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Global endometrial transcriptomic profiling:
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Abstract

Background: All cows experience bacterial contamination and tissue injury in the uterus postpartum, instigating a
local inflammatory immune response. However mechanisms that control inflammation and achieve a
physiologically functioning endometrium, while avoiding disease in the postpartum cow are not succinctly defined.
This study aimed to identify novel candidate genes indicative of inflammation resolution during involution in
healthy beef cows. Previous histological analysis of the endometrium revealed elevated inflammation 15 days
postpartum (DPP) which was significantly decreased by 30 DPP. The current study generated a genome-wide
transcriptomic profile of endometrial biopsies from these cows at both time points using mRNA-Seq. The pathway
analysis tool GoSeq identified KEGG pathways enriched by significantly differentially expressed genes at both time
points. Novel candidate genes associated with inflammatory resolution were subsequently validated in additional
postpartum animals using quantitative real-time PCR (qRT-PCR).

Results: mRNA-Seq revealed 1,107 significantly differentially expressed genes, 73 of which were increased 15 DPP
and 1,034 were increased 30 DPP. Early postpartum, enriched immune pathways (adjusted P< 0.1) included the
T cell receptor signalling pathway, graft-versus-host disease and cytokine-cytokine receptor interaction pathways.
However 30 DPP, where the majority of genes were differentially expressed, the enrichment (adjusted P< 0.1) of
tissue repair and proliferative activity pathways was observed. Nineteen candidate genes selected from mRNA-Seq
results, were independently assessed by qRT-PCR in additional postpartum cows (5 animals) at both time points.
SAA1/2, GATA2, IGF1, SHC2, and SERPINA14 genes were significantly elevated 30 DPP and are functionally associated
with tissue repair and the restoration of uterine homeostasis postpartum.

Conclusions: The results of this study reveal an early activation of the immune response which undergoes a
temporal functional change toward tissue proliferation and regeneration during endometrial involution in healthy
postpartum cows. These molecular changes mirror the activation and resolution of endometrial inflammation during
involution previously classified by the degree of neutrophil infiltration. SAA1/2, GATA2, IGF1, SHC2, and SERPINA14
genes may become potential markers for resolution of endometrial inflammation in the postpartum cow.

Keywords: Next generation sequencing, Endometrial biopsy, Transcriptome, Immune response, Uterine involution
* Correspondence: kieran.meade@teagasc.ie
1Animal and Bioscience Research Department, Animal & Grassland Research
and Innovation Centre, Teagasc, Grange, Co, Meath, Ireland
Full list of author information is available at the end of the article

© 2012 Foley et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:kieran.meade@teagasc.ie
http://creativecommons.org/licenses/by/2.0


Foley et al. BMC Genomics 2012, 13:489 Page 2 of 13
http://www.biomedcentral.com/1471-2164/13/489
Background
The postpartum bovine uterus undergoes involution - a
process involving uterine size reduction, contraction,
caruncle shedding, necrosis and rejuvenation of endo-
metrial tissue. Involution ensures that the uterus returns
to a physiological functioning state, becoming receptive
to and supportive of a new conceptus [1]. During involu-
tion bovine uteri are invariably exposed to bacterial con-
tamination, clearance and recontamination early
postpartum, normally followed by the spontaneous clear-
ance of bacteria 10-15 days postpartum (DPP) in healthy
cows [2,3].
The involvement of inflammatory processes and the

immune response during involution in the cow has been
the subject of numerous recent studies. At a cellular
level, uterine inflammation early postpartum is charac-
terised by a neutrophil-rich endometrial inflammatory
cell infiltrate [4-6] crucial for acute wound healing [7,8].
Resolution of endometrial inflammation is identifiable in
healthy animals by the reduction of the number of neu-
trophils as involution progresses [5,6,9]. The molecular
changes that accompany uterine involution postpartum
consists of extensive immune gene activation [10-13]. It
is now established that the postpartum endometrial in-
flammatory response and its allied immune gene activa-
tion is a transient feature of the normal physiological
events associated with uterine involution [6].
However, a large proportion of cows fail to sponta-

neously clear bacterial infections postpartum (40%)
[14,15] and dysregulation of the immune response in
these animals may lead to prolonged inflammation and
development of disease [11]. Previously by histopatho-
logical assessments of uterine biopsies, we have
described endometrial infiltration by leukocytes early
during involution which was significantly reduced by 30
DPP. In parallel, we showed significant temporal reduc-
tion in toll-like receptor, leukocyte surface receptor, pro-
inflammatory and antimicrobial gene transcription during
later stages of involution [6]. In the current study we
hypothesised that repeat uterine biopsies, at two postpar-
tum time points in healthy cows undergoing involution,
would reveal distinct temporal gene expression profiles
identifying molecular changes associated with bacterial
clearance and the resolution of inflammation.
Recent publications in this area have elucidated the

mechanisms of bovine endometrial infection and im-
mune responses in primary cells in vitro [16-18]. How-
ever, the complexity of the uterine bacterial milieu and
immune responses observed in vivo are influenced by a
variety of animal factors, such as energy balance [19]
which cannot be accurately replicated in vitro. There-
fore, postpartum changes over time, in endometrial bi-
opsies ex vivo, are likely to reflect a more accurate
profile of the immune response in healthy compared to
diseased animals [20]. Interestingly, new approaches
have used endometrial explants to characterise endomet-
rial immune function ex vivo in response to specific bac-
terial stimuli [21]. These studies focus on specific gene
subsets whereas the current study takes a more compre-
hensive approach by analysing the entire transcriptome
of endometrial biopsies providing a novel and important
insight into the regulation of inflammation postpartum.
This is the first study to use next generation sequen-

cing to assess bovine endometrial inflammation postpar-
tum and the temporal resolution of this inflammation
during involution in healthy cows. Next-generation se-
quencing is not limited by the pre-selection of specific
candidate genes for absolute gene expression analysis
and the digital readout of gene sequence is superior to
the relative fluorescence methods used in qRT-PCR and
microarray analyses [22]. A genome-wide transcriptomic
profile of endometrial biopsies 15 and 30 DPP was ge-
nerated with mRNA-Seq and subsequently GoSeq KEGG
pathway analysis identified enriched gene networks. This
data, plus validation of specific gene expression patterns
in additional postpartum animals provides evidence for a
transcriptomic switch from a pro-inflammatory gene
expression phenotype 15 DPP to a tissue regenerative and
proliferative phenotype 30 DPP. This dataset highlights the
value of large scale genomic approaches toward under-
standing the immune regulatory networks associated with
normal bacterial clearance and the resolution of inflamma-
tion in the postpartum cow that may form the basis for
future diagnosis of delayed clearance and perturbed
immune regulation in diseased animals.

Results
mRNA-Seq read alignment and differential gene
expression
mRNA-Seq read alignment, summarization and library
normalization is tabulated in Additional files 1 (a-c). The
average number of raw reads across all samples was
26.79 million and the average number of reads across all
samples with one reported alignment was 18.9 million.
This data has been deposited in NCBI's Gene Expression
Omnibus and are accessible through GEO Series acces-
sion number GSE40312.
Two output files were constructed from the EdgeR

results, based on different levels of stringency. Using a
P-value cut off of 0.05, 2,856 significantly differentially
expressed genes were identified, of which 752 were ele-
vated 15 DPP and 2,104 elevated 30 DPP. With an
adjusted P-value of 0.1, the second output file contained
1,107 genes of which 73 were significantly increased 15
DPP and 1,034 significantly increased 30 DPP (Figure 1).
To assess the contribution of changes in endometrial

cell subpopulations to the differential gene expression
patterns detected between the two post partum time



Figure 1 Work flow for next generation sequencing data analysis, the resulting gene expression output from TMM EdgeR and
downstream analysis with differentially expressed genes. Sequenced reads were mapped to the bovine genome with TopHat, summarised
with HtSeq Count and normalised with TMM EdgeR. Output files of differentially expressed (DE) genes with P< 0.05 (adjusted P< 0.45) and an
adjusted P< 0.1 were used in GoSeq pathway analysis. Nineteen of the most highly significant DE genes, (adjusted P< 0.1) 15 days and 30 days
postpartum, were selected for assessment by qRT-PCR in a larger sample set (n = 5).

Table 1 Top enriched KEGG pathways (adjusted P<0.1)
with significantly increased genes 15 days postpartum
(P<0.05; adjusted P<0.1)

Enriched KEGG pathways 15 DPP P-value

Over
represented

Under
represented

Input - Genes with a P-value < 0.05

Primary immunodeficiency 3.26E-17 1.00E+00

T cell receptor signaling pathway 5.63E-14 1.00E+00

Natural killer cell mediated cytotoxicity 9.16E-14 1.00E+00

Hematopoietic cell lineage 1.90E-13 1.00E+00

Cytokine-cytokine receptor interaction 1.38E-11 1.00E+00

Input - Genes with an adjusted P-value < 0.1

PPAR signaling pathway 6.19E-03 1.00E+00

Rheumatoid arthritis 7.63E-03 1.00E+00

Graft-versus-host disease 3.36E-02 9.99E-01

Allograft rejection 3.86E-02 9.99E-01

Autoimmune thyroid disease 4.19E-02 9.99E-01
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points, the expression of cell surface markers associated
with specific leukocyte cell subsets were analysed at a
molecular level. The mRNA-Seq data showed that six
genes encoding leukocyte cell surface markers CD11d
(also known as ITGAD), CD18 (also known as ITGB2),
CD45 (also known as PTPRC), CD48, CD53 and CD62L
(also known as SELL) were significantly elevated at 15
DPP with a P-value of < 0.05 but are not significant using
an adjusted P-value of < 0.1.

GoSeq KEGG pathway analysis
GoSeq is designed to account for gene length bias and
was therefore selected to identify enriched pathways in
the dataset. To account for the under representation of
bovine genes in GoSeq KEGG pathway analysis genes
with a P < 0.05 were initially used. Additional analysis
was also performed using the more stringent gene set
(adjusted P of < 0.1) which reduces the risk of false
positive genes in GoSeq KEGG pathway analysis. Five
pathways were enriched 15 DPP by genes with an
adjusted P of < 0.1, all of which are also present in the
list of enriched pathways containing genes with a
P < 0.05. Nineteen pathways were enriched 30 DPP contain-
ing genes with an adjusted P<0.1 and eighteen of these
pathways are also present in the list of enriched pathways
containing genes with a P<0.05. The majority of the top
enriched pathways (adjusted P<0.1) 15 DPP from both
gene datasets are immune associated such as T cell receptor
signalling pathway, cytokine-cytokine receptor interaction,
natural killer cell mediated cytoxicity, PPAR signalling
pathway, rheumatoid arthritis, graft-versus-host disease,
allograft rejection and autoimmune thyroid disease
(Table 1). A different functional profile is observed 30 DPP
depicted by the top enriched pathways (adjusted P<0.1) at
this time (Table 2), which are indicative of proliferation and
repair such as pathways in cancer, focal adhesion, wingless



Table 2 Top enriched KEGG pathways (adjusted P<0.1)
with significantly increased genes 30 days postpartum
(P<0.05; adjusted P<0.1)

Enriched KEGG pathways 30 DPP P-value

Over
represented

Under
represented

Input - Genes with a P-value < 0.05

Focal adhesion 4.80E-08 1.00E+00

Axon guidance 4.62E-06 1.00E+00

Hedgehog signaling pathway 4.75E-06 1.00E+00

ECM-receptor interaction 1.07E-05 1.00E+00

Basal cell carcinoma 1.83E-04 1.00E+00

Wnt signaling pathway 2.59E-04 1.00E+00

Arrhythmogenic right
ventricular cardiomyopathy (ARVC)

2.60E-04 1.00E+00

Melanogenesis 9.64E-04 1.00E+00

Tight junction 9.69E-04 1.00E+00

Cell adhesion molecules (CAMs) 1.35E-03 9.99E-01

Input - Genes with an adjusted P-value < 0.1

Hedgehog signaling pathway 6.03E-08 1.00E+00

Focal adhesion 3.75E-07 1.00E+00

Basal cell carcinoma 1.20E-06 1.00E+00

ECM-receptor interaction 1.01E-05 1.00E+00

Arrhythmogenic right
ventricular cardiomyopathy (ARVC)

1.51E-05 1.00E+00

Melanogenesis 1.51E-05 1.00E+00

Wnt signaling pathway 4.60E-05 1.00E+00

Axon guidance 7.34E-05 1.00E+00

Pathways in cancer 8.55E-04 1.00E+00

Protein digestion and absorption 1.24E-03 1.00E+00
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type (wnt) signalling pathway (Figure 2) and extracellular
matrix (ECM)-receptor interaction (Figure 3).

Quantitative expression of candidate genes in additional
animals
An extended panel of animals (5 cows) from the original
sample set were used for qRT-PCR assessment of 19
candidate genes selected based on a variety of criteria
(adjusted P < 0.1, read counts, pathway analysis and log2
fold change). Thirteen of these genes were annotated in
the KEGG pathways: IGF1 (fold change 7.7), MGAT3
(fold change 7.4), PDGFRA (fold change 6.8), RASGRP2
(fold change 4.7), RDH10 (fold change 4.6), WNT5A
(fold change 5.9), SHC2, BMP6, CTF1, CLDN4 (fold
change 8.9), CDH5 (fold change 5.9), TNFRSF13 (fold
change 6.0) and CD22 (fold change 4.9). The three can-
didate genes with no pathway annotation in the KEGG
database were: PLAC9 (fold change 6.4), GATA2 (fold
change 8.4) and RARRES2 (fold change 6.6). Eleven of
these candidate genes (adjusted P < 0.1) were represented
in the enriched pathways (P < 0.05), with the exception
of MGAT3 and RDH10.
The qRT-PCR gene expression profile across this gene

set corroborated the profile detected using mRNA-seq,
with 4 of the 19 genes increased in expression 15 DPP
and 15 genes increased in expression 30 DPP for both
expression analysis platforms. However the magnitude
of the Log2 fold change was lower for qRT-PCR com-
pared to mRNA-Seq for the majority of candidate genes
which is probably due to the larger sample size used for
qRT-PCR introducing greater biological variation
(Figure 4).
Of the 19 candidate genes assessed by qRT-PCR, 5 were

significantly increased 30 DPP in all 5 additional postpar-
tum animals: Serum Amyloid A - 2 (SAA1/2) [P= 0.002,
log2 fold change 8.5], Insulin Growth Factor 1 (IGF1)
[P=0.021, log2 fold change 7.3], GATA binding protein 2
(GATA2) [P=0.001, log2 fold change 6.4], serpin peptidase
inhibitor, clade A (alpha-1 antiproteinase, antitrypsin),
member 14 (SERPINA14) [P=0.031, log2 fold change 5.4]
and Src homology 2 domain containing transforming pro-
tein C2 (SHC2) [P= 0.016, log2 fold change 3.6] (Figure 4).
Other genes were also differentially expressed however
these did not achieve statistical significance - WNT5A
(P=0.053), PDGFRA (P=0.077) and MGAT3 (P=0.057).
Of note, six of the nineteen candidate genes selected

from NGS data analysis have 0 reads aligned at one of
the time points across all samples. Five genes, SHC2,
SERPINA14, BMP6, CTF1 and SAA1/2, have no aligned
reads 15 DPP and have an average of 500, 216, 140, 136
and 80 reads respectively, aligned 30 DPP across all
animals. One gene (DEFB6) has no reads aligned 30
DPP and an average of 28 reads aligned 15 DPP. It is
not possible to calculate the fold change in these
instances, therefore for illustrative purposes twice the
highest Log2 fold change was set as the fold change
(Figure 4).

Discussion
Uterine disease and disrupted fertility is the single big-
gest factor limiting the international dairy industry, with
costs estimated at €1.4 billion within the European
Union alone [15]. Understanding the role of the immune
response in driving bacterial clearance postpartum, but
also in restoring homeostasis, is likely to lead to new
methods for enhancing fertility.
At both a cellular and a molecular level, there is

increasing evidence for an intimate role of the immune
response during involution. Neutrophil influx into the
endometrium is a common mechanism associated with
beneficial bacterial clearance, although evidence suggests
that their phagocytic activity may be reduced in disease
susceptible animals [23]. Recent research has shown the



Figure 2 Differentially expressed genes within the Wnt Signalling pathway. Genes significantly elevated (P< 0.05) 15 DPP are in green and
30 DPP are in red.
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activation of many immune activation pathways (TLRs)
[11-13], inflammatory genes [5], antimicrobial peptides
and acute phase proteins [6,10] during the early postpartum
period. Expression of the receptor for bacterial lipopolysac-
charide, TLR4 for example, has been shown to be tempor-
ally elevated in the postpartum uterus during involution
[6,13], between high and low fertility cows [11] and in
endometrial epithelial and stromal cells in response to LPS
in vitro [12].
However, unregulated inflammation can lead to

disease [24], therefore a balanced inflammatory immune
response is key to sufficient bacterial clearance and the
restoration of an endometrial environment capable of
supporting a new pregnancy [25]. This resolution of
inflammation and the pathways involved in restoration
of uterine homeostasis have not been extensively
explored in healthy cows. Significantly elevated endometrial
inflammatory gene expression (TNF, IL1, IL6 and IL8) has
been previously documented in cows with endometritis at
various time points postpartum [20], supporting the
hypothesis that dysregulation of the immune response
(possibly as a consequence of inadequate bacterial
clearance) is a contributory factor to disease development.
Endometrial inflammation was graded based on the

number of leukocytes present in the biopsy and candidate
gene expression analysis showed significant temporal
differences in this limited gene dataset (such as IL1β,
TNF, IFNG, IL8, TAP, DEFB5) between the two time
points across involution, as previously described [6]. The
different ontological classes of differentially expressed
genes (cytokines, antimicrobial peptides, acute phase
proteins) led us to hypothesise that temporal genome
wide differential gene expression profiles would shed light
on the pathways involved in both the activation of an
inflammatory immune response early postpartum but
importantly, also on the pathways involved in the regula-
tion of inflammation and the restoration of homeostasis
in these healthy cows. In the current study using the same
animals, we use next generation sequencing to define the
genome wide temporal changes in gene expression at two
time points during involution in the postpartum cow.
Approximately only 27% of bovine genes are currently

represented in the KEGG database, and therefore using a
P-value cut-off of < 0.05, 2,856 genes were found to be
significantly differentially expressed between endometrial
biopsies from the same animals across time points, 15
DPP and 30 DPP. Using increased stringency of an
adjusted P < 0.1, over 1,100 genes were found to be sig-
nificantly differentially expressed. In both sets of results,
the immune system was predominantly represented by
enriched pathways at 15 DPP. These pathways included
T cell receptor signalling, cytokine-cytokine receptor
interaction, natural killer cell mediated cytotoxicity,
graft-versus-host disease and allograft rejection. This
result concurs with related studies which have examined
the expression of a limited number of candidate immune



Figure 3 Differentially expressed genes within the ECM (extra cellular matrix) receptor interaction pathway. Genes significantly elevated
(P< 0.05) 15 DPP are in green and 30 DPP are in red.
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genes to show the activation of an inflammatory immune
response in the postpartum endometrium [5,6,10,11].
However, the majority of the differentially expressed

genes detected in this study were significantly increased
at the 30 DPP time point. The resolution of inflamma-
tion, as defined by histopathological assessment in these
cows [6], was supported by the significant decrease in
expression of immune pathways as involution proceeds.
At this time point (30 DPP) enriched pathways, such as
focal adhesion, wnt signalling and ECM-receptor
interaction, were associated with tissue regeneration and
proliferative activity, reflecting repair processes. This
complete temporal change in the endometrial transcrip-
tomic profile from a pro-inflammatory immune response
phenotype to a tissue regenerative profile shows rapid
but transient immune induction in the uterus to clear
bacteria and reduce associated inflammation within a
2 week period in healthy cows. It is likely that changes in
both resident and migratory cell populations between
time points in response to bacterial infection and during
involution account for some of the endometrial
transcriptome differences detected. However, expression
of a number of leukocyte associated markers (CD11d,
CD14, CD16, CD18, CD45, CD48 and CD53) were not
significantly different using our stringent selection
criteria. Interestingly, CD62L - a cell surface adhesion
molecule found on the surface of neutrophils was signifi-
cantly elevated in expression 15 DPP (Log2 4.3 fold,
P < 0.01), which correlates with the increased neutrophils
detected in these animals using histology. However
CD62L was not significantly differentially expressed
using an adjusted P-value of < 0.1.



Figure 4 (See legend on next page.)
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(See figure on previous page.)
Figure 4 Log2 fold changes from quantitative real-time PCR and mRNA-Seq for 19 differentially expressed genes in the endometrium
of healthy cows between 15 and 30 days postpartum (DPP). Genes selected were significantly differentially expressed by mRNA-Seq (dark
grey bars) (adjusted P< 0.1) and the P-values on the graph are those for qRT-PCR results (light grey bars) (* = P< 0.05, ** = P< 0.005). The error
bars are representative of the standard error of the mean (SEM). Genes denoted by # have 0 reads at one time point across all samples and for
illustrative purposes are represented on this graph as twice the size of the largest Log2 fold change. Log2 fold changes to the left of 0 are
increased 15 DPP and Log2 fold changes to the right of 0 are increased 30 DPP.
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Endometrial receptivity has previously been associated
with an increase in extracellular matrix (ECM) remodel-
ling pathways [26,27], which is also one of the top
enriched pathways 30 DPP in this study. A cancer asso-
ciated pathway is another of the top enriched pathways
30 DPP which highlights the proliferative capacity of the
endometrium in the current study. Gene-expression pat-
terns linked with the regeneration of damaged tissue
closely resemble that of highly malignant tumors, as
there is significant enrichment of genes involved in cell
proliferation in both instances [28]. In addition to cell
proliferative processes, the endometrium is also under-
going regulation of cell growth and differentiation, and
tissue homeostasis and repair 30 DPP, evident by the
enrichment of the wnt signalling pathway [29,30].
Five candidate genes involved in this temporal tran-

scriptomic change (SAA1/2, IGF1, GATA2, SERPINA14
and SHC2), were found to be significantly differentially
expressed 30 DPP. The elevation of SAA1/2 expression
30 DPP, suggests it has a role in postpartum inflamma-
tory resolution in the endometrium of healthy cows.
Serum amyloid A (SAA) is an acute phase protein (APP)
produced and released by hepatocytes but it is also
expressed in extrahepatic bovine tissues [31,32], constitu-
tively in healthy endometria [33,34] and during inflamma-
tion [6,10]. Studies have shown that SAA functions to
preserve tissue maintenance and homeostasis [35,36] and
SAA1/2 in particular has been shown in murine studies to
be involved in the provision of immune homeostasis in
mucosal tissue [37]. The elevated expression of SAA1/2 30
DPP may be indicative of the re-establishment of immune
homeostasis later in involution as inflammation resolves.
Results also show the significant increased expression

of GATA2 as involution progresses in the postpartum
uterus. Gene expression of interferon-tau (IFN-τ), a
luteotrophic molecule, is regulated by the expression of
GATA2 in the bovine trophoblast [38], and is also
expressed in endometrial epithelial cells during the peri-
attachment period of the conceptus in sheep [39].
GATA2 has also been recently shown to regulate the
gene expression of endomucin, which is critical for cell
growth, migration and angiogenesis, to ensure endothe-
lial cell maintenance and physiological function [40].
At systemic and local levels the insulin growth factor

(IGF) system is implicated in endometrial repair and
healing during involution [41,42]. Decreased expression
of IGF1 has been observed in the previously gravid com-
pared to the non-gravid uterine horn of the same cow
14 DPP [41]. In the present study we compared the pro-
gression of involution in the previously gravid uterine
horn to a later stage of involution in the same horn and
demonstrated that the expression of IGF1 was elevated
30 DPP. In a murine study it has been shown that bio-
available IGF1 stimulates uteral growth therefore func-
tioning to increase uterine size [43]. A recent bovine
study has suggested that an increase of IGF1 bioavail-
ability has a negative effect on oocyte developmental
competence [44]. An increase in IGF1 gene expression
30 DPP in the present study may infer proliferative
effects on the uterus.
SHC2 gene expression was increased 30 DPP and is

one of many genes enriching the focal adhesion pathway
at this time, suggesting a role for SHC2 in biological pro-
cesses such as cell differentiation, motility, regulation of
gene expression, cell proliferation, and cell survival in
the endometrium later in involution. The Src family
kinases are non-receptor tyrosine kinases involved in the
mediation of intracellular signal transduction to initiate
biological processes such as adhesion, migration, inva-
sion, epithelial-to-mesenchymal transition, angiogenesis,
apoptosis resistance and proliferation. Src members are
activated by the binding of ligands to either their Src
homology 2 (SH2) or 3 (SH3) domains [45]. In bovine
endometrial epithelial cells it has been hypothesised that
epidermal growth factor receptor may aid in the amplifi-
cation of oxytocin signalling and activate c-Src resulting
in the elevation of prostaglandin F2α production, which
is a luteolytic event [46].
Serpin peptidase inhibitor, clade A (alpha-1 antiprotei-

nase, antitrypsin), member 14 (SERPINA14) belongs to
the serpin superfamily of serine peptidase inhibitors (ser-
pins) [47] and has also been previously called uterine
milk protein (UTMP). Serine proteases are associated
with immune functions involving inflammation, tissue
remodelling, pathogen clearance and apoptosis, the over
production of which causes pathologies in auto-immune
diseases, tumor metastasis and allergies [48]. Serpins
limit the activity of serine proteases thereby regulating
the severity of their immune functions [48]. Gene
expression of UTMP has been observed predominantly
in the bovine endometrium, ovary and caruncle tissues
and the differential allelic expression of which has been



Foley et al. BMC Genomics 2012, 13:489 Page 9 of 13
http://www.biomedcentral.com/1471-2164/13/489
associated with longevity in dairy cattle [49]. Expression
of SERPINA14 has been previously shown to be elevated
by estrogens during estrus in cattle [50,51] and also du-
ring pregnancy [27]. During pregnancy UTMP is
thought to have a role in maternal immune modulation,
by inhibiting NK-like activity and thus protecting the
conceptus in utero [52]. Importantly, another study in
sheep suggests that the expression of UTMP in the
endometrium is a marker of differentiated and func-
tional glandular epithelium [53]. In the present study an
increase of SERPINA14 expression 30 DPP possibly indi-
cates a greater degree of glandular epithelium repair
within the endometrium at this time.
Based on the considerable research performed on

these genes in other species, our results point toward an
important functional role for SAA1/2, GATA2, IGF1,
SHC2, and SERPINA14 genes, in the restoration of
homeostasis during bovine involution.

Conclusions
Analysis of the entire transcriptome provides a molecu-
lar gateway through which the physiological process of
involution can be understood in greater detail. It is
evident that a pro-inflammatory immune response is
instigated early postpartum by the influx of leukocytes
into the endometrium, at a cellular level, and by the sig-
nificant expression of immune genes and pathways 15
DPP, at a molecular level. The transcriptomic response
30 DPP is quite distinct as the majority of differentially
expressed genes are increased at this time point, and
they represent an enrichment of cellular pathways asso-
ciated with tissue proliferation and repair.
Therefore, immune activation and inflammation is a

transient feature in the healthy postpartum endomet-
rium with a temporal switch toward tissue repair and
proliferation pathways that restore homeostasis and pre-
pare the uterus for a subsequent pregnancy. Individual
candidate genes involved in this temporal transcriptomic
change have been identified as markers of endometrial
inflammatory resolution (SAA1/2, GATA2, IGF1, SHC2,
and SERPINA14) in cattle. Results from this study will
form an independent baseline for future studies in
animals that develop disease.

Methods
Tissue collection, experimental design and total RNA
extraction
Endometrial biopsies were collected as part of a previous
study 15 and 30 days postpartum (DPP) from 13 mixed
breed beef multiparous cows using the Hauptner equine
endometrial biopsy instrument. Biopsies were snap fro-
zen in liquid nitrogen and stored at −80°C. Histology
analysis of biopsies was used to classify the extent of
endometrial inflammation as described previously [6]. In
present study the endometrial transcriptomic profiles
from endometrial biopsies were assessed by mRNA-Seq
(n = 3) and candidate gene expression was measured by
qRT-PCR in 5 additional postpartum animals, which
included one sample from an animal also used for
mRNA-seq.
Frozen endometrial tissue was homogenised and RNA

was extracted using 1 ml of Trizol adding 200 μl of
chloroform, shaken vigorously and incubated at room
temperature for 3 min. Tubes were centrifuged at
12,000 g for 15 min at 4°C. The upper aqueous layer was
transferred to another 1.5 ml tube, 500 μl of isopropanol
was added and mixed by inverting tube. The sample was
incubated at room temperature for 10 min, after which
the sample in the 1.5 ml tube was centrifuged at 12,000 g
for 10 min at 4°C. The supernatant was removed and the
RNA pellet was retained, to which 1 ml or 75% ethanol
was added and vortexed to mix. The sample was centri-
fuged at 10,000 g for 5 min at 4°C, after which the super-
natant was removed and the pellet was air dried for
10 min on a heating block at 50°C. The RNA pellet was
then reconstituted with 30 μl RNAse-free water, pulse
vortexed and placed at −80°C immediately. The Nano-
Drop ND-1000 UV–vis Spectrophotometer (NanoDrop
Technologies Inc., Wilmington, DE, USA) was used to
quantify the RNA. The Agilent 2100 Bioanalyser (Agilent
Technologies) was used to assess the quality of RNA.
The total RNA, extracted for mRNA-Seq library prep-

aration and qRT-PCR, had an RNA Integrity Number
(RIN) which averaged 7.9 ranging between 6.5 – 9 and
RNA yields on average of 11.5 μg ranging between 2 –
21 μg. The highest quality total RNA was used as input
for the preparation of mRNA-Seq cDNA libraries.
mRNA-Seq library preparation and next generation
sequencing
Initially total RNA was converted into a cDNA sequen-
cing library with the IlluminaW mRNA Sequencing
Sample Preparation Kit as per manufacturer’s instructions
(Protocol: September 2009). Poly-T oligo-attached
magnetic beads allowed the isolation and purification of
poly-a tailed mRNA from total RNA. Isolated and puri-
fied mRNA was fragmented into smaller pieces by
divalent cations incubated at 94°C. cDNA synthesis
converted mRNA into double stranded cDNA. Over-
hangs at the end of the fragments were converted into
blunt ends with T4 DNA polymerase and Klenow DNA
Polymerase. Adenylation of the 3’ ends prepared the
fragments for the adapter ligation which allowed
fragments to attach to the sequencing flow cell. The
purified, size selected cDNA fragments were then
subjected to template PCR enrichment and library vali-
dation. The resulting sequencing library was quantified
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using a QubitW Quantitation Platform and HS dsDNA
kit (Invitrogen, Paisley, UK).
The samples were loaded into individual lanes on a

flow cell, cluster amplified and sequenced using the
IlluminaW Genome Analyzer II (GAII) at TrinSeq, the
Trinity Genome Sequencing Laboratory, in the Molecular
Medicine Institute, Trinity College Dublin (http://www.
medicine.tcd.ie/sequencing). The image files created during
sequencing of the various fragment clusters were converted
into sequence using Illumina Software to achieve 40 bp
paired end reads. These reads were then subjected to
filtering which removed low-quality sequence and primer
contamination. The quality of the reads was assessed
using the FastQC software (version 0.4.3) [http://www.
bioinformatics.bbsrc.ac.uk/projects/fastqc/]. The assess-
ments used included per base sequence quality, per
sequence quality, over represented sequences and per
base N count.

Gene expression data analysis and statistics
Reads were mapped to the bovine genome (version
Btau_4.0.62) [54] using the genome aligner TopHat
(version 1.3.1) [55,56] and this output was sorted by read
name first. Htseq-count [version 0.5.3; http:///www-huber.
embl.de/users/anders.HTSeq] was used to summarize the
number of aligned reads per exon using the union mode
and the Ensembl (version 62) annotation of the bovine
genome. Ensembl gene ID’s were used in the output file to
identify the number of read counts per gene (Additional
files 1(a, b)).
Bioconductor package EdgeR (version 1.6.12) [57] was

run within R software (version 2.11.0). To account for
biological and technical variation the data were modelled
as a negative binomial distribution using a generalisa-
tion of the Poisson distribution model. The data were
normalised across library size between samples using the
trimmed mean of M-values normalization method [58]
(Additional file 1c). The Benjamini-Hochberg false
discovery rate (FDR) [59] was used in the determination
of differential gene expression with an adjusted P < 0.1.

Pathway analysis and statistics
Bovine Ensembl genes were converted to human
Ensembl orthologs using the Biomart tool on the
Ensembl website (www.ensembl.org/biomart/martview).
Genes with an adjusted P < 0.1 were used in pathway
analysis however due to the poor representation of
Bovine genes annotated in KEGG pathways, differentially
expressed genes with a P < 0.05 were also utilised in the
downstream pathway analysis. The bioconductor R soft-
ware (version 2.14.0) package GoSeq (version 1.6.0) [60]
pathway analysis tool was implemented to identify
pathways enriched by significantly differentially
expressed genes (P < 0.05 and adjusted P < 0.1). Pathways
were deemed to be significantly enriched if they had an
over represented adjusted P < 0.1.
To achieve significantly enriched KEGG pathways in

GoSeq, the gene length bias is first quantified by calcu-
lating the Probability Weighting Function (PWF) which
determines the probability that a gene will be differen-
tially expressed only based on its length. The P-values
for over-represented (enriched) and under-represented
pathways were achieved using the GoSeq default method
“Wallenius” by the Wallenius non-central hypergeo-
metric distribution [60]. The advanced KEGG Pathway
mapping tool “Search&Colour Pathway” in the KEGG
Pathway Database was used to produce graphical images
depicting differentially expressed genes (P < 0.05) within
the enriched pathways.

Candidate gene selection and primer design
There were 19 candidate genes selected from the results
generated by mRNA-Seq differential gene expression
and pathway analysis which were subsequently assessed
by qRT-PCR. Genes were selected based on a combin-
ation of criteria including: an adjusted P < 0.1, read
counts, pathway analysis and fold change.
The Coding Sequence (CDS) downloaded from

Ensembl for each gene and its transcripts were submit-
ted to the UCSC BLAT genome aligner to allow visual-
isation of exonic sequence separated by intronic
sequence [http://genome.ucsc.edu/cgi-bin/hgBlat]. To
ensure coverage across multiple gene transcripts, exons
common to all transcripts of the gene were selected for
primer design. To predict genomic DNA contamination,
primers were designed to be intron spanning. Primers
for qRT-PCR were designed using the Primer3 (version
0.4.0) software program [61] to measure expression of
the candidate and reference genes. The Basic Local
Alignment Search Tool (BLAST) from the National
Centre for Biotechnology Information [http://www.ncbi.
nlm.nih.gov/BLAST/] was used to ensure the specificity of
the primers within the bovine genome (Additional file 2).

cDNA synthesis and quantitative real-time PCR
The High-Capacity cDNA Reverse Transcription Kit was
used as per manufacturer’s instructions, (Applied Biosys-
tems, Warrington, UK) to synthesise complementary
DNA (cDNA) in a reaction volume of 20 μl with random
hexamers by reverse transcribing 0.5 μg of total RNA
(sample size of 5 animals, 10 samples 5 x 15 DPP and
5 x 30 DPP). This procedure was repeated with an
additional 4 samples (2 x 15 DPP and 2 x 30 DPP) and
the resulting cDNA was pooled for use as an interplate
calibrator and to achieve the gene efficiencies with a 5-fold
dilution series and standard curve.
qRT-PCR reactions were carried out in 96 well plates

with a final reaction volume of 20 μl to include: 10 μl

http://www.medicine.tcd.ie/sequencing
http://www.medicine.tcd.ie/sequencing
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/
http:///www-huber.embl.de/users/anders.HTSeq
http:///www-huber.embl.de/users/anders.HTSeq
http://www.ensembl.org/biomart/martview
http://genome.ucsc.edu/cgi-bin/hgBlat
http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/BLAST/
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SYBR FAST Green Mastermix, 1 μl cDNA, 1 μl of
primer mix (forward and reverse primers with a concen-
tration of 250 nM each in the final reaction volume) and
8 μl nuclease free water. Real-time PCR measurements
were performed in triplicate to calculate the gene
efficiencies and in duplicate to measure the gene expres-
sion levels in each sample. The Applied Biosystems Fast
7500 (version 2.0.1) instrument was used with the
following cycling parameters: 95°C for 20 sec; 40 cycles
of 95°C for 3 sec; 60°C for 30 sec, followed by amplicon
dissociation (95°C for 15 sec; 60°C for 60 sec; 95°C for
15 sec and 60°C for 15 sec). Disassociation curves were
examined for the presence of a single PCR product for
each gene amplified. A non-template control (NTC) was
included in each plate.

Quantitative real-time PCR data analysis and statistics
The reaction efficiencies for 19 primer sets using the
pooled cDNA sample were calculated using a 5-fold
dilution series to generate a standard curve. Triplicate
samples for each cDNA dilution in the series were used
and the average raw cycle threshold (Ct) value from the
qRT-PCR reaction was then calculated. The standard
curve was constructed and the efficiency of the reaction
was calculated with the formula; 10(−1/m)-1 where m is
the slope of the line. An acceptable efficiency (E) was
between 0.9 and 1.1. The efficiency correction was then
carried out on the average raw cycle threshold (Ct)
values, from the 10 test samples (1 in 5 dilution of
cDNA from each cow) in duplicate, using the software
package GenEx 5.2.1.3 (MultiD Analyses AB, Gothenburg,
Sweden). Variation in PCR efficiency was calculated by the
GenEx software. A multitude of plates were used and to
account for inter-plate variation, pooled cDNA acted as an
inter-plate calibrator (IPC) and the gene ACTB was ampli-
fied on each plate in triplicate. The software package
GenEx was used to normalise all samples for the inter-
plate variation.
Relative gene expression levels were determined with

the use of highly stable reference genes. The stability of
5 different reference genes was examined across all
samples using qRT-PCR. The reference genes included
glyceraldehyde 3-phosphate dehydrogenase (GAPDH),
β-actin (ACTB), suppressor of zeste 12 homolog (SUZ12),
zinc finger protein 131 (ZNF131) and ribosomal protein
S9 (RPS9) [62,63]. The data were analyzed using geNorm
([64]; accessible through MultiD Analyses AB, Gothenburg,
Sweden) to measure the overall stability of the reference
genes under examination. Results indicated that GAPDH
and ACTB were the most stable reference genes and had a
stability value (M-value) of 0.6, and were chosen as the
reference genes for subsequent data analysis. The GenEx
5.2.1.3 software program was used to carry out pair-wise
normalisation of the expression values for test samples in
the 15 DPP group referenced to their respective expression
values at 30 DPP. Following this the expression values were
converted to Log2 scale. Significant differences between 15
DPP and 30 DPP sample groups were analysed using a
Student’s t-test with the GraphPad Prism version 3.0
software package on the normalised Ct values.

Additional files

Additional file 1: a: Alignment of reads to the bovine genome with
TopHat. TopHat calls the Bowtie software to align reads to the bovine
genome. This table shows the combined Bowtie output from paired end
reads for all samples that are reported in the “logs” output from TopHat.
b: Summarization of read counts for each gene with HtSeq-Count. The
numbers of reads representing genes annotated in Ensembl and
subsequently filtered for downstream analysis. c: Normalised library sizes
with TMM-EdgeR. The number of reads used for each animal is shown
before and after normalisation using TMM-EdgeR.

Additional file 2: Primer details for candidate and reference genes
used in real-time RT-qPCR. ACTB and GAPDH were the reference genes
used to calculate relative fold changes for all other candidate genes.
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