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Abstract

Background: Btau_4.0 and UMD3.1 are two distinct cattle reference genome assemblies. In our previous study
using the low density BovineSNP50 array, we reported a copy number variation (CNV) analysis on Btau_4.0 with 521
animals of 21 cattle breeds, yielding 682 CNV regions with a total length of 139.8 megabases.

Results: In this study using the high density BovineHD SNP array, we performed high resolution CNV analyses on
both Btau_4.0 and UMD3.1 with 674 animals of 27 cattle breeds. We first compared CNV results derived from these
two different SNP array platforms on Btau_4.0. With two thirds of the animals shared between studies, on Btau_4.0
we identified 3,346 candidate CNV regions representing 142.7 megabases (~4.70%) of the genome. With a similar
total length but 5 times more event counts, the average CNVR length of current Btau_4.0 dataset is significantly
shorter than the previous one (42.7 kb vs. 205 kb). Although subsets of these two results overlapped, 64% (91.6
megabases) of current dataset was not present in the previous study. We also performed similar analyses on
UMD3.1 using these BovineHD SNP array results. Approximately 50% more and 20% longer CNVs were called on
UMD3.1 as compared to those on Btau_4.0. However, a comparable result of CNVRs (3,438 regions with a total
length 146.9 megabases) was obtained. We suspect that these results are due to the UMD3.1 assembly's efforts of
placing unplaced contigs and removing unmerged alleles. Selected CNVs were further experimentally validated,
achieving a 73% PCR validation rate, which is considerably higher than the previous validation rate. About 20-45%
of CNV regions overlapped with cattle RefSeq genes and Ensembl genes. Panther and IPA analyses indicated that
these genes provide a wide spectrum of biological processes involving immune system, lipid metabolism, cell,
organism and system development.

Conclusion: We present a comprehensive result of cattle CNVs at a higher resolution and sensitivity. We identified
over 3,000 candidate CNV regions on both Btau_4.0 and UMD3.1, further compared current datasets with previous
results, and examined the impacts of genome assemblies on CNV calling.
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Background
Genomic structural variation including copy number
variation (CNV) has been intensively studied in human
[1–4] and rodents [5–8]. Dozens of human and mouse
CNV studies have demonstrated that some CNVs are
associated with phenotypic traits and diseases [9–12].
Initial CNV reports also appeared in domesticated ani-
mals, including dog [13–15], cattle [16], chicken
[17,18], pig [19,20], sheep, and goat [21,22]. Recent bo-
vine CNV studies have generated several cattle CNV
maps using various approaches [23–26]. In our previ-
ous study, we performed an analysis of CNV using the
Bovine HapMap SNP genotyping data, including 539
animals of 21 modern cattle breeds and 6 outgroups
[27]. Efforts to explore the association between cattle
CNV and economical traits have been published
[28,29], even though the actual functional mechanisms
are not yet well defined.
CNV can be identified using various approaches, in-

cluding comparative genomic hybridization (CGH)
array, SNP array, and next-generation sequencing.
Compared to other approaches, the advantages of SNP
array include its low cost, dense coverage, and high
throughput. Substantial genotyping data have been
produced from genome-wide association studies, which
can be directly exploited for the CNV analysis. A wide
range of algorithms of CNV discovery based on SNP
array has been developed, including CNVPartition,
QuantiSNP [30], PennCNV [31], Birdsuite [32],
Cokgen [33], and others. Reviews of the strengths and
weaknesses of these algorithms have been published
[34,35]. As one of the leading methods, PennCNV
incorporates multiple sources of information, including
total signal intensity and allelic intensity ratio at each
SNP marker, the distance between neighboring SNPs,
and the allele frequency of SNPs. PennCNV also inte-
grates a computational approach by fitting regression
models with GC content to overcome "genomic waves"
[36,37]. Furthermore, PennCNV is capable of consider-
ing pedigree information (parent-offspring trios) to im-
prove call rates and accuracy of breakpoint prediction
as well as to infer chromosome-specific SNP geno-
types in CNVs.
The availability of two alternative cattle reference gen-

omes (Btau_4.0 and UMD3, [38,39]) has opened new
avenues of cattle genome research. With the advent of
next-generation sequencing, more high density SNP
arrays were made commercially available, including Illu-
mina BovineHD BeadChip with more than 750,000 SNPs
(Van Tassell et al., unpublished; [40]), which is 15-fold
denser as compared to the previous BovineSNP50 array.
Furthermore, then-published CNV results were incorpo-
rated during the BovineHD design phase to increase its
coverage in variable genomic regions.
Based on this high density BovineHD SNP array, our
goals in this study were to perform high resolution CNV
analyses on both Btau_4.0 and UMD3.1, to compare
them with the previous results, and to examine the
impacts of genome assemblies on CNV calling.

Results and Discussion
Cattle CNV identification
As described previously [27], we performed CNV calling
on both Btau_4.0 and UMD3.1 assemblies. Due to map-
ping uncertainty, we excluded chrX and chrUn from our
analysis.
On the Btau_4.0 assembly, 34,311 CNVs were detected

with an average of 51 events for each animal (Table 1,
Additional file 1: Table S2, Figure 1A and Additional file
2: Figure S1). The average CNV length was 39,953 bp.
For subspecies/groups such as the Taurine, Indicine,
Composite (Taurine × Indicine) and African breeds, the
average CNV events per sample were 45, 65, 53 and 66
respectively (i.e. T:I:C:A = 45:65:53:66). Indicine and Afri-
can breeds had the most CNVs identified. Within each
subspecies/group, the numbers of unique CNVs ranged
from 2.3 to 5.1 per sample, indicating that the majority
of CNVs were shared at least by two individuals within
the same subspecies/groups.
When we merged CNVs into nonredundent CNV

regions (CNVRs), a total of 3,346 events were identified
covering 142.7 Mb of polymorphic sequence, corre-
sponding to 5.61% of the autosomal genome sequence
(142.7/2,545.9 Mb) and 4.89% of the whole cattle
genome (142.7/2,918.0 Mb, Table 1, Figure 1A and
Additional file 3: Table S3). These CNVRs were com-
prised of 2,051 loss events, 986 gain and 309 both (loss
and gain within the same region), ranging from 1,018 to
5,552,622 bp (Additional file 3: Table S3). Loss events
are approximately 2.1-fold more common than gain
events, but have smaller sizes than gain events on aver-
age (28.5 kb vs. 37.6 kb).
Furthermore, 1,316 CNVRs were found in only one

sample (Unique), 2,030 CNVRs were shared at least by
two animals (Multiple or more), and 179 events had a
frequency >5% (Additional file 3: Table S3). These
results suggest that segregating CNVs exist among these
subspecies, breeds and groups, which is consistent with
our earlier results [26,27].
Strikingly, the mean and median CNVR lengths were

significantly shorter, 42,653 and 15,794 bp respectively,
when compared to values derived from our previous low
density SNP50 array study (mean: 204,965 and median:
131,179 bp). With a similar total length of ~140 Mb, our
new dataset contains almost five times the number of
detected CNVs (3,346) than our previous study (682),
suggesting that the BovineHD array provides higher
resolution and sensitivity for CNV discovery. Also the



Table 1 CNVs or CNVRs on Btau_4.0 and UMD3.1

Subspecies/groups Sample Count Unique Gain Loss Total Length

Btau_4.0

Taurine 447 20,302 (45.4) 1,044 (2.3) 7,916 (17.7) 12,386 (27.7) 814,447,018 (40,117)

Indicine 113 7,352 (65.1) 309 (2.7) 2,595 (23.0) 4,757 (42.1) 266,853,291 (36,297)

Taurine × Indicine 67 3,569 (53.3) 198 (3.0) 1,508 (22.5) 2,061 (30.8) 159,735,770 (44,756)

African Breeds 47 3,088 (65.7) 240 (5.1) 1,248 (26.6) 1,840 (39.1) 129,777,675 (42,026)

Total 674 34,311 (50.9) 1,791 (2.7) 13,267 (19.7) 21,044 (31.2) 1,370,813,754 (39,953)

CNVR 674 3,346 a 1,316 b 986 c 2,051 c 142,718,107 (42,653)

UMD3.1

Taurine 434 32,445 (74.8) 1,052 (2.4) 12,419 (28.6) 20,026 (46.1) 1,551,624,380 (47,823)

Indicine 97 8,715 (89.8) 327 (3.4) 3,102 (32.0) 5,613 (57.9) 394,966,292 (45,320)

Taurine × Indicine 63 5,332 (84.6) 237 (3.8) 2,268 (36.0) 3,064 (48.6) 256,749,182 (48,153)

African Breeds 36 3,212 (89.2) 230 (6.4) 1,197 (33.3) 2,015 (56.0) 151,559,764 (47,185)

Total 630 49,704 (78.9) 1,846 (2.9) 18,986 (30.1) 30,718 (48.8) 2,354,899,618 (47,378)

CNVR 630 3,438 a 1,360 d 1,054 e 2,042 e 146,905,950 (42,730)

Numbers in parentheses are values normalized by sample counts, except in the case of the parentheses values in the "total length" column, which are average
lengths normalized by CNV counts. a These numbers represent nonredundent CNVR counts. In Btau_4.0, b 1,316 out of 3,346 CNVRs were unique to one sample,
2,030 CNVRs were shared by at least 2 individuals and 179 of 2,030 multiple events had a frequency >=5%. c Besides the 986 gain and 2,051 loss CNVRs, there
were 309 CNVRs containing both loss and gain events. In UMD3.1, d 1,360 out of 3,438 CNVRs were unique to one sample, 2,078 CNVRs were shared by at least 2
individuals and 230 of 2,078 multiple events had a frequency >=5%. e Besides the 1,054 gain and 2,042 loss CNVRs, there were 342 CNVRs containing both loss
and gain events.
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current CNV results seem to be more uniformly distrib-
uted, with more events detected in the centromere and
telomere regions compared to the previous results (For
example, chr10 and chr20 in Figure 1A).
We also made CNV calls using the UMD3.1 assem-

bly (Figure 1B and Table 1). For UMD3.1, 630 animals
passed the PennCNV quality filtering, 44 fewer as
compared to Btau_4.0. When comparing results be-
tween Btau_4.0 and UMD3.1, more CNVs of longer
length were found on UMD3.1 than those on Btau_4.0
(Additional file 1: Table S4 and Additional file 4:
Table S5). However, the relative differences in CNV
counts across distinct species/breeds were preserved
(i.e. T:I:C:A ratio: 45:65:53:66 vs. 75:90:85:89) and the
merged CNV region results (count and length) were
consistent.
Compared to the Btau_4.0 results, 44.86% more CNVs

(49,704) were detected within the placed autosomes and
an average of 54.90% more events (79) were obtained for
each sample on UMD3.1 (Additional file 1: Table S4).
The average length of CNV was also 18.58% larger
(47,378 bp) when using the UMD3.1 assembly coordi-
nates; however, we identified a similar number of
CNVRs (3,438 events) compared to Btau_4.0 CNVRs.
The total lengths of CNVRs were similar with compar-
able statistics (146,905,950 bp; only 2.93% larger, Add-
itional file 4: Table S5). When we assessed the difference
in CNVR type calls (gain, loss and both), counts for each
category varied less than 70 between the Btau_4.0 and
UMD3.1 assemblies.
These results were not unexpected in light of the attri-
butes of these two assemblies. As both assemblies are
based on the same raw whole-genome shotgun reads, the
most obvious difference between the two is that the
Btau_4.0 unplaced contigs from chrUn are now placed
on UMD3.1. Another difference between them is that
local duplication artifacts, or duplicated regions that
were artificially created on the Btau_4.0 assembly, were
removed on UMD3.1. As our previous segmental dupli-
cation analyses detected, 267 Mb of duplicated sequence
on Btau_4.0 were considered to be artifacts from a failure
to merge high identity alleles on the reference assembly
[41]. Our results were supported by independent FISH
experiments [42] and similar observations reported by
Zimin et al [39]. In summary, UMD3.1 seems to be more
favorable than Btau_4.0 in terms of placing unplaced
contigs and removing the unmerged alleles. As a result,
most of CNVs calls derived from chrUn of Btau_4.0
could be recovered in UMD3.1 results. It is interesting to
note even though UMD3.1’s CNV calls are more abun-
dant and larger, the merged CNVR results were almost
equivalent in terms of count and length. However, the
exact effects of local assembly differences (besides
UMD3.1’s placing unplaced contigs and removing the
unmerged alleles) on CNV calling (count and length)
warrant more detailed investigations in the future.

Quality assessment of selected CNV Events
Since most existing cattle CNV studies were based on
Btau_4.0, we first compared the identified CNV regions



Figure 1 (See legend on next page.)
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Figure 1 Cattle copy number variations derived from SNP arrays on Btau_4.0 and UMD3.1. A. On Btau_4.0, CNV regions (682 events,
139.8 Mb) derived from BovineSNP50 assay are shown in the outer circle in green (gain), red (loss) and dark blue (both), while the inner circle
shows the CNV regions (3,346 events, 142.7 Mb) derived from BovineHD assay. B. On UMD3.1, CNV regions (3,438 events, 146.9 Mb) derived from
BovineHD assay are shown in the outer circle in green (gain), red (loss) and dark blue (both), while the inner circle shows their frequencies.
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with previous published CNVs dataset [23–26] and the
segment duplication (SD) dataset [41] based on Btau_4.0
(Figure 2). Since calls on chrX were not always included
in these studies, we only compared the CNVRs detected
within the autosomes. We found that 789 of our 3346
CNVRs (65.1 Mb) overlapped with all combined nonre-
dundant published data. Detailed information of each
comparison was displayed in Figure 2. Approximately
14% of our new CNV calls (482 out of 3346 CNVRs)
overlapped with 51% (346 out of total 682 CNVR) of the
CNV regions identified in 521 animals of 21 cattle
breeds using BovineSNP50 arrays [27]. When consider-
ing the CNVR lengths, 36% of variable sequence space
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novel CNVRs, we performed 56 quantitative PCR
(qPCR) assays for 18 CNV loci in 12 animals (Additional
file 5: Table S6). All primer coordinates on both assem-
blies were given in Additional file 5: Table S6, with the
exception that primers for CNVR No. 1856 could only
be placed on the Btau_4.0 assembly. Most of the CNV
regions had two target amplicons placed near the
probes in the CNVR regions. Out of 28 CNV loci and
animal combinations, 23 (82.14%) had positive qPCR
confirmations in at least one amplicon and 18 (64.30%)
had positive results at both amplicons. If each PCR
assay was counted separately, 73.21% (41/56) were in
an agreement with the CNV status estimated by
PennCNV (Additional file 5: Table S6), which is consid-
erably higher than the previous validation rates between
48 to 60% [27].

CNVs overlap with segmental duplications and other
genomic features
We also compared the identified CNV regions with the
2,952 SD (excluding chrX and chrUn) identified by
WGAC and WSSD [41]. Agreeing with previous predic-
tions regarding cattle SDs, a local tandem distribution
pattern is predominant in our cattle CNVR dataset
(Figure 1A). About 10.07% (337/3346) of CNV regions
directly overlap with cattle SDs with an overlapping span
of 18 Mb (12.61% of the total 142.7 Mb). Approximately
16.57% (489/2952) of the SDs (excluding chrX and
chrUn) identified by WGAC and WSSD exhibit CNVs
(Figure 2C). In comparison, 25.66% of the CNVRs (175/
682) detected by using BovineSNP50 array overlap with
cattle SDs, corresponding to 16.28 Mb (11.65% of the
total 139.8 Mb) [27]. The fractions of CNVR calls that
overlap with SDs were similar (12.61% vs. 11.65%) in
both SNP array studies and they were significantly lower
than the fraction of SD-overlapping CNVRs (58.90%, 96/
163 or 60.56%, 15.2/25.1 Mb) as detected by using array
CGH [26]. This lower overlap fraction probably reflects
the fact that both SNP arrays have poor representation
within cattle SD regions. SNP density on the Bovi-
neSNP50 array drops by one-third (from 21 probes/Mb
Table 2 Gene contents of CNVRs on Btau_4.0 and UMD3.1

Cattle RefSeq in silico
human R

Btau_4.0

#genes 935 (836) 5,549 (3,1

#overlapped CNVR 703 (21%) 1,507 (45

UMD3.1

#genes 1,062 (939) 6,497 (3,8

#overlapped CNVR 817 (24%) 1,533 (45

Numbers in parentheses for #genes are the number of unique nonredundent gene
Numbers in parentheses for #overlapped CNVR are the percentages of overlapped
in unique regions down to 14 probes/Mb) in SD regions
while SNP density on the BovineHD array drops by over
61% (from 277 probes/Mb in unique regions down to
107 probes/Mb) in SD regions. We also overlapped
our CNVRs with cattle Online Mendelian Inheritance
in Animals (OMIA), Online Mendelian Inheritance in
Man (OMIM) and cattle QTL datasets (Additional
file 3: Table S3).

Gene content of CNV regions
Since UMD3.1 placed unplaced contigs and removed
unmerged alleles, we focused on further characterization
of the 3,438 high-confidence CNV regions from UMD3.1
autosomes. Additionally, we used both Btau_4.0 and
UMD3.1 assemblies and obtained similar Panther and IPA
results, as presented in Additional file 6: Table S7 and
Additional file 7: Table S8.
We investigated the gene content of CNV regions

derived from both Btau_4.0 and UMD3.1 (Table 2).
Within the 3,438 CNVRs on UMD3.1, there were 939
unique cattle RefSeq genes and 2,153 Ensembl peptides,
corresponding to 1,855 unique Ensembl genes (Table 2
and Additional file 4: Table S5). Approximately, 24%
(817/3,438) of our CNVRs spanned cattle Refseq genes
and 34% (1,165/3,438) of them overlapped with Ensembl
genes. A detailed list of CNVR-gene overlapping is dis-
played in Additional file 4: Table S5. Beside those
reported before such as ABCC4, ATP8A1, IGLL1, LYZ,
PGR, SGCD, SCP2, WC1, ULBP, OR, ZNF280A, HLA-
DQA and BLA-DQ, novel CNVR related genes or gene
families include GBP6, SCMH1, GIMAP7, UGT2B10,
ORM1 and others.
We assigned PANTHER accessions to the overlapped

peptides for CNVRs identified on both Btau_4.0 and
UMD3.1 in this study. Similar statistically significant
overrepresentations were observed for multiple categor-
ies (Additional file 6: Table S7). This set of copy number
variable genes encompasses a wide spectrum of molecu-
lar functions, biological processes, pathways, cellular
components and Panther protein classes. For example,
immune system process, cellular defense response,
mapped
efSeq

Ensembl genes Glean genes

46) 1,890 (1,788) 2,536 (2,408)

%) 1,116 (33%) 1,330 (40%)

28) 1,964 (1,855) ND

%) 1,165 (34%) ND

counts, as one gene could show up multiple times in different CNVRs.
CNVR in the total CNVRs. ND: Glean genes on UMD3.1 were not determined.
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response to stimulus, antigen processing and presenta-
tion, natural killer cell activation were among several
enriched biological processes. G-protein coupled recep-
tor activity was enriched while transcription factor and
regulation activities were under represented in the Mo-
lecular Function terms.
Our UMD3.1 CNVRs overlapped with 3,828 unique in

silico mapped human RefSeq genes (Table 2 and
Additional file 4: Table S5), of which 3,669 were mapped
as candidate genes for IPA analysis. A total of eleven
networks with an IPA score greater than 10 were identi-
fied (Table 3). A score of 10 indicates that there was less
than a 10-10 probability that the genes in the network
were associated together by chance. The identified regu-
latory networks covered a broad range of physiological
functions and processes, including inflammatory re-
sponse, cell-to-cell signaling and interaction, cell de-
velopment and cycle, lipid metabolism, normal
development and function (embryo, organism, repro-
ductive system, hematological system, skeletal and mus-
cular system), and genetic disorder (Additional file 7:
Table S8). Immunological and defense pathways were
particularly enriched in IPA Pathway and Function ana-
lyses, further confirming the Panther results. The results
of our functional analyses are in agreement with the find-
ings of previous CNV studies [23–27]. Using the
Btau_4.0 assembly, the IPA results are generally similar,
with slight differences likely attributable to differences in
assemblies and their annotations.

Conclusion
In addition to single nucleotide polymorphisms (SNPs),
CNVs have been revealed to be a substantial source of
genetic variation in cattle. In this study, we performed
two comprehensive CNV analyses based on Btau_4.0
and UMD3.1. When we compared our current and pre-
vious results across different SNP platforms on Btau_4.0,
we detected higher resolution, sensitivity and PCR
Table 3 Network analyses using IPA based on UMD3.1

ID Score Focus Molecules Top Functions

1 28 31 Reproductive System Development a

2 27 30 Inflammatory Response, Inflammatory

3 27 30 Lipid Metabolism, Molecular Transpor

4 27 30 Cellular Development, Cellular Growt

5 25 29 Cellular Assembly and Organization, C

6 17 24 Gene Expression, DNA Replication, Re

7 11 17 DNA Replication, Recombination, and

8 11 19 Cell Cycle, Cancer, Genetic Disorder

9 11 17 Cellular Development, Hematological

10 11 15 Cellular Growth and Proliferation, Tum

11 10 14 Embryonic Development, Organismal
validation rate in these current CNV datasets. Our find-
ings suggest that the use of high-density oligonucleotide
arrays may allow more precise boundary information to
be extracted for CNV detection. Therefore, the use of
high-density SNP arrays combined with improved CNV
calling algorithms seems to significantly improve the ac-
curacy of CNV calling. As a consequence, more CNVs
were identified and the CNVs identified from those SNP
arrays were more accurate and with better defined
boundaries.
In this study, we provide additional support to the ob-

servation that the distribution of CNVs varies among the
four subspecies groups. In case of the complete absence
of a particular allele of a SNP in a certain breed, the
copy number of that SNP in the breed would be biased
towards loss or deletion. While some of these breed dif-
ferences could be related to the fact that the SNP mar-
kers were designed on the reference genome sequence
(which was derived from the sequence of a Hereford
cow of European origin; L1 Dominette 01449), our ob-
servation of differential CNV counts in different breeds
and subspecies was largely consistent with their histories
and divergences.
We also systematically evaluated current results

across two existing cattle reference assemblies. Al-
though we obtained comparable CNVR results, we
found approximately 50% more and 20% longer CNVs
on UMD3.1 as opposed to those on Btau_4.0. It is
worth to note significant differences exist between dif-
ferent assemblies. Therefore it is critical to select ap-
propriate assemblies and further validate the predicted
variants experimentally.

Methods
Selection of cattle breeds and animals
Cattle selected in this study were composed of 686 indi-
viduals from 27 breeds originally, out of which, 674 dis-
tinct high quality genotyping results with call rate larger
nd Function, Cellular Development, Cellular Growth and Proliferation

Disease, Cell-To-Cell Signaling and Interaction

t, Small Molecule Biochemistry

h and Proliferation, Decreased Levels of Albumin

ellular Function and Maintenance, Cancer

combination, and Repair, Cancer

Repair, Cancer, Gastrointestinal Disease

System Development and Function, Hematopoiesis

or Morphology, Inflammatory Response

Development, Skeletal and Muscular System Development and Function
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than 99.70% remained after PennCNV quality filtering.
This panel included 447 animals from 18 taurine breeds,
113 animals from three breeds of predominantly indicine
background, 67 animals from three breeds that are Taur-
ine × Indicine Composites, and 47 animals from three
African breeds (Additional file 1: Table S1). It is worth
to note that for each subspecies, breeds or individuals
within breeds were sampled from more than one contin-
ent to represent the global cattle population. This panel
contained 41 trios where both parents and an offspring
were genotyped.

Identification of cattle CNVs
For research use, the Infinium BovineHD BeadChip
array features 786,799 evenly spaced SNPs probes based
on assembly UMD3.1 and out of which, 783,617 were
placed on autosomes and the X chromosome. This
multi-sample genotyping panel delivers >99% call rate
and >99.9% reproducibility, along with the ability to de-
tect CNV (http://www.illumina.com/Documents//pro-
ducts/datasheets/datasheet_bovineHD.pdf). Since we
also surveyed on Btau_4.0, SNP probe coordinates were
migrated from UMD3.1.0 to Btau_4.0 by using both
UCSC liftOver (http://hgdownload.cse.ucsc.edu/admin/
exe/) and Blat tools. Approximately 97% (763,572/
783,617) of the probes on autosomes and the X chromo-
some were converted successfully. CNV was detected
using the PennCNV algorithm as described previously
[27]. PennCNV incorporates multiple sources of infor-
mation together, including Log R Ratio (LRR) and B Al-
lele Frequency (BAF) at each SNP marker for each
individual, more realistic models for state transition be-
tween different copy number states based on the dis-
tance between neighboring SNPs, population frequency
of B allele (PFB), the allele frequency of SNPs, and the
pedigree information where available, into a hidden
Markov model (HMM). Both LRR and BAF of each SNP
for each individual were exported from Illumina Geno-
meStudio Genotyping Module v1.9 software using the
default clustering file. The PFB file was calculated as the
average BAF for each marker in this population. Gen-
omic waves, calculated as the GC content of the 1 Mb
genomic region surrounding each marker (500 kb each
side), were corrected by performing the -gcmodel op-
tion. Pedigree information including 41 trios were used
to improve the accuracy of CNV identification. As
described previously [27], PennCNV algorithm (with
options: -test or -joint) was applied to autosomes (with
option: -lastchr 29) to detect cattle CNV. After detec-
tion, 674 out of 686 animals passed the standard filtering
of low-quality samples with the default cutoffs (standard
deviation of LRR as 0.30, BAF drift as 0.01, and waviness
factor as 0.05). The final CNVs set was the nonredun-
dant combination of CNVs from the -joint results for
family trio members and the -test results for unrelated
individuals. CNVRs were determined by aggregating
overlapping CNVs identified across samples.

qPCR validation
Primers were designed using Primer3 (http://frodo.wi.
mit.edu/primer3/) with a limitation of amplicon length
to 150 bp to 250 bp, as well as CG clamp as 2. All other
Primer3 settings were left at the default values. Primer
information is shown in Additional file 5: Table S6.
qPCR experiments were conducted using SYBR green
chemistry in triplicate reactions, each with a reaction
volume of 25 μl. All reactions were amplified on a
BioRad MyIQ thermocycler. An intron-exon junction of
the BTF3 gene was chosen as a reference location for all
qPCR experiments. Analysis of resultant crossing thresh-
olds (CT) was performed using the relative comparative
CT method. Calibrations of CT values were derived from
amplification of reference and test primers on a genomic
DNA template derived from sequenced cow, L1 Domin-
ette 01449, an European-origin Hereford. Since all refer-
ence and test primers did not overlap with any of
Dominette’s CNV regions, two-copy states were assumed
for both amplicons in Dominette. The copy number for
each test region was calculated as 2(1+dd CT).

Gene content
Gene content of cattle CNV regions was assessed using
cattle RefSeq and in silico mapped human RefSeq, the
Glean consensus gene set (the UCSC Genome Browser
website at http://genome.ucsc.edu/), Ensembl genes
(ftp://ftp.ensembl.org/pub/current_fasta/bos_taurus/pep/).
We obtained a total of 26,977 and 22,118 bovine pep-
tides from Ensembl on Btau_4.0 and UMD3.1 respect-
ively. In addition, using the PANTHER classification
system, we tested the hypothesis that the PANTHER
biological process, molecular function, pathway, cellular
component, and Panther protein class terms were under-
or overrepresented in CNV regions after Bonferroni cor-
rections [26]. It is worth noting that a portion of the genes
in the bovine genome has not been annotated or has been
annotated with unknown function, which may influence
the outcome of this analysis. Overlapping between CNVRs
and additional genomic features such as cattle OMIA,
OMIM and cattle QTL datasets were performed as
described [26].
In silico mapped human RefSeq genes in CNVRs were

analyzed using Ingenuity Pathways Analysis (IPA) v9.0
(Ingenuity Systems, Redwood City, CA) as previously
described [27]. The accessions of unique genes were
imported into the software and subsequently mapped to
their corresponding annotations in the Ingenuity Path-
ways Knowledge Base. The ''Core Analysis” function
included in IPA (http://www.ingenuity.com/) was used

http://www.illumina.com/Documents//products/datasheets/datasheet_bovineHD.pdf
http://www.illumina.com/Documents//products/datasheets/datasheet_bovineHD.pdf
http://hgdownload.cse.ucsc.edu/admin/exe/
http://hgdownload.cse.ucsc.edu/admin/exe/
http://frodo.wi.mit.edu/primer3/
http://frodo.wi.mit.edu/primer3/
http://genome.ucsc.edu/
ftp://ftp.ensembl.org/pub/current_fasta/bos_taurus/pep/
http://www.ingenuity.com/
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to analyze these genes in the context of networks, bio-
logical functions and Pathways. The networks accommo-
dated these unique genes (also called focus molecules)
were identified in comparison with the comprehensive
global networks developed by IPA. The molecule net-
work was illustrated with an assigned relevance score,
the number of focus molecules, as well as the top func-
tion of the networks. In the process of analysis, each net-
work was set to have a maximum of 35 molecules by
default. We used only human genes and all confidence
levels, including evidences of experimentally observed,
predicted high or moderate confidence. The top signifi-
cant biological functions and Pathway were listed.

Additional files

Additional file 1: Table S1. Numbers of subspecies, breeds, animals
and trios used to call CNVs genotyped by BovineHD assay. Table S2. The
summary of CNVs or CNVRs for each specie/breed based on Btau_4.0.
Table S4. The summary of CNVs or CNVRs for each specie/breed based
on UMD3.1.

Additional file 2: Figure S1. Comparison of cattle copy number
variations derived from BovineHD and BovineSNP50 assays on Batu_4.0.

Additional file 3: Table S3. Btau_4.0 CNV regions, their frequencies,
corresponding gene contents, QTL, OMIM, and OMIA overlapping
information.

Additional file 4: Table S5. UMD3.1 CNV regions, their frequencies,
corresponding gene contents.

Additional file 5: Table S6. The summary of PCR results.

Additional file 6: Table S7. Over/Underrepresentation of PANTHER
terms (molecular function, biological process, pathway, cellular
component and PANTHER protein class) on Batu_4.0 and UMD3.1.

Additional file 7: Table S8: Network, Biological function and Pathway
analyses using IPA on Batu_4.0 and UMD3.1.
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