2). Each asso-
ciation between a pair of proteins has a confidence
score (S) ranging from 0.15 to 0.999 that was inferred
from the evidence used to establish the association: 221
associations (9.1%) have high confidence scores (S>0.7),
432 associations (17.8%) have medium confidence scores
(0.4≤S≤0.7), and strikingly, 1,778 associations (73.1%)
have relative low confidence scores (0.15≤S<0.4). The
large proportion of low-scored associations arises from
the paucity of annotation data. Before the genome of P.
falciparum was sequenced, only about 20 proteins had
been characterized; after genome sequencing this num-
ber increased by two orders of magnitude, but over 60%
of the predicted gene products in the genome still had
no functional assignment [18] and ten years of subse-
quent effort have reduced this number to roughly 45%
[60]. Consequently, information such as KEGG pathway
assignments, PDB protein structures and reactome data,
which tend to improve association scores, is scarce for
P. falciparum. Therefore, our subsequent analysis will
not exclude the associations with low confidence scores
as they may well represent associations that have not
been previously recognized.
The degrees of connectivity vary among the 77 pre-

dicted proteases with protein-protein associations, ran-
ging from one to 143 (Additional File 1). Twenty-four
(24) putative proteases have less than five association
partners, 13 have 5-10 partners, and 40 are highly con-
nected with more than 11 partners, suggesting that pro-
teases are involved in complex cellular networks.
Functional enrichment analysis [61] revealed that 120
Gene Ontology (GO) terms were over-represented in
these protease associations (p < 0.05) (Additional File 3).
Figure 1 shows the distribution of functional categories
in a hierarchical order: proteolysis (GO 6508) is, not
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surprisingly, enriched (p = 8.29*10-6), while the other
most highly represented GO biological processes (p <
10-5) are related to cellular catabolic processes (GO
44248), protein metabolic processes (GO 19538), macro-
molecule metabolic processes (GO 43170), and cofactor
and coenzyme metabolic processes (GO 51186 and
6732). This result reflects the involvement of proteases
in fundamental biological processes, many of which
have been established in the wet lab. Other processes
that are moderately enriched (10-5<p < 0.05) included
gene expression and response to endogenous and exter-
nal stimuli such as heat, abiotic stimulus, organic sub-
stances, unfolded proteins, and protein stimuli. Five of
the potentially most significant protease-associated sets
of proteins are discussed in the following sections. They
include the ubiquitin-proteasome system, the stress
response system, the regulated intramembrane proteoly-
sis system, the parasite egress network, and the signal
peptidase network. These subnetworks were chosen
because: (1) proteases are the central players in these
networks; (2) These networks play crucial roles in para-
site life cycle and are closely associated with adaptive
phenotypes such as stress response, transcriptional regu-
lation, pathogenesis, and virulence; (3) These networks
are considered to be potential antimalarial targets as
their disruption would cause deleterious effects on the
growth or infectivity of the parasites.

The ubiquitin-proteasome system (UPS)
The largest protease-associated network in P. falciparum
is the ubiquitin-proteasome protein degradation system

(UPS). The UPS is responsible for degrading unwanted
or misfolded proteins and is believed to execute impor-
tant roles in protein turnover and cell cycle regulation
in a wide variety of organisms [62]. We previously iden-
tified a group of threonine proteases that form a- and
b- subunits of the proteasome complex and two families
of ubiquitin-specific hydrolases (C12 and C19) [1,63]
(Additional File 1). The UPS pathway in P. falciparum
has been deduced by Dr. Hagai Ginsburg (http://sites.
huji.ac.il/malaria/maps/proteaUbiqpath.html), and
involves two consecutive steps: (1) tagging the ubiquitin
molecules to target proteins and (2) degradation of the
tagged protein by the proteasome complex with release
and recycling of ubiquitin. The major components of
the UPS in P. falciparum are conserved with other
eukaryotes. However, a growing body of evidence sug-
gests that the UPS plays a critical role in the parasite-
specific life style and it is therefore intriguing to unveil
the proteins and pathways that are associated with or
regulated by the UPS [64,65], as they may carry out
functions specific to pathogenesis or virulence. We iden-
tified 1,148 associations in P. falciparum that involved
11 threonine proteases in the T1 family, two proteases
in the C12 ubiquitin C-terminal hydrolase family, and
six proteases in the C19 ubiquitin-specific protease
family. One hundred and twenty-four (124) associations
are protease-protease associations, and the remaining
1,024 associations involve non-protease partners. One
hundred and sixty-four (164) of these associations have
high confidence scores (S>0.7), the majority of which
involve the association between catalytic components

Figure 1 A graphical representation of the results of a Gene Ontology analysis done using BiNGO. The node size is proportional to the
number of proteins represented by that GO term. The color represents the P-value for each enriched GO term as shown in the scale; white
nodes are not enriched. The nodes are positioned to approximate their level in the Gene Ontology.
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and regulatory components in the proteasome complex
(Additional File 4).
The protease with the highest connectivity is

PF10_0111, a putative 20S proteasome beta subunit,
which has 143 association partners (Figure 2). In addi-
tion to the proteasome components and ubiquitin con-
jugation enzymes, the other interacting proteins appear
to be involved in a variety of activities (Table 1): (1) a
nucleotide binding activity involving a Tat binding pro-
tein homolog (PFL2345c) which has an AAA ATPase
domain; (2) cell cycle regulation involving
MAL13P1.337, which is a putative protein in the Skp1
(S-phase kinase-associated protein 1) family. The Skp1
protein is an important component of the cyclin A-
CDK2 S phase kinase complex in baker’s yeast (Sacchar-
omyces cerevisiae) [66] and directs cell cycle-regulated
proteins to the kinetochore; (3) translation involving a
number of ribosomal proteins such as 60S ribosomal
proteins L40/UBI (PF13_0346) and L10 (PF14_0141), a
putative translation initiation factor eIF-1A (PF11_0447),
and a putative elongation factor 1 (EF-1) (PFC0870w);
(4) transcriptional regulation involving a putative multi-
protein bridging factor type 1 (MBF1) (PF11_0293).
MBF1 is a transcriptional cofactor that bridges the
TATA box-binding protein (TBP) and its specific regu-
latory proteins for transcriptional activation [67]; (5)
membrane traffic regulation involving a putative rab
specific GDP dissociation inhibitor (PFL2060c) [68].
Moreover, the yeast 2-hybrid assay using PF10_0111

as a bait revealed 15 PPI preys (Table 1), confirming
that it is associated with (1) transcriptional regulation
involving a CCAAT-box DNA binding protein subunit
B (PF11_0477) containing a histone-like transcription
factor domain, and (2) translation involving a putative
translation elongation factor EF-1 subunit alpha
(PF11_0245), a putative 60S ribosomal protein L4
(PFE0350c), and a putative ribosomal protein L15 pre-
cursor predicted to localize to the apicoplast
(PF14_0270), a specific organelle of prokaryotic origin
found in Apicomplexa parasites. PF10_0111 may also be
associated with protein modifications involving a puta-
tive ubiquitin transferase (MAL7P1.19) [69] and chro-
matin fluidity involving a putative nucleosome assembly
protein (PFI0930c).
Interestingly, PF10_0111 is shown to have PPI with

three predicted surface antigens: (1) merozoite surface
protein 3 (PF10_0345), which was shown by global RNA
decay and nuclear run-on assays to serve a role in tran-
scriptional regulation and RNA stabilization [70,71]; (2)
a merozoite surface protein (PF10_0348). Domain analy-
sis revealed a N-terminus Duffy binding domain that is
present in the Duffy receptors expressing blood group
surface determinants and a C-terminus SPAM (secreted
polymorphic antigen associated with merozoites)

domain, both of which have been implicated in parasite
immune evasion, cytoadherence and pathogenesis
[72,73]; (3) a parasite-infected erythrocyte surface pro-
tein (PFE0060w). The microarray and proteomics assays
show that these three surface proteins are expressed at
the invasive merozoite stage [6,8,10,11].
These results reflect much that is known about the

UPS, but also suggest that it may also be associated with
a variety of processes ranging from transcriptional regu-
lation, translation, cell cycle progression, invasion, pro-
tein trafficking, and immune evasion. Not surprisingly,
the UPS has become a promising antimalarial target.
Various independent studies have shown that inhibition
of proteasome activity can arrest parasite growth, and
yet show limited toxicity to human cell lines [64,74,75].

Stress response network
The adaptation of the malaria parasite to the host envir-
onment requires a rapid and effective response to
diverse physiological signals and stress conditions, such
as changes in temperature within hosts, nutritional chal-
lenges, host immune responses, antimalarial administra-
tion, and so on. One such adaptive network in the
malaria parasite is the robust heat shock response sys-
tem. During its life cycle, the parasite is transmitted
from the mosquito vector (~25°C) to the human host
(37°C), resulting in heat shock. Periodic fever, the
patient’s response to infection, also presents recurrent
heat shock to the parasite. A comprehensive chaperone
system has been identified in P. falciparum genome,
accounting for 2% of the open reading frames (ORFs)
[76]. The system is comprised of various chaperone pro-
teins [77] and includes proteases that degrade misfolded
proteins. We identified 344 associations involving five
putative proteases in the ClpP endopeptidase family
(S14), a lon protease PF14_0147 (S16), and an hslV pro-
tease PFL1465c (T1B). As shown in Figure 3, these pro-
teases are associated with a large number of heat shock
proteins (HSPs) including Hsp90, Hsp70, Hsp40, and
DnaJ proteins. The protease having the highest degree
of connectivity (80) in the heat shock response network
is PFL1465c, a threonine protease hslV. In addition to
the classical HSPs, it is associated with a wide variety of
enzymes such as ubiE/COQ5 methyltransferase, rRNA
methyltransferase, multiple tRNA synthetases, various
phosphate isomerases, amino transferase, aldolase, and a
number of kinases, suggesting it may have an important
role in parasite metabolism. It is also associated with
three other heat-shock response proteases (PFC0310c
and PF08_0063 in the S14 ClpP endopeptidase family,
and PF14_0147 in the S16 ATP-dependent protease lon
family), an organelle processing peptidase in the M16
pitrilysin family (PFI1625c), a leucyl aminopeptidase in
the M17 family (PF14_0439), and aminopeptidase P in
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Figure 2 A graph showing the proteins associated with PF10_0111. This protease is the most highly connected member of the set of
proteases found in the P. falciparum ubiquitin-proteasome protein degradation system. Square nodes represent proteases. Node size is
proportional to the degree of the node. Nodes are colored according to their functional classification in the eggNOG database [122]. The COG
categories are [123] (J) Translation, ribosomal structure and biogenesis, (A) RNA processing and modification, (K) Transcription, (L) Replication,
recombination and repair, (B) Chromatin structure and dynamics, (D) Cell cycle control, cell division, chromosome partitioning, (Y) Nuclear
structure, (V) Defense mechanisms, (T) Signal transduction mechanisms, (M) Cell wall/membrane/envelope biogenesis, (N) Cell motility, (Z)
Cytoskeleton, (W) Extracellular structures, (U) Intracellular trafficking, secretion, and vesicular transport, (O) Posttranslational modification, protein
turnover, chaperones, (C) Energy production and conversion, (G) Carbohydrate transport and metabolism, (E) Amino acid transport and
metabolism, (F) Nucleotide transport and metabolism, (H) Coenzyme transport and metabolism, (I) Lipid transport and metabolism, (P) Inorganic
ion transport and metabolism, (Q) Secondary metabolites biosynthesis, transport and catabolism, (R) General function prediction only, and (S)
Function unknown. Confidence scores for the interactions among the nodes (S values from STRING) were divided into three groups - low (0.150-
0.399), medium (0.400-0.700) and high (0.701-0.999); the groups are represented by thin, medium and heavy lines, respectively.
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the M24 family (PF14_0517); together, they form a com-
plex protease degradation network. It is also interesting
to note that this putative hslV protease appears to be
linked to a second very important stress system in the
malaria parasite that acts against oxidative challenges:
Protease hslV is associated with the thioredoxin 1 pro-
tein (PF14_0545), a member of the thioredoxin system
which controls cell redox homeostasis, and a putative
Fe-superoxide dismutase (Fe-SOD, PF08_0071) which is
critical for antioxidant defense. Because the malaria
parasite is sensitive to oxidative stress, both the thiore-
doxin system and SOD have been considered as poten-
tial antimalaria targets [78]. Finally, our phylogenetic
analysis revealed that this hslV protease (PFL1465) is of
prokaryotic origin and there is no homolog in the
human host, a desirable feature for drug targets [79-81].
A second heat shock response protease PfClpP
(PFC0310c) was recently characterized [82,83]; protease
inhibition assays have shown that it, along with other
ATP-dependent chaperones, plays a crucial role in para-
site growth and development. Furthermore, PfClpP is
localized to the apicoplast, which is of cyanobacterial
origin, making this protein an apicoplast-targeting anti-
malarial candidate. This protein is indeed highly con-
nected with 69 association partners, including Hsp70,
Hsp60, Hsp40, co-chaperones, and proteins involved in
proteasome acitivities, replication, translation, protein
biosynthesis, metabolism, and heat shock response,
implying that its inactivation would have devastating
consequences for the parasite.

Signal transduction via the regulated intramembrane
proteolysis (RIP) network
The common belief that proteases cleave peptide bonds
in a water environment was challenged by the discovery
of a set of proteases that conduct hydrolysis in the
hydrophobic environment of cellular membranes [84].
During RIP, intramembrane proteases cleave transmem-
brane-spanning helical (TMH) segments of the sub-
strates and release soluble effectors, many of which are
signaling molecules, thereby triggering cascades of signal
transduction pathways [85,86]. RIP is now believed to be
a ubiquitous signaling mechanism in a wide variety of
organisms from bacteria to humans [87]. The roles of
RIP in the parasite life cycle have begun to be unraveled.
Three families of membrane-tethered proteases involved
in RIP have been identified in P. falciparum, including
an aspartic signal peptide peptidase (PfAPP, PF14_0543)
in the A22 presenilin family, eight rhomboid serine pro-
teases (PfROMs) in the S54 family, and two putative
Site-2 metallo proteases (S2Ps, PF13_0028 and
PF10_0317) in the M50 family[1,88-93].
The first family, PfAPP (PF14_0543), has 54 associa-

tion partners (Figure 4 andTable 2). The association
partner with the highest confidence score is a putative
Rer1 (retrieval receptor for endoplasmic reticulum
(ER) membrane proteins, PFI0150c) that is important
for localizing proteins to the ER. Another related part-
ner for PfAPP is a putative ER lumen protein retaining
receptor (PF13_0280), which contains a signal
sequence that facilitates the protein transport between

Table 1 Representative P. falciparum proteins that are associated with PF10_0111, a putative 20S proteasome beta
subunit with the highest connectivity. Protein-protein interactions revealed by yeast 2-hybrid assays are italicized.

Functional description Protein accession number Annotation

Nucleotide binding PFL2345c tat-binding protein homolog

Cell cycle regulation MAL13P1.337 putative Skp1 family protein

Transcriptional regulation PF11_0293 putative multiprotein bridging factor type 1

PF11_0477 CCAAT-box DNA binding protein subunit B

Translation PF13_0346 putative 60S ribosomal protein L40/UBI

PF14_0141 putative 60S ribosomal protein L10

PF11_0447 putative translation initiation factor eIF-1A

PFC0870w putative elongation factor 1 (EF-1)

PFE0350c 60S ribosomal protein L4

PF14_0270 putative apicoplast ribosomal protein L15 precursor

PF11_0245 putative translation elongation factor EF-1, subunit alpha

Protein transport PFL2060c rab specific GDP dissociation inhibitor

Protein modification MAL7P1.19 putative ubiquitin transferase

Surface antigens PF10_0345 merozoite surface protein 3

PF10_0345 merozoite surface protein 3

PF10_0348 duffy binding-like merozoite surface protein

PFE0060w parasite-infected erythrocyte surface protein

Unknown MAL7P1.170 Plasmodium exported protein, unknown function
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the cis side of the Golgi apparatus and the ER [94]. It
is believed that parasite invasion of erythrocytes
requires the export of proteins to the ER and the cell
surface. They then traverse the parasitophorous
vacuole membrane (PVM) into the erythrocyte or

parasite-derived membranous structures known as
Maurer’s clefts. PfAPP, along with the ER-localization
proteins, may play a role in protein trafficking, cell-cell
communication and remodeling of the host erythrocyte
for parasite entry. Other proteins that are associated

Figure 3 The graph shows a subnetwork of proteins linked to stress responses in P. falciparum. It was detected using the MINE plug in
for Cytoscape, which uses an agglomerative approach to search the topology of large networks for significant clusters. The visualization is as for
Figure 2.
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with PfAPP include secretory proteins, translation
initiation and elongation factors, splicing factors and
the spliceosome unit, peptide chain release factor,
and various enzymes, suggesting it is involved in
diverse networks related to transport, translation,

posttranslational processing and metabolism. Recent
gene disruption assays showed that PfAPP is essential
for merozoite invasion and parasite growth [92,93]; the
versatile associations of this protease underscore its
potential as a drug target.

Figure 4 The set of proteins associated with proteases that carry out regulated intramembrane proteolysis (RIP). This novel form of
proteolysis is linked to signaling and the associated proteins may be targets for, or mediators of, this system. The red edges indicate
experimentally validated interactions; other details of the visualization are as for Figure 2.
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The second family, PfROM, includes a group of serine
proteins with demonstrated roles in parasite invasion
[90,91,95,96]. Only one out of the ten rhomboid pro-
tease homologs in P. falciparum, PfRom1 (PF11_0150),
was predicted to have protein-protein associations. Most
interestingly, all the six proteins associated with it are
antigens that have been considered as vaccine candi-
dates; they belong to three families of adhesins that are
essential for parasite invasion (Figure 4 and Table 2): (1)
the apical membrane antigen 1 (AMA1, PF11_0344) is
an adhesin required for merozoite invasion and it plays
an indispensible role in the proliferation and survival of
the malaria parasite [97]. PfRom1 was shown to be able
to cleave AMA1 [88]; (2) the erythrocyte binding-like
(EBL) family is involved in binding to a host chemokine
receptor, the Duffy antigen [98]. Among the four EBAs
with predicted association with PfRom1, EBA-175
(MAL7P1.176) is proven a natural substrate for PfRom1
[88], but it remains unclear whether PfRom1 can cleave
EBA-140 (MAL13P1.60), EBA-181 (MAL1P1.16), and a
putative merozoite adhesive erythrocytic binding protein

(PF11_0486); (3) a reticulocyte binding protein 2 homo-
log b protein (MAL13P1.176) in the reticulocyte bind-
ing-like (RBL) family. PfRom1 is able to cleave the RBL
proteins [88]. Apparently, PfRom1 plays a central role in
the RIP network that is tightly linked to the invasion
process [86] and as such merits further investigation as
a drug target.
S2Ps in the third family, PF10_0317 and PF13_0028,

have two and one associations, respectively (Figure 4
and Table 2). PF10_0317 is associated with a protea-
some 26S regulatory subunit and a cell division cycle
(CDC) protein 48 homolog, which is implicated by GO
analysis in ER localization and cell cycle regulation. Our
previous domain analysis showed that PF10_0317 con-
tains a Der-1 like domain, which was implicated in pro-
teolysis associated with the ER [99-102]. PF13_0028 is
associated with an adenylosuccinate synthetase AdsS
(PF13_0287), which is important for the de novo bio-
synthesis of purine nucleotides. This association was
predicted based on the genome synteny analysis, which
revealed that the homologs of S2P and AdsS are located

Table 2 Representative P. falciparum proteins that are associated with the regulated intramembrane proteolysis (RIP)
network.

Protease family Accession number of
protease

Associated Protein accession
number

Annotation

A22 (presenilin
family)

PF14_0543 PFI0150c putative retrieval receptor for endoplasmic reticulum
membrane proteins

PF13_0280 ER lumen protein retaining receptor

MAL13P1.231 Sec61 alpha subunit, PfSec61

PFB0450w secretory complex protein 61 gamma subunit

PF11_0447 putative translation initiation factor eIF-1A

PF10_0077 putative eukaryotic translation initiation factor 3 subunit 7

PFL0310c putative eukaryotic translation initiation factor 3 subunit 8

PFL0335c putative eukaryotic translation initiation factor 5

PFE1405c putative eukaryotic translation initiation factor 3, subunit 6

PFC0870w putative elongation factor 1 (EF-1)

MAL8P1.48 putative splicing factor

PFB0550w putative peptide chain release factor subunit 1

PF07_0034 cloroquine resistance associated protein Cg3 protein

PF13_0022 cyclin

S54 (Rhomboid
family)

PF11_0150 PF11_0344 apical membrane antigen 1

PF11_0486 merozoite adhesive erythrocytic binding protein

PFA0125c erythrocyte binding antigen-181

MAL13P1.60 erythrocyte binding antigen-140

MAL7P1.176 erythrocyte binding antigen-175

MAL13P1.176 reticulocyte binding protein 2 homolog b

M50 (S2P protease
family)

PF13_0028 PF13_0287 adenylosuccinate synthetase

PF10_0317 PFB0260w putative proteasome 26S regulatory subunit

PFF0940c putative cell division cycle protein 48 homolog
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in the same chromosomal neighborhood in a variety of
Actinobacteria. The functions of these S2Ps in malaria
parasites are yet to be defined.

Parasite egress mediated by proteolysis
Egress, the parasite’s emergence from host erythrocytes,
is a well-coordinated process involving the rupture of
the parasitophorous membrane (PVM) and the erythro-
cyte membrane (EM). Proteases that have been impli-
cated in parasite egress [31,36] include (1) aspartic
proteases (plasmepsins PMI, PMII, and PMIII, also
known as histo-aspartic protease (HAP)) in the A1
family, (2) cystein proteases in the A1 papain family
including falcipain 2a, 2b, and 3, dipeptidyl peptidase 3
(PfDPAP3), and a series of Serine Repeat Antigens
(SERAs), and (3) a serine protease subtilase 1 (PfSUB1)
in the subtilisin S8 family. We analyzed the protein-
association network (Figure 5) involving proteases med-
iating egress and found that a central player in the net-
work is SERA5 (PFB0340c), which has 28 associations.
SERA5 is associated with PfSUB1 (PFE0370c) and
PfDPAP3 (PFD0230c). Both these proteases can proteo-
lytically activate SERA5, which triggers downstream pro-
cessing of cellular substrates [103,104]. SERA5 is also
associated with several erythrocyte membrane antigens
such as PfEMP2 and EBA-175. It is abundantly
expressed in the blood stage, especially in the schizont
stage, as revealed by microarray and proteomic analysis.
SERA5 has an in vitro catalytic activity and it is refrac-
tory to gene disruption [105], suggesting its vital role in
the parasite life cycle.

Signal peptidase network
As an adaptive survival strategy, the malaria parasite
harbors a powerful secretion system that transports
parasite-encoded virulence proteins to their subcellular
locations. The central players in this secretion system
are a group of signal peptidases that are capable of
cleaving signal sequences from the target proteins that
can then be routed to their destinations. Five signal pep-
tidases have been predicted and characterized, constitut-
ing the signal peptidase complex (SPC) in P. falciparum
[3,106,107]. Three of these peptidases have association
partners: PfSPC21 (MAL13P1.167) has 120 associations;
the putative microsomal signal peptidase (PF14_0317)
has five associations; and the putative SPC22 (PFI0215c)
has five associations (Figure 6). The associated proteins
are part of the secretion pathway and include secretory
complex protein 61 (Pf61) alpha and gamma subunits, a
signal recognition particle (SRP) and an SRP receptor,
an ER lumen protein retaining receptor, and a transport
protein particle (TRAPP) component. These signal pep-
tidases are also associated with members of the ubiqui-
tin-proteasome system and the heat shock response

system, with the translational machinery, and with meta-
bolic networks.

Other potentially important protease-associated networks
Proteases in P. falciparum may play other roles impor-
tant for parasite biology. We previously identified a sin-
gle copy of calpain PfCalp (MAL13P1.310) in P.
falciparum genome [3,106,107]. Calpain is crucial for
signal transduction, cell cycle regulation, differentiation,
development, and cell-cell communication from bacteria
to humans. Very little is known about its role in P. falci-
parum. Only four proteins seemed to be associated with
calpain: including a putative protein with a C3HC4 type
zinc finger, the motif commonly present in transcrip-
tional regulators, a ribosomal protein, and two proteins
with unknown function. However, partial knockdown
assays recently suggested that PfCalp is essential for the
parasite’s optimal growth and cell cycle progression
[108]. Phylogenetic analysis revealed that PfCalp is a
unique type of calpain confined to alveolates (a group of
protists) with distant relatedness to human calpains
[63,108], adding it to a new line of promising drug tar-
get. Another class of proteases that mediate cell cycle
regulation and programmed cell death is comprised of
the three metacaspases from the C14 protease family
[63,109]. Only one association partner was identified for
PF13_0289 and PF14_0363, (polyubiquitin and a
hypothetical protein with unknown function respec-
tively), and no associations were found for PF14_0160,
reflecting our limited knowledge about their functions
in malaria parasite.

Conclusions
Our network analysis of proteases from P. falciparum
uses a so-called guilt-by-association approach to extract
sets of proteins from the proteome that are candidates
for further study. The network biology approach is read-
ily adapted to any system for which a genome sequence
exists and for which some type of protein-protein asso-
ciation is available, although there are limitations. Some
of these stem from missing data, and/or noisy data,
which lead to underestimation of the S value for a pair
of associated proteins, but this problem becomes less
significant with each release of data. A second problem
is the lack of any dynamic element in evaluating the
associations. A more formal integration of expression
data could help to ameliorate this situation, especially
expression data sets gathered under different conditions.
Despite these limitations, our results produced known
associations, which serve as positive controls such as the
ubiquitin-proteasome system (UPS). It also indicated
that proteases are playing previously unrecognized role
in the biology of the parasite, such as the proteases that
mediate the stress responses. Our results also imply that
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certain of these proteases, such as the proteases that
mediate regulated intramembrane proteolysis, parasite
egress, and signal peptide processing and protein secre-
tion, may be good candidates for antimalarial targeting,
as they are highly connected in the network. Further-
more, some of these candidates are known to have no

or only distantly related homologs in humans, which
reduces the probability of adverse effects resulting from
their inactivation. Finally, our analysis has identified new
components of previously recognized systems in the
parasite, such as the protein(s) involved in transcrip-
tional regulation, cell cycle progression, invasion, protein

Figure 5 The protein associations of proteases involved in egress (exit from the erythrocyte). SERA5 (PFB0340c) is the most highly
connected protease and appears to be a key player. It is linked with two proteases known to activate it, as well as potential substrates (see
text). The red edges indicate experimentally validated interactions; other details of the visualization are as for Figure 2.
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Figure 6 Proteins associated with three signal peptidases. As these proteases process signaling sequences on proteins, it is not surprising
that they have a wide array of associations. PfSPC21 (MAL13P1.167) is associated with a large number of proteins from COG category O
(Posttranslational modification, protein turnover, chaperones). The visualization is as for Figure 2.
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trafficking, and immune evasion in the UPS, or the anti-
oxidant defense proteins associated with the heat shock
response systems.

Methods
The protease data
The proteases in P. falciparum were predicted using a
comparative genomics approach and a support vector
machine (SVM)-based, supervised machine learning
approach [1-3]. The classification and annotation were
according to the MEROPS protease nomenclature,
which is based on intrinsic evolutionary and structural
relationships [110].

Network data and analysis
The complete set of protein-protein associations for P.
falciparum was extracted from the downloaded STRING
database [4]; each association between a pair of proteins
has a confidence score (S) ranging from 0.15 to 0.999
that was inferred from the evidence used to establish
the association, such as homology transfer, KEGG path-
way assignments, conserved chromosome synteny, phy-
logenetic co-occurence, and literature co-occurence
[111]. This set of associations was visualized in Cytos-
cape [112] and converted to an undirected weighted
graph, where there is a single edge between any pair of
proteins and the S value is used as the weight. The net-
work was characterized using NetworkAnalyzer [113]
and significant modules were detected using MINE
[114] and MCODE [115]. The default values were used
for all three plugins. The set of proteins directly asso-
ciated with the 77 proteases in the association set were
screened using BiNGO [116] to determine if any cate-
gories of proteins, as identified by their Gene Ontology
terms, were over-represented. The hypergeometric test
was used with the Benjamini and Hochberg false discov-
ery date correction. A significance level of 0.05 was
selected.

The omics data mining
We downloaded the P. falciparum genomic sequence
and annotation data [18], transcriptomic microarray
data [6-8], mass-spectrometry proteomic data [9-12],
and protein-protein interactome [5] data for network
associated proteins from PlasmoDB, the Plasmodium
Genome resource center (http://www.plasmodb.org)
[117]. Conserved domains/motifs in P. falciparum
sequences were identified by searching InterPro [118].
Multiple alignments were obtained using the ClustalX
program [119] and T-coffee [120], followed by manual
inspection and editing. Phylogenetic trees were
inferred by the neighbor-joining, maximum-parsimony
and maximum-likelihood methods, using MEGA5
[121].

Additional material

Additional file 1: P. falciparum proteases and their degrees of
connectivity in protein association networks.

Additional file 2: The protein-protein associations involving
proteases in Plasmodium falciparum.

Additional file 3: Functional categories involving protease
associations identified by Gene Ontology enrichment analysis.

Additional file 4: The graph shows the set of proteins associated
with the proteases thought to be part of the P. falciparum
ubiquitin-proteasome protein degradation system. Nodes are colored
according to their functional classification in the eggNOG database [122]
(key is shown). Node size is proportional to the degree of the node.
Confidence scores for the interactions among the nodes (S values from
STRING) were divided into three groups - low (0.150-0.399), medium
(0.400-0.700) and high (0.701-0.999); the groups are represented by thin,
medium and heavy lines, respectively.
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