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Abstract

Background: Relationship between the level of repetitiveness in genomic sequence and genome size has been
investigated by making use of complete prokaryotic and eukaryotic genomes, but relevant studies have been rarely
made in virus genomes.

Results: In this study, a total of 257 viruses were examined, which cover 90% of genera. The results showed that
simple sequence repeats (SSRs) is strongly, positively and significantly correlated with genome size. Certain repeat
class is distributed in a certain range of genome sequence length. Mono-, di- and tri- repeats are widely distributed
in all virus genomes, tetra- SSRs as a common component consist in genomes which more than 100 kb in size; in
the range of genome< 100 kb, genomes containing penta- and hexa- SSRs are not more than 50%. Principal
components analysis (PCA) indicated that dinucleotide repeat affects the differences of SSRs most strongly among
virus genomes. Results showed that SSRs tend to accumulate in larger virus genomes; and the longer genome
sequence, the longer repeat units.

Conclusions: We conducted this research standing on the height of the whole virus. We concluded that genome
size is an important factor in affecting the occurrence of SSRs; hosts are also responsible for the variances of SSRs
content to a certain degree.
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Background
Viruses are small infectious agents, which are found
wherever there is a life and have probably existed since
living cells first evolved [1,2]. There are millions of virus
types [3]. Wherein, those virus species which have been
reported were sorted into dsDNA, ssDNA, dsDNA-RT,
ssRNA-RT, dsRNA, (−)ssRNA and (+)ssRNAviruses based
on their genome types; they can also be sorted into algae,
archaea, bacteria, fungi, invertebrates, plants, protozoa
and vertebrates viruses based on the general host cat-
egories according to the ICTV (International Committee
on the Taxonomy of Viruses) [4]. These viruses can infect
all types of organisms including archaea, bacteria, plants
and animals [5]. Many common human diseases are
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caused by viruses, such as common cold, influenza,
chickenpox, cold scores, etc. In addition, many serious
diseases such as ebola, AIDS, avian influenza and SARS
are also caused by viruses. What's more, many genotypes
of viruses are responsible for cancers, for example, hu-
man papillomavirus, hepatitis B virus, hepatitis C virus,
Epstein-Barr virus, Kaposi's sarcoma-associated herpes-
virus and human T-lymphotropic virus, and so on
(http://en.wikipedia.org/wiki/Virus). Though there are
three main theories on the origin of virus: regressive,
cellular and coevolution origin theory, it is still unclear
how viruses originated because they do not like other
organisms forming fossils [6,7]. So studying viruses via
molecular information has been the most useful means
in investigating how they arose and evolved [6,8-10].
Success of viral genome researches will promote our un-
derstandings and solutions of numerous problems, in-
cluding their origin, evolution, infection mechanism,
disease treatment, etc. The genome sizes (defined as
haploid DNA content) of viruses vary greatly between
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species. The smallest viral genomes — the ssDNA circo-
viruses, family Circoviridae — code for only two proteins
and have a genome size of only 2 kb; the largest — mini-
viruses have genome sizes of over 1.2 Mb and code for
over one thousand proteins [11,12]. Two main mechan-
isms have been implicated in changes of genome size:
one is the accumulation of transposable elements [13,14];
the other is the accumulation of tandemly repetitive se-
quences [15].
Simple sequence repeats (SSRs), also known as micro-

satellites, generally defined as simple sequences of 1–6
nucleotides that are repeated multiple times and are
present in both coding and non-coding regions of the
genome [16,17]. SSRs are ubiquitous and highly abun-
dant in eukaryotic [18-21] and prokaryotic genomes
[22,23]. DNA repeats are primarily expanded by three
models: replication, repair and recombination [24]. Mei-
otic recombination plays a key role in the maintenance
of sequence diversity in the human genome, and SSRs
have been reported to be hot spots for recombination as
well as sites for random integration [25,26]. Thus, altera-
tions in SSRs lie at the center of DNA evolution and se-
quence diversity that drives adaptation; on the other
hand, changes in repetitive sequences can result in dele-
terious effects on gene expression and function, leading
to diseases [17]. The instability of SSRs was identified to
be a pathway to lead to colorectal cancer [27]. It is now
accepted that unstable maintenance of microsatellites
occurs in about 15% of sporadic colorectal cancers [28,29].
Microsatellite instability is also frequently associated with
other diseases such as ovarian cancers, malignant tumors
of endometrium [30], small intestine [29], stomach [31],
skin [32] and brain, etc. The features of microsatellite in-
stability observed in bacteria, yeast, mice and man can
provide general clues as to how genomes evolve and how
certain instability could contribute to human disease [17].
Some pathogens use SSRs in a strategy that counteracts
the host immune response by increasing the antigenic
variance of the pathogen population [33].
Genome sequences with diverse lengths make it pos-

sible to investigate the relationship between genome size
and accumulation of SSRs in all virus genera whose
complete genome sequences have been reported. There-
fore, scatter plots and regression analysis were per-
formed to survey the correlation between repetitiveness
(SSRs occurrence as well as SSRs length) and genome
size. Distributions of different repeat classes were also
surveyed among virus genomes of various sizes. While,
relative abundance and relative density were examined to
make the SSRs comparison parallel among differently
sized species genomes; principal component analysis
(PCA) was designed to investigate which repeat class(es)
made a greater contribution to the variance among virus
species as well as the relationships between repeat classes.
Methods
Genome sequences
The Eighth Report of ICTV (International Committee on
Taxonomy of Viruses) provided information on 3 orders,
73 families, 9 subfamilies, 287 genera and 1938 virus spe-
cies [4]; wherein 257 genera have been reported on com-
plete genome sequences on NCBI and one typical species
was identified as the representative for each genus ac-
cording to the Listing in Taxonomic Order (http://ictvdb.
bio-mirror.cn/Ictv/index.htm). Therefore, the 257 gen-
ome sequences were selected as samples for the analysis
of relationship between SSRs distribution and genome
size in the level of the whole virus. All the genome se-
quences were downloaded in both Genbank and FASTA
formats from the NCBI (ftp://ncbi.nlm.nih.gov/genbank/).
Sequences obtained include DNA and RNA, so both T
and U bases were represented with T. Some genomes
were segmented, multipartite and consist of two or more
segments with various sizes (Additional file 1).

SSRs extraction
SSRs were identified and localized using the software
SSR Identification Tool (SSRIT), which identifies perfect
di-, tri-, tetra-, penta- and hexanucleotide repeats. We
have considered only those repeats, wherein the motif
was repeated more than 3 times for further analysis.
Mononucleotide repeats (with a repeat length of 6 nt)
were identified using the tool IMEX (Imperfect Micro-
satellite Extractor), which can extract perfect micro-
satellites as well as imperfect microsatellites. Here we
presented the data for all perfect repeat types. No dis-
tinctions between the occurrence of repeats in coding
and noncoding regions were made, the rationale for this
decision was that the coding regions often account for
the large proportion (mean value approximately 90%);
while the sequences of noncoding regions are usually
very short; moreover, the overlap phenomenon is very
common in virus genomes, and many of the details were
presented in Additional file 1.

Relative abundance and relative density
These total numbers have been normalized by using
relative abundance and relative density of SSRs to allow
the comparisons to be parallel among genome sequences
with different sizes. Relative abundance was calculated
by dividing the number of SSRs by kilo base pair (kb) of
sequences; and relative density (bp/kb) was calculated by
dividing the total sequences analyzed (kb) by the number
of base pairs of sequence contributed by each SSR.

PCA
Principal Components Analysis (PCA) is a well known
statistical technique which has wide ranging applications.
The main goal of PCA is to reduce the dimensionality by
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Figure 1 Geometric meaning of PCA explained by using
bivariate normally distributed variables. Scatters of sample are
distributed in the shape of ellipse roughly, then orthogonally rotate
the original plane rectangular coordinates composed of X1 and
X2with an angle θ. By now, two original correlated variables(X1, X2)
were transformed into two integrated and uncorrelated variables
(Y1, Y2). Because the variance of the original variables is greater in Y1
axis than in Y2 axis, so the minimum of information will be lost if
integrated variable Y1 is used for replacing all original variables.
Hence,Y1 is defined as the first principal component; in contrast,
variance of variables is smaller in Y2 axis, and it can explain minor
information relative to Y1, soY2 is called the second principal
component.
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decomposing the total variances observed in an original
data set. That is to say, we use PCA method to transform
a set of original variables into a set of new and uncorre-
lated variables. The mathematic principle of PCA method
lies in coordinate conversion. Consequently, PC (princi-
pal component) is a linear combination of the original
variables.
Mathematical model. If the sample size isn, and each

sample has P observed index (X1, X2,⋯,Xp), we can get
the following matrix of the original dataset:

X ¼
x11 x12 ⋯ x1p
x21 x22 ⋯ x2p
⋮ ⋮ ⋮
xn1 xn2 ⋯ xnp

2
664

3
775 ¼ X1;X2;⋯;XPð Þ

Wherein, Xi ¼
x1i
x2i
⋮
xni

2
664

3
775; i ¼ 1; 2;⋯; p:

Making linear combinations using the p variables
(X1, X2,⋯,Xp) of the original data matrix X:

Y ¼
Y1 ¼ e11X1 þ e21X2 þ⋯þ ep1Xp

Y2 ¼ e12X1 þ e22X2 þ⋯þ ep2Xp

⋯
Yp ¼ e1pX1 þ e2pX2 þ⋯þ eppXp

8>><
>>:

Hence, Yi ¼ e1iX1 þ e2iX2 þ⋯þ epiXp; i ¼ 1; 2;⋯; p
Here, Yi is the principal component, but it must meet

the following conditions: (1) e1i2 þ e2i2 þ⋯þ epi2 ¼
1; i ¼ 1; 2;⋯; pð Þ ; ( 2 ) t h e r e i s n o c o r -
r e l a t i o n b e t w e e n Y i and Yj ( i 6¼ j; i; j ¼
1; 2;⋯; p ); (3) the variance of Yi is the maximum
during Yi;Yiþ 1;⋯;Yp; (4) Var Y1ð Þþ Var Y2ð Þ þ⋯þ
Var Ypð Þ ¼ Var X1ð Þ þ Var X2ð Þ þ⋯ þVar Xpð Þ

Geometric meaning. Supposing that the sample con-
tains n individuals, each individual has two variables
X1, X2, and in addition, variables subject to the normal
distribution. That is, we discuss the geometric meaning
of PCA by using bivariate normally distributed variables.
Therefore, scatters of sample are roughly distributed in
the shape of ellipse (Figure 1). Then orthogonally rotate
the original plane rectangular coordinates composed of
X1 and X2 with an angle θ, thus, two original correlated
variables (X1, X2) were transformed into two integrated
and uncorrelated variables (Y1, X2), and the correlation
between the original and new axes is as following:

F1 ¼ X1 cosθ þ X2 sinθ
F2 ¼ �X1 sinθ þ X2 cosθ

�

Because the variance of the original variables is greater
in Y1 axis than in Y2 axis, so a minimum of information
will be lost if integrated variable Y1 is used for replacing
all original variables. Hence, Y1 is defined as the first
principal component; in contrast, the variance of vari-
ables is smaller in Y2 axis, and it can explain minor in-
formation relative to Y1, so Y2 is called the second
principal component.

Results
To obtain an expansive and unbiased data set, all virus
genera with complete genome sequences reported on
NCBI were scanned for SSRs analysis; wherein, one typical
species was selected as the representative for each genus
according to the ICTVdb (http://ictvdb.bio-mirror.cn/
Ictv/index.htm). Therefore, we analyzed perfect SSRs over
6 bp long, from the 257 completely sequenced virus gen-
omes. While, the genome size varies widely, ranging from
1682 bp (S170-(−)ssRNA-31, Hepatitis delta virus,
NC_001653) to 407339 bp (S42-dsDNA-42, Emiliania
huxleyi virus 86, NC_007346) (Additional file 1).

Relationship between SSRs and genome size
We constructed two sets of scatter plots and then per-
formed regression analysis of SSRs (occurrence and
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Figure 2 (See legend on next page.)
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(See figure on previous page.)
Figure 2 Regression analysis of relationship between SSRs occurrence and genome size. (A) Scatter plot of SSRs occurrences in all
analyzed virus genomes. (B) Scatter plot of SSRs occurrences in analyzed virus genomes > 30000 bp. (C) Scatter plot of SSRs occurrences in
analyzed virus genomes < 30000 bp.
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length) versus complete genome size for all analyzed
viruses to examine the relationship between SSRs and
genome size. Above all, scatter plots were made, in
which, genome size was taken as an independent vari-
able, and all analyzed data were split into two groups
(genome > 30000 bp and ≤ 30000 bp) to make the scat-
ters and curves natural and visible (Figures 2, 3); and
then 10 curves (linear, logarithmic, inverse, quadratic,
cubic, compound, power, S, growth and exponential)
were fitted according to their respective mathematical
models by using the software SPSS 17.0. Parameter esti-
mates and visual inspection showed that goodness fit of
data varies greatly to different models; nevertheless,
curves with the best goodness of fit were picked out for
correlation analysis between SSRs (occurrence and
length) and genome size (Figures 2, 3). The number of
repeat arrays varies from 4 in Nodamura virus genome
(S206-(+)ssRNA-36) to 3823 in Amsacta moorei entomo-
poxvirus 'L' genome (S33-dsDNA-33) (Additional file 2).
The power function model provides the best fitted
values towards all studied SSRs occurrence and genome
size by regression analysis, and results display a very
strong and significant positive relationship between the
occurrence of SSRs and genome size clearly (R2 = 0.919,
P < 0.001) (Figure 2A). Power function and cubic model
best fit for the data of genome > 30000 bp and ≤ 30000 bp
group, respectively (Figure 2B,C). Clearly, the SSRs oc-
currence is strongly, significantly and positively related
to the genome size in both genome > 30000 bp (R2 =
0.815, P < 0.001) and ≤ 30000 bp (R2 = 0.718, P < 0.001)
group. Especially in the group of genome ≤ 30000 bp,
the values of SSR occurrences fluctuate with a relative-
ly narrow range. An exceptional case is worth noting.
One point of the scatter plot locating far above the fit-
ted curve represents the value of SSRs in Amsacta moorei
entomopoxvirus 'L' genome (S33-dsDNA-33, NC_002520)
with the size of 232392 bp, in which the SSRs occurrence
is a total of 3823, far more than SSRs in any other ana-
lyzed virus genome.
The length of SSRs varies from 27 bp in Nodamura

virus genome (S206-(+)ssRNA-36) to 26829 bp in Amsacta
moorei entomopoxvirus 'L' genome (S33-dsDNA-33); and
the percentage of SSRs varies from 0.59% in Nodamura
virus genome (S206-(+)ssRNA-36) to 11.54% in Amsacta
moorei entomopoxvirus 'L' genome (S33-dsDNA-33) (Add-
itional file 3). Similarly, we investigated the correlation
between SSRs length and genome size. Figure 3 showed
that the distribution of SSRs length is similar to the SSRs
occurrence in differently-sized genomes, and it indicated
that SSRs length is also significantly and positively corre-
lated with the genome size to all analyzed data (R2 =
0.915, P < 0.001), to genome >30000 bp group (R2 = 0.818,
P < 0.001) and to genome ≤ 30000 bp (R2 = 0.705, P <
0.001) group. Likewise, Amsacta moorei entomopoxvirus
'L' genome (S33-dsDNA-33, NC_002520) shows features
out of the ordinary, with the total SSRs length of
26829 bp and SSRs percentage of 11.54%, occupying the
number-one spot in length and percentage of SSRs
among all analyzed virus genomes. Except that, other
points float up and down the curve with a small range
(Figure 3). The above results indicated that genome size
is an important factor in affecting repetitiveness of
microsatellites in viruses.

Relationship between repeat class and genome size
We surveyed the distribution of different SSR classes in
virus genomes to investigate the relationship between re-
peat classes (mono-, di-, tri-, tetra-, penta- and hexa-)
and genome sequence length. The data of genome
size < 2 kb group are not in our consideration here, be-
cause too small sample sizes lead to statistical insignifi-
cance. Data presents such a trend that, for the same
repeat class, the ratio of genomes with corresponding
SSRs to all genomes increases with the genome sequence
growing, although the genome distribution is uneven
among different genome ranges (Table 1). For example,
the ratio of genomes with hexanucleotide SSRs is 0 in
group of 2 ~ 5 kb, and it is 1.1% in 5 ~ 10 kb, 2.6% in
10 ~ 20 kb, 6.7% in 30 ~ 100 kb and 63.9% in > 100 kb
group, respectively. For the same range of genome sizes,
tendency seems to be that the ratio decreases with the
increase of the length of repeat unit. For example, in the
genome range of 10 ~ 30 kb, the ratio is 100% (mono-),
100% (di-), 98.7% (tri-), 19.2% (tetra-), 2.6% (penta-) and
2.6% (hexa-), respectively. Observed value per virus gen-
ome showed a rising trend with the increase of the gen-
ome sequence. Additionally, long repeat units such as
penta- and hexa- SSRs were rarely, or even not, observed
in small genomes, and certain repeat unit class distribu-
ted in genomes with a certain range of sequence length.
All mono- and di- repeats were observed in analyzed
genomes except Duck hepatitis B virus (S103-dsDNA-
RT-2), Cryphonectria parasitica mitovirus 1 (S174-(+)
ssRNA-4) and Nodamura virus (S206-(+)ssRNA-36) in
which mono- repeats were not found; tri- repeats
seemed to widely distribute in all virus genomes; and
tetra- SSRs, as a common component, consist in gen-
omes with size more than 100 kb (94.4% of the virus



Figure 3 (See legend on next page.)
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Figure 3 Regression analysis of relationship between SSRs length and genome size.
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genomes contain tetra- in group of genome >100 kb);
In contrast, it is rarely observed in genomes with
size < 100 kb; and genomes containing penta- and hexa-
SSRs are not more than 50% in < 100 kb group. More-
over, the number of tetra-, penta- and hexa- SSRs is very
small in genome range of < 100 kb (Table 1). Results
indicated that the correlation is strong between length
of repeat unit and genome size. The longer the genome
sequence, the longer repeat units. For the same repeat
unit class such as mononucleotide SSRs, the number of
SSRs increases with the genome length increasing. It
confirmed a preference that SSRs tend to accumulate in
larger virus genomes.

Relative abundance and relative density of SSRs
Because of the irregular sizes of analyzed virus genomes,
we calculated the relative abundance and relative density
of SSRs to make the comparison of SSRs abundance par-
allel among differently-sized genomes. Frequency of
virus genomes with the SSRs relative abundance of
2.0 ~ 6.0 is quite high with the value of 212 (82.8% of all
analyzed viruses). Wherein, 108 genomes (42.2% of all
analyzed viruses) were found to have the SSRs relative
abundance of 3.0 ~ 4.5. However, genomes with the SSRs
relative abundance of < 2.0 and > 6.0 are relatively fewer
(with the total number of 44, accounting for 17.2% of all
analyzed viruses) (Figure 4, Additional file 4). Paralleling,
frequency of genomes is relatively high in the SSRs rela-
tive density range of 12 ~ 44 bp/kb with the genome
number of 226 (88.3% of all analyzed viruses), and 147
genomes (57.4%) have the SSRs relative density among
16~ 32 bp/kb; moreover, 85 genomes (33.2%) have the
SSRs density of 20 ~ 28 bp/kb (Figure 5, Additional file
5). The relationship between SSRs relative abundance,
relative density and genome size were investigated re-
spectively. Scatter plots showed that the correlations be-
tween the SSRs relative abundance and genome size
Table 1 Distribution of repeat classes in different ranges of g

Range
(kb)

Geno.
No.1

Mono- Di- Tri-

G .N. R.2 %3 O. V.4 G .N. R. % O. V. G .N. R. %

~ 2 2 2 100 10 2 100 7 2 10

2 ~ 5 32 29 90.6 162 32 100 268 28 87

5 ~ 10 94 94 100 851 94 100 1585 90 95

10 ~ 30 78 78 100 1482 78 100 2822 77 98

30 ~ 100 15 15 100 1020 15 100 1183 15 10

100 ~ 410 36 36 100 16009 36 100 19587 36 10
1 Genome number, e.g., the number of genomes is 32 with the size of 2 ~ 5 kb; 2 G
genomes from which mononucleotide SSRs were extracted in the genome range o
SSRs, e. g., a total of 162 mononucleotide repeat motifs were extracted from the ge
and between the relative density and genome size are
quite weak (Additional file 6, Additional file 7). The
results indicated that the genome size has slightly
affected the relative abundance and relative density of
SSRs in virus genomes. Chen et al. [34] also found that
the relative abundance and relative density of SSRs were
not significantly related to genome size. On the contrary,
SSRs are distributed in the virus genomes with a certain
proportion.

PCA applying to SSRs study
PCA was used to examine which factor(s) primarily lead
(s) to differences in SSRs abundance among the virus
species. The sample with the size of 257 (n = 257 virus
genomes) contains 6 variables (p = 6, including the per-
centages of mono-, di-, tri-, tetra-, penta-, hexa-, respect-
ively). Di- SSRs is the most and hexa- SSRs is the least
on average, but the standard deviation is very large for
each repeat unit class among the virus genomes (Ad-
ditional file 8). Even so, correlation is still strong and
extremely significant between the original variables (Ad-
ditional file 9). The results showed that the two principal
components with eigenvalues of 4.041 and 0.811 together
can account for 80.869% of all differences of SSRs abun-
dance among viruses. Wherein, the first component can
account for 67.351% and the second 13.518% of all var-
iances, respectively. Other components played a less
important role in explaining the differences of SSRs
abundance among virus genomes. The comparison of the
parameters' coefficients for the first and second com-
ponents showed that the first component has a major
loading on the difference of SSRs during analyzing
genomes (Table 2). The results indicated that the SSRs
differences among virus genomes are mainly due to
the following parameters: mono-, di-, tri- and tetra-.
Wherein, the variable of di- affects the differences of SSRs
among virus genomes most strongly with the loading of
enome size

Tetra- Penta- Hexa-

O. V. G .N. R. % O. V. G .N. R. % O. V. G .N. R. % O. V.

0 3 1 50 1 0 0 0 0 0 0

.5 81 2 6.3 4 0 0 0 0 0 0

.7 363 9 9.6 11 1 1.1 1 1 1.1 1

.7 626 15 19.2 17 2 2.6 4 2 2.6 2

0 342 4 26.7 5 2 13.3 3 1 6.7 1

0 5440 34 94.4 236 19 52.8 40 23 63.9 121

enome number with corresponding repeat class, e. g., there are 29 virus
f 2 ~ 5 kb; 3 Ratio of G. N. R. to Geno. No.; 4 Observed value of corresponding
nome range of 2 ~ 5 kb.



Figure 4 Histogram of SSRs relative abundance. The horizontal
axis represents the relative abundance of SSRs in all analyzed virus
genomes. The vertical axis represents the genome frequency with
the corresponding SSRs relative abundance. The definition of relative
abundance of SSRs can be seen in MATERIAL AND METHODS.
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0.939, followed by tri-, mono- and tetra-. In this compo-
nent, penta- and hexa- played relative minor role in
explaining the differences of SSRs among virus genomes.
In the second component, hexa- with high positive co-
efficient and tetra-, penta- with negative coefficients
Figure 5 Histogram of SSRs relative density.
hexa- played the most important role in explaining differ-
ences of SSRs abundance. Overall, the results of PCA
indicated that di- affected the SSRs variances among
virus genomes most strongly, followed by tri-, mono-
and tetra-; and then by hexa-; penta- played the weakest
role in influencing the variances of SSRs abundance
among viruses.
All results of Kaiser-Meyer-Olkin (KMO), Bartlett's

and scree test indicated that it is significantly meaningful
to analyze our data using PCA (Table 2). The KMO
measure with the value of 0.866 is close to 1, and Bartle-
tt's test (< 0.001) approximates to 0, and scree plot dis-
plays the "cliff" and the "screes" vividly (Additional file 10).
Moreover, the correlation is strong between the original
variables (Additional file 9).

Preference of SSRs
SSRs vary greatly in repeat classes and motifs among an-
alyzed virus genomes (Table 3, Additional file 11, Add-
itional file 12, Additional file 13 and Additional file 14).
Dinucleotide SSRs accounts for the largest proportion of
48.68% in all repeat classes, followed by mono- (37.36%)
and trinucleotide SSRs (13.11%). Both A and T mono-
SSRs are much more than C and G SSRs, and they make
up about 16.38%, 15.54%, 2.74% and 2.69% of all SSRs in
analyzed viruses respectively. AT/TA SSRs predominate
in dinucleotide repeats with the proportion of 17.27%,
and it is slightly more than A and T mono- SSRs (16.38%,
15.54%); other di- repeat motifs are neck and neck in
occurrence, but they are all higher than C and G mono-
SSRs (Table 3). Repeat motif group of AAT/ATA/ATT/
TAA/TAT/TTA showed the highest percentage and
AGT/ACT/CTA/GTA/TAC/TAG showed the lowest per-
centage in tri- SSRs. Tetra-, penta- and hexanucleotide
SSRs are rare, accounting for 0.5% more or less. It's ab-
normal that penta- SSRs are less than hexa- SSRs with
0.09%, which is approximately only one third of hexa-
SSRs. However, it is usually assumed that the longer re-
peat unit, the lower frequency it occurred. Repeat motifs
differ greatly among different virus genomes (details in
Additional file 11, Additional file 12, Additional 13, Add-
itional file 14).

Discussion
These analyses extend those in Chen et al. [34] in three
ways: firstly, by using larger sample such that these ana-
lyses cover almost all taxonomic virus genera; secondly,
by making the data more comprehensive because the
genome size varies greatly, ranging from 1682 bp (S170-
(−)ssRNA-31, Hepatitis delta virus, NC_001653) to
407339 bp (S42-dsDNA-42, Emiliania huxleyi virus 86,
NC_007346), (Additional file 1); and thirdly, by applying
statistically significant methods. The above extension
made it possible to investigate the relationship between



Table 2 Loadings of variables on the first two extracted principal components

Variable PC 1 PC 2

Mono- 0.885 −0.100

Di- 0.939 −0.036

Tri- 0.892 −0.035

Tetra- 0.875 −0.138

Penta- 0.752 −0.206

Hexa- 0.500 0.859

Eigenvalue 4.041 0.811

% of Variance 67.351 13.518

Equation Y1 = 0.440X1 + 0.467X2 + 0.444X3 + 0.435X4 + 0.374X5 + 0.248X6 Y2 =−0.111X1-0.040X2-0.038X3-0.153X4-0.229X5 + 0.953X6

Cumulative % 80.869

KMO Measure 0.866

Bartlett's Test < 0.001 (df = 15)

Scree Test Y

Analyzed No. 257

Table 3 Frequency of repeat motifs (group) in all
analyzed virus genomes

Repeat motif (group) Frequency Percentage (%)

Mono- 19534 37.36

A 8564 16.38

C 1434 2.74

G 1408 2.69

T 8128 15.54

Di- 25452 48.68

AC/CA 3358 6.42

AG/GA 3124 5.97

AT/TA 9029 17.27

CG/GC 4094 7.83

CT/TC 2664 5.09

GT/GT 3183 6.09

Tri- 6855 13.11

AAT/ATA/ATT/TAA/TAT/TTA 1447 2.77

AAC/ACA/CAA/GTT/TGT/TTG 666 1.27

AAG/AGA/CTT/GAA/TCT/TTC 910 1.74

ACC/CAC/CCA/GGT/GTG/TGG 613 1.17

ACG/CGA/CGT/GAC/GTC/TCG 479 0.92

AGT/ACT/CTA/GTA/TAC/TAG 228 0.44

AGC/CAG/CTG/GCA/GCT/TGC 540 1.03

AGG/CCT/CTC/GAG/GGA/TCC 538 1.03

ATG/ATC/CAT/GAT/TCA/TGA 736 1.41

GGC/CCG/CGC/CGG/GCC/GCG 698 1.33

Tetra- 274 0.52

Penta- 48 0.09

Hexa- 125 0.24

Total 52288 100.00

Zhao et al. BMC Genomics 2012, 13:435 Page 9 of 12
http://www.biomedcentral.com/1471-2164/13/435
repetitiveness of microsatellites and genome size more
fully and deeply.
The previous analysis [34] simply considered the cor-

relation between microsatellites and genome size based
on relatively small sample with 54 complete Hepatitis C
virus (HCV) genomes, and they found that the number
of SSRs is weakly correlated with genome size. We
believe that Chen's result is lacking of statistical sig-
nificance due to the relatively small sample size and uni-
form genome length. Here, the sample made up of 257
representative virus genome sequences was designed to
investigate the relationship between SSRs and genome
size on the level of the whole virus. The result of our
data showed a very strong and significant positive rela-
tionship between the occurrence, or length of SSRs and
genome size with the value of R2 = 0.919, P < 0.001
(Figure 2A) and R2 = 0.915, P < 0.001 (Figure 3A), re-
spectively. That is, the longer the virus genome se-
quence, the more SSRs extracted. Hancock [15,35,36]
confirmed that the simple sequence repeats were posi-
tively and significantly correlated with the genome size
in both archaea and eubacteria, and SSRs accumulate
preferentially in organisms with larger genomes. More-
over, there is evidence proved that short SSRs (1–4 bp
length) exist in reduced genomes, but long SSRs (5–11 bp
length) consist in larger genomes in prokaryotes [23]. The
overall level of repetition in genomes is related to genome
size and to the degree of repetition, and the entire genome
accepts simple sequences in a concerted manner when
its size increases [36,37]. A relative scarcity of repeating
DNA is a major factor in causing the relatively compact
size of the avian genome [38,39]. What's more, differ-
ences in genome size account for approximately 10% of
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the variance in genomic repetition in archaea and eu-
bacteria [15], suggesting that other factors can also play
important roles. DNA structure and base-stacking deter-
mined the number and length distributions of microsa-
tellites in vertebrate genomes over evolutionary time
[18]. Hosts are responsible for the variances of SSRs con-
tent to a certain degree. For example, with the similar
genome size, viruses infecting vertebrates and inverte-
brates tend to be higher than viruses attacking bacteria in
SSRs content, relative abundance and relative density of
SSRs overall (Additional file 15). This can be explained
by the following statements. Genomes of reptiles are esti-
mated to consist of about 30-50% repeats, birds have
been estimated to consist of 15-20% of repeats [40,41],
Mus musculus of 26.1% [42,43], and 44.9% of human
genome were occupied by repeats [44,45]. While SSR
tracts make up 2.4% of the E. coli genome [46], signifi-
cantly less than vertebrates'. SSRs have been reported to
be hot spots for recombination as well as sites for ran-
dom integration [25,26]. Thus, the increase of viral SSRs
content is maybe due to combining partial genome
sequences of hosts in the process of infecting vertebrates
and invertebrates. As we know, hosts evolved a number
of defense systems in response to the challenge from
parasites. Meanwhile, the parasites evolved multiple
counter-defense mechanism as well under the selection
pressure from hosts. Bacteria have developed CRISPR/
Cas (CRISPR, Clustered regularly interspaced short pal-
indromic repeats; Cas, CRISPR-associated) immune sys-
tem to defend against bacteriophages by cleaving their
DNA [47]. Antagonistic coevolution between bacteria
and their ubiquitous parasites, bacteriophage (phage), is
well known [48,49]. The genomic regions of CRISPR/Cas
are hot spot of recombination, and CRISPR/Cas modules
underwent rapid evolution in natural environments be-
cause of recurrent selection pressure exerted by coevol-
ving viruses [50]. Meanwhile, viruses may combine
partial CRISPR/Cas sequence in response to the counter-
defense of bacteria. Therefore, it is no coincidence that
SSRs content is high in both viruses that infect verte-
brates and invertebrates and these hosts themselves. The
recombination enhanced the virus's ability of infection
and anti-immunity to a certain extent. Evolutionarily
speaking, it is the result of selection in the process of
interaction between viruses and hosts. It has proposed
that reduced genome size represents an adaptation to the
high rate of oxidative metabolism in birds, which results
primarily from the demands of flight, and the relatively
small genome size of birds in general may reflect the se-
lective pressure to minimize the amount of repetitive
DNA [51,52].
Overall, the longer genome sequence, the stronger

capability the genome holding long SSRs. Each type of
repeat unit is distributed in a certain length range of
genomes. Mono- and di- SSRs were observed in almost
all analyzed virus genomes; tri- repeats appeared to
widely distribute in all virus genomes but it's number is
obviously less than mono- and di- SSRs; tetra- SSRs as a
common component consist in genomes with size more
than 100 kb (94.4% of the genomes contain tetra- SSRs
in group of genome > 100 kb). In contrast, it is relatively
rare in genomes with the size < 100 kb; genomes con-
taining penta- and hexa- SSRs are not more than 50%
in < 100 kb group. Moreover, the number of tetra-,
penta- and hexa- SSRs is very small (Table 1). Dinucleo-
tide and trinucleotide SSRs were observed in all analyzed
HIV genomes (genome size approximately 9 kb), but al-
most no tetra-, penta- and hexanucleotide SSRs were
found [53]. Tetranucleotide SSRs are contained in 26.7%
of the analyzed Potyvirus genomes (genome size ap-
proximately 10 kb), but the number of tetranucleotide
SSRs is small [54]. The data of tetra-, penta- and hexa-
nucleotide SSRs are also rare in Mycoplasma, but they
are relatively sufficient in bacterial [46,55], fungal [56],
plant [57], vertebrates [39,41] and human [58,59]. Those
results confirmed that SSRs distribution is closely related
to the genome size, indeed. The accumulation of simple
sequence repeats would be attributed to the results of
selection in the process of evolution. It has been well
known that viruses such as influenza virus, hepatitis
virus and human immunodeficiency virus (HIV) have a
higher mutation rate to resist drugs, vaccines and so on
during the process of replication and (or) recombination,
which is one of the reasons for curing flu, hepatitis and
acquired immunodeficiency syndrome (AIDS) with diffi-
culty. Moreover, viruses lack complete repair mechan-
isms. Therefore, long SSRs can be poorly found in viruses.
In the opinion of Mrázek et al. [23], small genomes have
a strong negative selection against long SSRs due to their
strong constraints against expansion.
Conclusions
Genome size is an important factor in affecting the oc-
currence and the total length of SSRs, moreover, there is
a positive correlation between them. Additionally, hosts
are also responsible for the variances of SSRs content to
a certain degree. For example, with similar genome sizes,
viruses infecting vertebrates and invertebrates tend to be
higher than viruses attacking bacteria in SSRs content,
relative abundance and relative density of SSRs, overall.
We inferred that maybe viruses combined partial gen-
ome sequences of hosts in infecting, resulting in relative
large genome and high content of SSRs. Evolutionarily
speaking, it is the result of selection in the process of
interaction between viruses and hosts. Virus is a group
of parasite, so studying of SSRs in viruses is helpful to
the research of many etiopathogenesis of its hosts.
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Additional file 1: List of the basic information of all analyzed
viruses.

Additional file 2: Occurrence of SSRs in analyzed virus genomes.

Additional file 3: Length (bp) of SSRs in analyzed virus genomes.

Additional file 4: Relative abundance of SSRs in analyzed virus
genomes.

Additional file 5: Relative density of SSRs in analyzed virus genomes.

Additional file 6: Scatter plots of SSRs relative abundance versus
genome size. (A)Scatter plot of SSRs relative abundances in all analyzed
virus genomes. (B) Scatter plot of SSRs relative abundances in analyzed
virus genomes with size of < 30000 bp. (C) Scatter plot of SSRs relative
abundances in analyzed virus genomes with size of > 30000 bp.

Additional file 7: Scatter plots of SSRs relative density versus
genome size. (A) Scatter plot of SSRs relative densities in all analyzed
virus genomes. (B) Scatter plot of SSRs relative densities in analyzed virus
genomes with size of < 30000 bp. (C) Scatter plot of SSRs relative
densities in analyzed virus genomes with size of > 30000 bp.

Additional file 8: Descriptive statistics of SSRs variables.

Additional file 9: Matrix of correlation coefficients and 1-tailed
tests between SSRs.

Additional file 10: Scree plot. It displays the "cliff" and the "screes"
vividly, which can be visually proved that the applicability of PCA is very
good to the current data set.

Additional file 11: Occurrence of mono- SSRs in analyzed virus
genomes.

Additional file 12: Occurrence of di- SSRs in analyzed virus
genomes.

Additional file 13: Occurrence of tri- SSRs in analyzed virus genomes.

Additional file 14: Occurrence of tetra-, penta- and hexa- SSRs in
analyzed virus genomes.

Additional file 15: Hosts of analyzed virus genomes.
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