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Abstract

even if the actual network has such structures.

Background: Bayesian networks (BNs) have been widely used to estimate gene regulatory networks. Many BN
methods have been developed to estimate networks from microarray data. However, two serious problems reduce
the effectiveness of current BN methods. The first problem is that BN-based methods require huge computational
time to estimate large-scale networks. The second is that the estimated network cannot have cyclic structures,

Results: In this paper, we present a novel BN-based deterministic method with reduced computational time that
allows cyclic structures. Our approach generates all the combinational triplets of genes, estimates networks of the
triplets by BN, and unites the networks into a single network containing all genes. This method decreases the
search space of predicting gene regulatory networks without degrading the solution accuracy compared with the
greedy hill climbing (GHC) method. The order of computational time is the cube of number of genes. In addition,
the network estimated by our method can include cyclic structures.

Conclusions: We verified the effectiveness of the proposed method for all known gene regulatory networks and
their expression profiles. The results demonstrate that this approach can predict regulatory networks with reduced
computational time without degrading the solution accuracy compared with the GHC method.

Background

Finding gene regulations is an important objective of
systems biology [1,2]. Causal gene regulatory interac-
tions are widely described using gene regulatory net-
works. Estimating gene regulatory networks can help
reveal complicated regulations.

Recently, microarray [3,4] has rapidly produced a
wealth of information about gene expression activities.
The volume of data necessitates computational methods
to identify and analyze the underlying gene regulatory
networks [5]. A number of analytical methods have
been proposed to estimate gene regulatory networks
from gene expression profiles. Boolean networks, graphi-
cal Gaussian models (GGM), differential equation
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models, and Bayesian networks (BNs) are widely used
models.

A Boolean network is a discrete dynamical network
[6,7]. In a Boolean network, the state of a gene is repre-
sented by a Boolean variable (ON or OFF) and interac-
tions between the genes are represented by Boolean
functions that determine the state of a gene on the basis
of the states of certain other genes. Hence, continuous
gene expression data must be transformed into binary
data before a Boolean network can be estimated, and
much information is lost in this binary encoding. As
gene expression cannot be described adequately by only
two states, Boolean networks are limited by their
definition.

A GGM is an undirected probabilistic graphical model
[8]. This model allows the identification of conditional
independence relations among the nodes under the
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assumption of a multivariate Gaussian distribution of
the data. In a GGM, regulations between genes are esti-
mated by calculating the correlation between pairs of
variables. Therefore, the GGM does not identify the
direction of regulatory relationships between two genes,
but rather only calculates the correlations between their
gene expression data.

A differential equation model describes gene expres-
sion changes as a function of the expression of other
genes and environmental factors [9-11]. Their flexibility
allows the complex relations among components to be
described. In a differential equation model, a gene regu-
lation is described as the function of several gene
expression levels. When the input data includes experi-
mental noise, this model cannot estimate the gene regu-
latory network accurately. Also, if there is not sufficient
data input, overfitting occurs.

BN is a graphical model for representing probabilistic
relationships among a set of random variables [12-16].
These relationships are encoded in the structure of a
directed acyclic graph whose nodes are the random vari-
ables. The relationships between the variables are
described by a joint probability distribution. In a BN,
causal interactions between more than three genes can
be estimated. BN has advantages over the above models
in applications where BN deals better with the experi-
mental noise.

Using a BN, it is hard to estimate a large-scale net-
work because the search space grows exponentially as
the number of genes increases. Therefore, overcoming
this problem has been the focus of much research. The
proposed solutions to this problem can be divided into
three types. The first type limits the number of esti-
mated genes. Even when estimating a large-scale net-
work, part of the network is often attracted. The second
type parallelizes the estimation by supercomputer or
other high-performance computer. Effective parallelizing
makes it possible to estimate large-scale networks. The
third type improve the algorithm itself. These methods
reduce computational time and estimate the network by
a heuristic.

An example of the first type of solution is proposed by
Pena et al. [17]. This method overcomes the problem of
the user having to decide in advance which genes are
included in or excluded from the learning process. The
method receives a seed gene S and a positive integer R
from the user, and returns a BN. It starts the BN from S
genes, then adds the parents and children of all the
genes in the BN R + I times, and prunes some genes. In
this way, the user avoids deciding in advance which
genes to include.

A solution of the second type proposed by Tamada et
al. [18] can estimate gene regulatory networks consist-
ing of more than 20,000 genes from gene expression
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data. The method uses a supercomputer, and it is mas-
sively parallelized. It repeatedly estimates subnetworks
by hill climbing in parallel for genes selected by neigh-
bor node sampling. The method high-handedly over-
comes the problem of the BN by using the
supercomputer. Even if a supercomputer can effectively
provide a large-scale network, an estimation method
designed to run on a workstation is also required.

A solution of the third type for estimating gene regu-
latory networks was implemented by Bettcher et al.
[19]: the greedy hill climbing (GHC) method. By com-
paring networks that differ only by a single directed
edge, either added, removed, or reversed, a GHC
method can estimate networks of larger scale than a
search of all possible networks and do so on a worksta-
tion rather than a supercomputer, thus overcoming two
problems at once. However, the estimation accuracy of
this method is not high, because the method tends to
produce only local optimal solutions.

In this paper, we present a novel BN-based determi-
nistic method with reduced computational time to over-
come the above-mentioned problems. The proposed
method can estimate a network as large-scale as those
estimated by the GHC method, run on a workstation,
and estimate more accurately than the GHC method.
We take another approach to estimate more accurately
than the GHC method. First, our method generates all
the combinational subsets with three genes. Then, we
estimate all possible networks for each subset using the
BN method and unite the networks into a single net-
work including all genes. This approach enables us to
estimate more accurately for the same computational
time than the GHC method.

In order to verify the effectiveness of the proposed
method, we perform two experiments, to evaluate scal-
ability and accuracy: i.e., one to verify the proposed
method can estimate networks as large-scale as those
estimated by the GHC method, and one to verify it can
estimate more accurately than the GHC method. These
experiments are performed using randomly sampled
genes. In addition, we conduct a third experiment to
confirm that our method outperforms the GHC method
using real data.

Results

Bayesian networks

Let D = (V, E) be a directed acyclic graph (DAG), where
V' is a finite set of nodes and E is a finite set of directed
edges between the nodes [19]. The DAG defines the
structure of the BN.

Each node v € V in the graph corresponds to a ran-
dom variable x,. The set of variables associated with the
graph D is then X = {x,}. Often we do not distinguish
between a variable x, and the corresponding node v. To
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each node v with parents pa(v), a local probability distri-
bution, p(x,|%,a)), is attached. The set of local probabil-
ity distributions for all variables in the network is P. A
BN for a set of random variables X is the pair (D,P).
Directed edges in D encode conditional dependencies
between the random variables X through the factoriza-
tion of the joint probability distribution.

p(x) = [ [ (xolxpa))- (1)

veV

As a measure of how well a DAG D represents the
conditional dependencies between the random variables,
we use the relative probability

p(D,d) = p(d|D)p(D), (2)

and refer to it as a network score, where d is data and
p(d|D) is called the likelihood of D.

The log network score contribution of a node is evalu-
ated whenever the node is learned. The log network
score N(D) is given by

N(D) = logp(D, d). 3)

The number of possible DAGs grows exponentially
with the number of nodes, and the problem of identify-
ing the network with the highest score is NP-hard. If
the number of random variables in a network is large, it
is not computationally possible to calculate the network
score for all possible DAGs. For these situations, the
search strategy GHC method is implemented.

The GHC method is as follows.

1. Select an initial DAG Dy randomly from which to
start the search.

2. Calculate the Bayes scores of Dy and all possible
networks that differ by only one directed edge, that
is, an edge is added to Dy, an edge in D is deleted,
or the direction of an edge in D, is reversed.

3. Among all these networks, select the one that
increases the Bayes score the most.

4. If the Bayes score was not improved, stop the
search. Otherwise, make the select network Dy and
repeat from step 2.

In the GHC method, we can limit the maximum num-
ber of these steps in the search algorithm. Also, the
search algorithm can restart an arbitrary number of
times. More details on the parameter setting will be
described later in this paper.

Methods

We propose a new method to estimate a gene regulatory
network with reduced computational time. The pro-
posed method is composed of three steps: dividing the
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whole problem into partial problems, estimating gene
regulatory networks of partial problems, and uniting the
estimated networks. In this section, we describe our
BN-based method using the analysis of a set of expres-
sion data as an example. This example includes five
genes V = {y;|1 < i < 5}. A conceptual representation of
our approach is presented in Figure 1. We call a search
of all possible networks an exhaustive search to distin-
guish it from the GHC method.

Step 1: Dividing the whole problem into partial problems
Our approach first divides the set of all genes V into all
the combinational subset with three genes (triplets) ¢ =
{vis v vie € V|1 < i <j <k < 5}. For example, our
approach obtains 5C3 = 10 partial problems {vy, v, v3}.
{Vh V2, V4}¢ e {VS: Va, VS}'

Step 2: Estimating gene regulatory networks

After making partial problems, we next calculate inde-
pendently the scores of all the possible networks of each
partial problem by exhaustive search and obtain esti-
mated DAGs G. The number of possible alternative net-
works for a triplet {v1, v,, v3} is 3% = 27 because there
are three cases for each potential edge (v;, v)) (1 <i <j <
3): a directed edge from v; to v;, a directed edge from v;
to v;, and no edge.

Let ¢ = (D, Sp, Rp) be a tuple, where D € G is a DAG,
Sp = p(D, d) is a score of D, where p(D, d) is given by
Equation 2, and Rp, is a rank of D.

We add tuples of all the partial problems to Z, where
Z is a set of ¢. For example, when we have 10 partial
problems {vy, vo, v3}.{v1, Vo, v4}, ..., {v3, v4, v5}, we add
270 tuples of networks to Z.

Step 3: Uniting estimated partial problems

To solve the original problem, this step unites three-
gene networks into a single gene regulatory network.
The policy of the step is to classify relationships
between genes, i.e., determine (v, v;) (1 < i <j < 3) into
one of the three edge types (a directed edge from v; to
vj, a directed edge from v; to v;, or no edge between v;
and v;) according to the score calculated in Step 2.

To select an edge type between genes v; and v;, we
calculate an edge (v;, v;) value for each of the three
types ¢ using the following:

>, So (@)

(D,Sp,1)eZ

where D has edge (v;, v;). Then we select one edge
type that has the highest total value.

When two or more edge types have the highest total
value, we use edge scores of the partial problems whose
ranks are 2 or more.

Algorithm
Input: V = Vi, ..., Vi a set of genes, GEP: gene expres-
sion profiles of V
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Figure 1 Conceptual representation of our approach. Yellow circles represent genes. Blue circles represent partial problems. Small directed
edges represent regulatory relationships between genes. Large directed edges represent the flow of the method.

Output: Gy : DAG including genes V'

Variable: Z: a set of tuples (graph, score, rank)

1: Make a collection of set V that includes all the sub-
sets of V with three elements

2-1: for each U in V do

2-2: Make a collection of set D, that includes all the
DAGs of U

2-3: for each D in D, do

2-4: calculate rank Ry, and score S, with GEP

2-5: add (D, Sp, Rp) to Z

2-6: end for

2-7: end for

3-1:ie1

3-2: repeat

3-3: for each edge between genes (x, y) in D of (D,
SD, l) do

3-4: add all Sy, of (D, Sp, i) for each of the three
edge types

3-5: if one edge type has the highest total Sp then

3-6: add an edge between genes (x, y) to Gy

3-7: end if

3-8: if two or more edge types have the highest
total Sp then
3-9: for each edge between genes (x or y, w) in

Gy, where w is a gene = x, y do
3-10: select edge between genes (x, y) from D
of (D, Sp, i), where D includes genes x, y, and w.

3-11: end for

3-12: add edge (x, y) selected in (3-10) with the
highest Sp to Gy,

3-13: end if

3-14: end for

3-15:  i«—i+l

3-16: until directions of all edges in Gy are assigned
3-17: return Gy,
A flowchart of the algorithm can be found in Figure 2.

Computational experiments

To verify the effectiveness of the proposed method, we
performed three experiments. The first experiment
determines computational time for different numbers of
genes. The purpose of this experiment is to verify that
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Input: V=V, .., V, :aset of genes,

GEP : gene expression profiles of V
Output: G, : DAG including genes V

start

C

Variable: Z : a set of tuple(graph, score, rank)

All elements

1
I
I
1
I
| All edges in G,, G
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includes all the subset of V with 1
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total S,
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of D,are
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between genes

Add edge (x,y) selected with the

(xory, w) are highest S,t0 G,
Calculate rank R, and score 5,
with GEP
v Select a edge between genes
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|
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represent decision steps.

Figure 2 Flowchart of the algorithm. Circles represent start and end points. Rectangles represent generic processing steps. Diamonds

the proposed method is able to estimate gene regulatory
networks that are as large-scale as those estimated by
the GHC method. The second experiment demonstrates
that the proposed method is more accurate than the
GHC method. The third experiment shows, through an
example, that our algorithm works well for inferring real
gene regulatory networks. We estimate the networks,
including the known gene regulatory network, and com-
pare the network estimated by the proposed method
and that by the GHC method.

Implementation, system, and materials

Steps 1 and 2 are implemented using the deal package
version 1.2-33 written in R. We use R 2.10.1. Step 3 is
implemented using Perl 5.10.1.

The GHC method is implemented in the deal package
version 1.2-33. In these experiments, the maximum
number of actions, i.e., adding, deleting, or reversing a
directed edge, is set at 50 and the number of restarts is
set at 0. We call these parameters the default parameter
set.

We performed all the experiments on a computer with
Intel Core2 Duo 6600 CPU 2.40 GHz processors with
3.0 GB memory. The operation system is Ubuntu 10.04.

We used a dataset of two time-series gene expression
profiles including 45102 genes from a mouse adipocyte
and osteoblast. The number of time points is 62.
Experiment 1 We verified that the proposed method
can estimate gene regulatory networks as large-scale as
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those estimated by the GHC method. We used the pro-
posed method, an exhaustive search, and the GHC
method, and compared the estimation time for from 3
to 70 genes. In this experiment, we selected genes from
the gene expression profile from a mouse adipocyte by
random sampling. We ran this process 50 times and cal-
culated the mean estimation time. The results are sum-
marized in Figure 3.

In Figure 3, the horizontal axis corresponds to the
number of genes and the vertical axis corresponds to
the logarithm of the estimation time. The proposed
method was able to estimate the network including 70
genes, and the estimation times were almost the same
as those of the GHC method. The estimation time of
the proposed method was shorter than that of the GHC
method for 40 or more genes. The estimation time of
the proposed method was longer than that of the GHC
method for 15 or fewer genes. The estimation time of
the exhaustive search was very large by 5 genes.
Experiment 2 We verified that the estimation accuracy
of the proposed method is higher than that of the GHC
method for nearly identical estimation times. We com-
pared the estimation results of the exhaustive search
with the results of the proposed method and the GHC
method. In this experiment, we selected five genes ran-
domly from the gene expression profile 100 times from
a mouse adipocyte and osteoblast. We estimated the
network of these five genes by the proposed method
and the GHC method. There are 59049 DAGs for five
genes, and all the DAGs are ranked by the scores of the
exhaustive search. The ranking was used to evaluate the
networks estimated by the proposed method and the
GHC method. The results are listed in Figure 4.

The two bar charts in Figure 4 show the ranks of 100
networks estimated by the proposed method and the
GHC method. The left bar chart is the results for adipo-
cyte, and the right are those for osteoblast. The
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correspondence count is the number of times that the
network estimated by the proposed method or the GHC
method corresponded with the network of the exhaus-
tive search. The ranking in the exhaustive search is the
ranking of the networks estimated by the exhaustive
search. The networks are ranked by the scores of the
exhaustive search. As there are 59049 DAGs for five
nodes, the ranks are from 1st to 59049th.

The correspondence count of the proposed method

from the 1st to 10th networks of the exhaustive search
exceeded 50. For the correspondence count from the
30001th to the 59049th network of the exhaustive
search, the GHC method exceeded 50 and the proposed
method was less than 10.
Experiment 3 We used a known gene regulatory net-
work and verified that the proposed method can esti-
mate more accurately than the GHC method with the
same or less computational time. We compared the reg-
ulations estimated by the proposed method with those
of the GHC method. In this experiment, we used 40
genes from the gene expression profile from a mouse
adipocyte. Of these, 7 genes are Ppary and the genes
that regulate or are regulated by Ppary in adipocyte.
These are shown in Figure 5(a). The remaining 33 genes
were selected by random sampling. The results and
known networks are shown in Figure 5. In this experi-
ment, we used two parameter sets for the GHC method.
One is the default parameter set. In the other parameter
set, the maximum number of actions is 100 and the
number of restarts is 10, which will return a better net-
work but requires about 20-fold longer computational
time than the default.

In Figure 5, results of the default and other parameter
set are shown as networks (b) and (c), respectively. We
call (c) the network estimated by the highly accurate
GHC method in this experiment. Network (d) is esti-
mated by the proposed method. The edges in networks

1000

100 /
Estimation 10 ’[/

time(sec.) f,;’_

{

F——

/
OJ,-" 10 20 30
0.1

0.01

40 50 60 70

Number of genes

Figure 3 Comparison of the estimation time. The estimation time of the exhaustive search, the GHC method, and the proposed method.
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-2~ GHC method

——proposed method
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networks estimated by the GHC method and the proposed method

(b), (c), and (d) are categorized according to the edges of
network (a). The red edges are also in network (a), the
blue edges have a different direction from those in net-
work (a), and the black edges have no relationship in
network (a).

Figure 5 shows that the proposed method was able to
estimate more correctly than the GHC method. The
sensitivity and selectivity of the proposed method were
33% and 30%, those of the GHC method were 0% and
0%, and those of the high accurate GHC method were
11% and 14%. Networks (b), (c), and (d) have many
edges that the known gene regulatory network does not
have, but these edges describe indirect regulations. For
example, in Figure 5(d), there is a black edge from C/
EBPo to Statl. The edge describes the indirect regula-
tion from C/EBPo to Statl via Ppary because there are
edges from C/EBPo to Ppary and from Ppary to Statl
in Figure 5(a).

Discussion

The GHC method tends to produce local optimal solu-
tions. For example, in Figure 4, the results of the GHC
method have two peaks, corresponding to the classes of
1-10 and 30001-59049. We cannot completely avoid
selecting a local optimal solution when using the GHC
method, because the solution accuracy depends on the
initial DAG from which the search is started. To obtain
the best network when using the GHC method, the esti-
mation must be repeated using different initial DAGs.

In contrast, the proposed method can produce one
result as the best network.

The results of our experiments indicate that dividing
the set of all genes and uniting the network results can
estimate more accurately than the GHC method. With
the GHC method, the maximum number of actions, i.e.,
adding, deleting, or reversing a directed edge, and the
number of restarts can be adjusted. If these parameters
are increased as much as possible, the estimation accu-
racy can be made comparable to that of the exhaustive
search. However, this would spoil the advantage of the
GHC method that it can estimate with high speed. The
GHC method selects the action that increases the net-
work score the most; therefore, a regulation that
increases the network score only slightly is rarely
selected. In this sense, the search of the GHC method is
considerably biased. This aspect becomes pronounced
when the limiting parameters are set strictly. With the
proposed method, regulations that have a positive effect
will be selected independently of whether that effect is
slight or strong. For example, in Figure 5, the regulatory
relationship between Ppary and C/EBPf could not be
estimated by the GHC method, even if the parameters
of the restart and the actions were significantly
increased.

We verified that the proposed method can estimate
networks as large-scale as those estimated using the
GHC method. We spend at most 0.1 second to estimate
the network of one partial problem with three genes
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(a)known gene network

C/EBPa.
¥

@ / C/EBPB

(c)highly accurate GHC method

(d)proposed method

Figure 5 Comparison of the network including Ppary and genes that regulate or are regulated by Ppary. (a) is the known gene
regulatory network. (b) is the network estimated by the GHC method with the maximum number of actions set at 50 and the number of
restarts set at 0. () is the network estimated by the GHC method with the maximum number of actions set at 100 and the number of restarts
set at 10. (d) is the network estimated by the proposed method. Blue circles represent genes. Red edges indicate edges also in network (a), blue
edges indicate edges with a different direction from those in network (a), and black edges indicate that there are no such relationships in

network (a).

and repeat the estimation ,,C3 times in the proposed
method. Therefore, the proposed method can estimate
the network with a low amount of memory compared
with the GHC method, which, like the exhaustive
search, requires much memory. When we estimate a
network for a data set from a large number of genes
using the GHC method, it is easy to run out of memory,
making the actual computational time longer than the
theoretical time.

Conclusions

In this study, we present a novel BN-based deterministic
method with reduced computational time. We con-
firmed experimentally that the proposed method can

reduce the computational time drastically without
degrading the solution accuracy. The proposed method
can estimate networks as large-scale as those estimated
by the GHC method. Furthermore, the proposed
method can estimate more accurately than the GHC
method, even if the computational time of the GHC
method is increased to more than 20 times that of the
proposed method.
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