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Abstract

Background: Large-scale tumor sequencing projects are now underway to identify genetic mutations that drive
tumor initiation and development. Most studies take a gene-based approach to identifying driver mutations,
highlighting genes mutated in a large percentage of tumor samples as those likely to contain driver mutations.
However, this gene-based approach usually does not consider the position of the mutation within the gene or the
functional context the position of the mutation provides. Here we introduce a novel method for mapping
mutations to distinct protein domains, not just individual genes, in which they occur, thus providing the functional
context for how the mutation contributes to disease. Furthermore, aggregating mutations from all genes
containing a specific protein domain enables the identification of mutations that are rare at the gene level, but
that occur frequently within the specified domain. These highly mutated domains potentially reveal disruptions of
protein function necessary for cancer development.

Results: We mapped somatic mutations from the protein coding regions of 100 colon adenocarcinoma tumor samples
to the genes and protein domains in which they occurred, and constructed topographical maps to depict the
“mutational landscapes” of gene and domain mutation frequencies. We found significant mutation frequency in a
number of genes previously known to be somatically mutated in colon cancer patients including APC, TP53 and KRAS.
In addition, we found significant mutation frequency within specific domains located in these genes, as well as within
other domains contained in genes having low mutation frequencies. These domain “peaks” were enriched with
functions important to cancer development including kinase activity, DNA binding and repair, and signal transduction.

Conclusions: Using our method to create the domain landscapes of mutations in colon cancer, we were able to
identify somatic mutations with high potential to drive cancer development. Interestingly, the majority of the
genes involved have a low mutation frequency. Therefore, themethod shows good potential for identifying rare
driver mutations in current, large-scale tumor sequencing projects. In addition, mapping mutations to specific
domains provides the necessary functional context for understanding how the mutations contribute to the disease,
and may reveal novel or more refined gene and domain target regions for drug development.

Background
The advent of high-throughput, whole-genome DNA
sequencing has enabled the evaluation of normal and
tumor tissue samples from hundreds of patients in a single
study, revealing both germline and somatic mutations

with potential involvement in cancer susceptibility, initia-
tion and development. However, distinguishing the hand-
ful of somatic mutations expected to initiate and maintain
tumor growth, so-called driver mutations, from mutations
that play no role in cancer development, passenger muta-
tions, is still a major hurdle to fully understanding the
mechanisms of the disease and to the design of more
effective treatments. Most current, state-of-the-art studies
take a gene-centric approach to the problem [1-6], identi-
fying potential driver mutations as those that occur in
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genes mutated in a high percentage of the tumor samples.
A pathway analysis typically follows to add functional con-
text to the mutated genes. For example, mutations in the
APC gene have been shown to be highly prevalent in col-
orectal tumors [1,2,7]. Unfortunately, this approach is lim-
ited to a small subset of genes and inherently disregards
gene mutations occurring in a low percentage of tumor
samples. Identifying rare mutations at the gene level, those
that do not recur in the same gene in many patients, with
high functional relevance to the oncogenic process is
extremely difficult using current gene-centric approaches.
This is indeed one of the most crucial problems in the
fight against cancer today (http://provocativequestions.nci.
nih.gov).
Furthermore, gene-centric approaches to classifying dri-

ver and passenger mutations make no distinction between
mutations in different sites on the gene, disregarding
important information about the functional context of the
site of the mutation. A recent study by Vidal’s team
demonstrated the potential of gene-centric approaches to
mischaracterize mutations [8]. The authors showed that
changes causing a complete knockout of a protein (node
removal) are often phenotypically distinct from mutations
that disrupt specific regions of the proteins thereby elimi-
nating any interaction(s) in which the protein participates
(edgetic perturbations). In particular, the authors empha-
sized the importance of taking into account the modularity
of proteins when studying mutation-phenotype relation-
ships, showing several examples where mutations in the
same protein but in different protein domains, which are
protein regions conserved within and across species [9],
produce distinct disease phenotypes. This result also
demonstrates how pathway analyses of mutated genes can
potentially provide an incomplete picture of the functional
implications of mutations at the gene level. Distinct inter-
actions for a protein in the pathway can either be pre-
served or disrupted depending on whether or not
mutations affect the specific domain mediating the
interaction.
In this study, we introduce a new approach for the ana-

lysis of cancer somatic mutations based on the study of
these mutations at the protein domain level. We argue
that since protein domains define the structural and func-
tional units of the proteins, mapping mutations not only
to the genes in which they occur, but also to individual
protein domains, adds functional information critical to
the accurate assessment of the impact of the mutations.
Analysis of the positions of individual oncogenic muta-
tions discovered from several independent studies has
revealed significant clustering of these mutations at speci-
fic positions within the catalytic domain of several protein
kinases [1,11,12]. Other studies specifically designed to
show the clustering of mutations at distinct positions
within protein domains have revealed numerous other

domain positions highly mutated across a variety of dis-
ease types [12,13]. In a functional analysis of candidate
colon cancer genes identified by Sjöblom et al. in 2006,
significant enrichments of proteins containing the MH1
and MH2 domains were found [1]. However, as later
noted by Chittenden et al., whereas 70% of the mutations
in MH2-containing proteins fell within the MH2 domain,
the enrichment of the MH1 domain turned out to be mis-
leading as further analysis revealed that none of mutations
in the MH1-containing proteins occurred inside of the
MH1 domain itself [14]. Similarly, many other distinct
domains have been shown to be significantly enriched in
cancer-associated genes including kinase domains and
domains involved in transcriptional regulation and DNA
maintenance and repair [15]. Domain enrichment analysis,
however, is commonly performed after a significant set of
genes has been identified, and does not consider whether
mutations in the genes actually occur inside the enriched
domains. This approach can result in misleading assump-
tions about domain associations to cancer.
Our approach for identifying mutations relevant to

cancer development specifically maps somatic mutations
to the individual domains in which they occur, resulting
in a more accurate measure of enrichment of mutations
at the domain level. By mapping mutations to individual
domains, our method avoids potentially misleading con-
clusions from gene-based domain enrichment analyses
and provides an inherent functional explanation for how
the mutations contribute to disease. We performed an
exome-wide study of somatic mutations, including single
nucleotide variants (SNVs) and short insertions and dele-
tions (indels), from 100 colon adenocarcinoma patients
obtained from The Cancer Genome Atlas (TCGA) pro-
ject [16]. To implement our approach, mutations in each
domain are aggregated from all human proteins contain-
ing the domain. As a result we aggregate a wide range of
human proteins, from those from the same protein
families sharing high sequence similarity to highly dis-
similar proteins sharing only the domain in which the
mutations are present. By doing so, our domain-centric
method can also reveal novel gene candidates for involve-
ment in cancer development, through the identification
of a highly mutated domain shared with other genes
known to be significant in cancer.
We also introduce new terminology to describe the dis-

tribution of somatic mutations at the protein domain
level: the “domain mutational landscape” consisting of a
topographic representation of mutation frequencies within
individual protein domains from whole-genome, cancer
sequencing studies, and “domain peaks” defined as protein
domains mutated at high-frequency in tumor genomes of
the same or different tumor types. Sjöblom and collabora-
tors performed the first large-scale analysis of breast and
colorectal cancer mutations [1]. Using a small sample of
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individual tumors, they identified 191 candidate genes
(CAN genes) significantly mutated in breast and colorectal
tumor samples. Wood et al. later followed up the study
using a larger set of transcripts and revised statistics for
identifying significantly mutated genes [2]. The authors
identified an additional 89 CAN genes, and postulated that
the genomic landscape of cancer is composed of a few
commonly mutated gene “mountains”, including APC,
KRAS, TP53 and others for colorectal cancer, but is domi-
nated by a larger number of infrequently mutated gene
“hills”. Here, we compare the gene-based mutational land-
scape of a much larger set of colon tumor samples to the
landscape revealed by Wood et al., and show significant
clustering of mutations in many of the previously identi-
fied CAN genes.
In addition, we also describe the domain mutational

landscape of colon cancer, and demonstrate how this land-
scape reveals major properties that cannot be revealed by
gene-based landscapes. We show how highly mutated
domain peaks can be missed by gene-centric methods
when the individual genes containing the domains are not
mutated at high frequencies. We also show how focusing
only on significantly mutated genes can miss instances
where mutations occurring within a shared domain are
actually the more relevant functional contributors to the
cancer. Therefore, due to its ability to identify and func-
tionally characterize somatic mutations with high potential
to drive cancer development, we expect our novel domain-
centric method to become an integral tool for the analysis
of data from future large-scale cancer sequencing studies.

Results
In this study, we compared the gene and domain muta-
tional landscapes of somatic mutations present in tumor
samples from 100 colon adenocarcinoma patients partici-
pating in the TCGA project. Mutations in protein coding
genes such as single nucleotide variants causing amino
acid changes (nonsynonymous SNVs or nsSNVs), short
insertions or deletions causing a shift in the reading frame
(frame shift mutations) and mutations causing the gain or
loss of a stop codon (stop-gain or stop-loss mutations) are
generally expected to be the most likely candidates for
driving disease development. Therefore, we identified all
somatic mutations of these types in addition to nonframe-
shift insertions and deletion mutations occurring within
the protein coding regions of the tumor samples (see
Methods for additional details). In total, 21,572 mutations
were identified in the 100 samples, yielding an average of
215 mutations per patient. Approximately 80% of the
mutations were nsSNVs, 12% were frame shift mutations,
7% were stop-gain mutations, 0.15% were stop-loss muta-
tions, and 1% were nonframeshift insertion mutations
(Table 1). In addition, almost half (49.4%) of all mutations
occurred inside of annotated protein domain regions. For

comparison to another cancer type, we also created the
gene and domain mutational landscapes for 522 breast
invasive carcinoma patients also participating in the
TCGA project. Despite having a larger number of muta-
tions (25,807), the breast cancer patients had a lower aver-
age mutation count (49.7), but the distribution of
mutation types and number of mutations inside of domain
regions were roughly similar to the colon cancer set
(Additional file 1 - Table S1).
Here, we show results of mapping mutations not only to

individual genes, but also to the specific protein domains
in which they occurred. We also constructed the domain-
based mutational landscape for colon cancer from a set of
100 tumor samples.

Gene mutation landscapes
Similar to the Wood et al. study [2], we plotted the fre-
quencies of colon cancer mutations for individual genes
onto a two-dimensional map where each gene is repre-
sented as a square of arbitrary size in a grid with coordi-
nates in the x-y axes (Figure 1A). The heights of the peaks
(z-axis) on the map are proportional to the frequency of
somatic mutations occurring in each gene normalized by
the length of the representative protein (i.e. the longest
protein isoform) encoded by the gene. This map reveals
the overall mutational landscape of genes mutated in
colon cancer patients. In comparison to the Wood et al.
study, we also found a handful of highly mutated gene
peaks, including peaks in KRAS and TP53 (Figure 1A) and
significant mutation frequency in APC (Table 2). Also
similar to the Wood et al. mutational landscape, we found
that the overall gene-based mutational landscape was
dominated by a much larger number of lower mutation
frequency gene hills. Figure 1C shows the gene-based
landscape for breast cancer, revealing a similar topography
of mountains and hills. Peaks for the TP53 gene and

Table 1 Mutation counts for colon cancer

Total patients 100

Total mutations 21,572

Total nonsynonymous SNVs 17,174 (79.6%)

Total frameshift insertions 2,527 (11.7%)

Total nonframeshift insertions 239 (1.1%)

Total frameshift deletions 5 (0.0%)

Total nonframeshift deletions 0 (0.0%)

Total stop-loss SNVs 33 (0.2%)

Total stop-gain SNVs 1,594 (7.4%)

Mutations in domain regions 10,647 (49.4%)

Average mutations per patient 216 (± 552)

Number of mutations per patient 21-4,880

Summary of somatic mutations occurring in the exomes of 100 colon cancer
tumor samples. Synonymous SNVs and variants present in dbSNP (release
130) were removed due to their low likelihood of being driver mutations.
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PIK3CA gene were shared with the Wood et al. landscape
for breast cancer.
We adapted the local false discovery rate analysis from

Efron et al. [21] to identify genes and domains with signifi-
cant mutation frequency. We expected these regions to
contain driver mutations under the assumption that non-
functional, or passenger, mutations would be uniformly
distributed throughout the genome. We also normalized

the mutation counts by the representative protein length
for genes and by the cumulative domain length for
domains, to control for the assumption that longer regions
should contain more mutations. This also ensures that the
domain landscape is not biased towards more frequently
occurring domains. Using a local false discovery rate
threshold of 0.1, we identified 154 genes with significant,
length normalized mutation frequencies in colon cancer
tumor samples (see Additional file 2), and 151 such genes
in the breast cancer set (see Additional file 3). The top nor-
malized mutation frequencies occurred in KRAS, OR8U1
and TAS2R43(Table 2), with significant mutation frequency
for other genes with well-known relevance to colon cancer
including TP53, APC and BRAF [15]. In addition, we iden-
tified significant mutation frequencies in six CAN genes
previously identified in the Sjöblom and Wood studies:
APC, KRAS, TP53, FBXW7, SMAD4 and GRID1. Of the
top five ranked CAN genes, four ranked in the top 20 high-
est mutation frequency genes in our study, and only
PIK3CA did not achieve significance despite having nine
mutations. However, the PI3K_p85B domain located
within the PIK3CA gene was found to have significant
mutation frequency. Two other CAN genes, SMAD2 and
SMAD3, also did not have significant mutation frequency
at gene level, but did have significant mutation frequency
within the MH2 domain contained within each gene.

Domain mutation landscapes
As we did for the mutation frequencies for individual
genes, we constructed the domain mutational landscape

Figure 1 Gene and domain mutational landscapes for colon and breast cancer Topographical maps depicting the frequency of somatic
mutations in individual genes (1A and 1C) and domains (1B and 1D) from studies of 100 colon adenocarcioma and 522 breast invasive
carcinoma patients. Each gene or domain is represented by a single point, and the heights of the peaks on the maps are proportional to the
length normalized frequencies of somatic mutations occurring in each gene or domain. The “*” next to the arrow for the P53 domain peak in
breast cancer (1D) denotes that the height of this peak was reduced to better show the landscape for the other domains.

Table 2 Selected genes highly mutated in colon cancer
tumor genomes

Gene Protein Accession Mutations Protein Length

APC NP_001120982 76 2843

BRAF NP_004324 14 766

FBXW7 NP_361014 21 745

KRAS NP_203524 30 189

LOC440563 NP_001130033 33 293

NRAS NP_002515 7 189

OR8U1 NP_001005204 48 309

TAS2R19 NP_795369 22 299

TAS2R30 NP_001091112 28 319

TAS2R31 NP_795366 31 309

TAS2R43 NP_795365 36 309

TP53 NP_000537 31 393

Selected list of significantly mutated genes as identified by using local false
discovery rate (LFDR) (threshold < 0.1) of the length normalized mutation
frequencies for all genes. Mutation counts are the total counts of somatic
mutations identified in 100 colon cancer patients falling inside the protein
coding region of the gene. Protein length is the number of amino acids in the
representative protein isoform for the corresponding gene.
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maps by plotting the domain mutation frequencies onto
two-dimensional maps where each domain, not gene, is
represented as a square of arbitrary size in a grid with
coordinates in the x-y axes. The domain peak heights
correspond to the mutation frequencies for individual
domains containing mutations in the colon (Figure 1B)
and breast cancer (Figure 1D) sets, respectively. The
count of mutations in each domain was normalized by
the cumulative length of all occurrences of the domain
from all previously identified representative proteins in
the genome. Again using a local false discovery rate
threshold of 0.1, we identified 45 domains with signifi-
cant, length normalized mutation frequencies (see Addi-
tional file 4) in the colon cancer set, and 41 such
domains in the breast cancer set (see Additional file 5).
We found the domain mutation landscape for colon
cancer to be dominated by a few peaks corresponding
to the P53, APC_crr and CENP-B_N domains, but also
to contain a much larger number of smaller domain
hills.
Construction of both the gene and domain mutational

landscapes enabled us to identify a large number of signifi-
cantly mutated domain peaks that are formed in a variety
of ways. Some of our top domain peaks receive most or all
of their mutations from gene peaks in the gene landscape
(Table 3). For example, in the colon cancer set, P53 and
APC_crr receive nearly all of their mutations from the
TP53 and APC genes, both of which appeared as gene
peaks in our gene landscape. However, some domain
peaks reached significance by aggregating mutations from
genes that did not individually contain significant numbers
of mutations, a graphical depiction of which can be found
in Figure 2. One domain peak exhibiting this characteristic

was CENP-B_N, which aggregated mutations from genes
that were not considered to be significant peaks in the
gene landscape, TIGD7 and JRKL. Comparison of the gene
and domain landscapes also enabled us to identify a num-
ber of instances where a given domain peak retained
mutations even after the removal of mutations occurring
in significant gene peaks (see Figure 3).

Comparison of colon and breast cancer landscapes
Using our approach, we found several gene (Additional file
1 – Table S2) and domain peaks (see Additional file 1 –
Table S3) in common between the colon and breast can-
cer gene landscapes. The genes TP53, KRAS, CELA1, SER-
TAD3, HIST1H1C, DCAF4L2 and BCL2L11 formed peaks
in the mutational landscapes for both the colon and breast
cancer sets. In addition, the domains P53, PI3K_p85B,
bZIP_1, bZIP_2, IL8, LSM and S_100 formed domain
peaks in both cancer types. A Venn diagram (Figure 4)
shows the counts of significant gene and domain peaks for
both cancer types. We found that the percentage of peaks
at the domain level shared between the two cancer types
was higher than the percentage of peaks shared at the
gene level. For example, while 4.5% (7 out of 154) of the
colon cancer gene peaks are shared with breast cancer,
approximately 15% (7 out of 45) of the colon cancer
domain peaks are shared with breast cancer. We also
checked if any of the shared domain peaks were contained
within shared gene peaks. Only one of the domain peaks,
P53, occurred within a shared gene peak, TP53.

GO term enrichment analysis
To determine functions overrepresented in our sets of
significant gene and domain peaks in comparison to

Table 3 Selected domains highly mutated in colon cancer tumor genomes

Name Accession Mutations Cumulative Domain Length Genes (Number of Mutations)

APC_basic PF05956 5 356 APC (5)

APC_crr PF05923 8 176 APC (8)

CortBP2* PF09727 9 726 CTTNBP2NL (1), CTTNBP2 (2), FILIP1 (5), FILIP1L (1)

MH2 PF03166 14 731 SMAD4 (9), SMAD9 (2), SMAD2 (1), SMAD3 (1), GARS (1)

Miro PF08477 77 5861 KRAS (28), NRAS (7), RAB27B (2), RAB11B (2), RABL3 (2)
+ 46 genes with 36 additional mutations

MutS_IV PF05190 6 380 MSH4 (2), MSH6 (2), MSH5(1), MSH2 (1)

PI3K_p85B PF02192 4 231 PIK3CA (4)

P53 PF00870 28 390 TP53 (27), TP63 (1)

TAS2R PF05296 132 6557 TAS2R43 (36), TAS2R31 (31), TAS2R30 (25), TAS2R19 (21)
+ 19 genes with 27 additional mutations

WAP PF00095 6 299 WFDC8 (3), SLPI (1), WFDC5 (1), KAL1 (1)

Selected list of significantly mutated domains as identified by LFDR (threshold < 0.1) of the mutation frequencies normalized by the cumulative domain length
for all domains. The domain name and Pfam domain accession are provided. Mutation counts are the total counts of somatic mutations identified in 100 colon
cancer patients which occur inside the associated protein domain region. Cumulative domain length is the cumulative amino acid length of all occurrences of a
domain within all representative proteins for genes containing somatic mutations. The genes and associated mutation counts are listed for each gene containing
mutations in the domain. The “*” next to the CortBP2 domain denotes that the domain did not reach the threshold for significant mutation frequency, but
ranked in the top 75 highest mutation frequency domains.
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genes and domains not reaching significance, we first
obtained all available Gene Ontology term (GO term)
annotations for all genes and domains containing somatic
mutations in our colon and breast cancer sets. A subse-
quent enrichment analysis of GO terms annotated to
gene peaks in our colon cancer landscape revealed an
overrepresentation of genes annotated with GO terms
related to signal transduction, kinase activity, DNA
damage response and the regulation of apoptosis. A list
of the top overrepresented GO terms from the enrich-
ment analysis of gene peaks for colon and breast cancer

can be found in Additional file 1 – Table S4 and Table
S5 respectively. A similar analysis of GO terms annotated
to colon cancer domain peaks revealed an overrepresen-
tation of domains annotated with GO terms related to
DNA binding, DNA repair, enzyme regulator activity and
other cancer-related functional terms such as signal
transduction and kinase regulator activity. The complete
lists of overrepresented GO terms from the enrichment
analysis of domain peaks for colon and breast cancer can
be found in Additional file 1 Table_S4 and Table_S5,
respectively.

Figure 2 Domain peaks derived from genes with low mutation frequencies Depiction of the gene and domain landscape topographies
corresponding to an instance where the individual genes contributing mutations to a shared domain do not achieve significance, yet the
shared domain aggregates enough mutations to achieve significance. Top map – arrows point to genes with non-significant mutation
frequencies. Bottom map – domain peak aggregates enough mutations to be significant.
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Discussion
Previous studies by Sjöblom et al. and Wood et al. identi-
fied significant clustering of mutations in the “genomic
landscapes” of human breast and colorectal cancers.
Despite the need of larger samples to reach more accu-
rate conclusions [1,19,20], these early studies demon-
strated the potential of genome-wide studies to capture
decades of research into the association of individual
genes to cancer in one study. However, due to the rarity
of mutations in the gene hills, the authors concluded that
these less frequently mutated genes might be better stu-
died within their pathway contexts to elucidate their
functional roles in cancer. Today, it is still a major chal-
lenge for genome-wide studies of somatic mutations in
cancers to identify rare somatic mutations, those gene
mutations occurring in a low percentage of tumor sam-
ples, that still contribute to cancer initiation and
progression.
By mapping mutations not only to the genes, but also

to the individual domains they occurred in, we were
able to construct the mutational landscapes for both
genes and domains for 100 colon cancer patients (Figure
1A and 1B). We also constructed the gene and domain
mutational landscapes for 522 breast cancer patients
(Figure 1C and 1D) for comparison to another cancer
type. Mapping the mutations to specific domains had
the advantage of adding the critical functional context

Figure 3 Domain peaks retaining mutations after the removal of mutations from gene peaks Depiction of the gene and domain
landscape topographies corresponding to an instance where multiple genes contribute mutations to a shared domain, yet the removal of
mutations from a significantly mutated gene peak leaves a significant number of mutations in the shared domain. Left side – top map shows
the significant gene peak in the lower right corner of the map, bottom map shows the gene peak removed. Right side – top map shows the
original domain peak, bottom map shows the domain peak with a significant number of mutations even after the removal of mutations from a
significant gene peak.

Figure 4 Shared gene and domain peaks in colon and breast
cancer landscapes Venn diagram illustrating the proportion of
overlap between significantly mutated genes and domains in colon
and breast cancer.
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necessary for explaining how the mutations potentially
contribute to disease. While a relatively small number of
significantly mutated domains were shared in both the
colon and breast cancer patients, the method also shows
the potential of the domain landscape to find common-
alities between different cancers at the functional level
that might not be apparent at the gene level. Construc-
tion of the domain landscape also revealed many prop-
erties that are not apparent from traditional gene-based
analyses by examining the individual contributions of
mutations from distinct genes that fall within a shared
domain. These properties include expected instances
where a highly mutated gene contained a highly
mutated domain, but also unexpected instances where a
shared domain is highly mutated, but the individual
genes are not, or even where after the removal of muta-
tions from highly mutated genes, some genes still con-
tain mutations within the shared domain. Examination
of the domain landscape also revealed instances where
all the genes contributed mutations relatively equally to
the domain, and where only one or two genes contribu-
ted the majority of mutations. We also found instances
where highly mutated domains are shared by genes in
the same family, and by genes from different families.
Comparison of our gene-based landscape for colon

cancer to the landscape constructed by Wood et al.
revealed similar topographies: a few highly mutated gene
mountains along with a much larger number of still sig-
nificantly mutated gene hills. There was a relatively small
overlap between the 154 genes identified by our study
and the 140 CAN genes; only six genes were found to be
significant in both studies. As noted, the two studies also
used different tumor samples and different statistical
models to determine significant mutation frequencies.
Yet, despite these differences, four of the top five colorec-
tal CAN genes (APC, KRAS, TP53 and FBXW7) ranked in
the top twenty genes with the highest normalized muta-
tion frequency, and the fifth top CAN gene (PIK3CA)
was identified to have a significantly mutated domain.
We also identified seven genes with significant mutation
frequency from the Cancer Gene Census [15] list known
to have somatic mutations in colorectal cancers including
the top five CAN genes, NRAS and BRAF. A GO term
enrichment analysis of all 154 significantly mutated genes
in our study identified enrichment in many biological
processes and molecular functions known to be disrupted
in cancer development including signal transduction, reg-
ulation of apoptosis, regulation of cell proliferation and
DNA damage response.
Our analysis of the gene landscape resulted in the re-

identification of genes with known cancer association
and confirmation on enrichment of genes involved in
processes critical to cancer development, which validates
that our method can identify significantly mutated genes

relevant to cancer, and also provides evidence that the
method can be applied to other specified regions within
the genome, including domain regions. The main focus
of this study, however, was the construction of the
domain mutational landscape for colon cancer and its
comparison with the gene-based mutational landscape.
In total, we identified 45 domains with significant muta-
tion frequency in the colon tumor samples. Again, the
landscape was characterized by mountains and hills, simi-
lar to that of the gene-based landscape, with the highest
peaks in the P53, APC_crr and CENP-B_N domains. The
CENP-B_N domain, a known DNA-binding domain [22],
receives mutations from the TIGD7 and JRKL genes.
Although TIGD7 and JRKL are both homologs of the Jrk
“jerky” gene associated with epilepsy in mice [23], they
do not have known relevance in cancer development.
The peaks for P53 and APC_crr were not surprising due
to the well-known tumor suppressing functions of the
genes containing the domains, TP53 and APC, respec-
tively. However, mapping mutations to the individual
domains illustrates the value of our domain-centric
method to provide the essential functional context to
explain the role the mutations in cancer development.
The GO term enrichment analysis for significantly
mutated domains confirmed enrichment of significantly
mutated domains with functions important to cancer
development including kinase activity, DNA binding and
repair, and signal transduction.
Our study of the domain landscape of cancer mutations

also highlights the relevance of considering the modular-
ity of the proteins when studying somatic mutations. Is
the whole protein responsible for the disruption that pro-
motes tumor growth, or are only some of the functional
units of the proteins relevant? For instance, the P53
domain, also known as the P53 DNA-binding domain,
contains over 90% of the known TP53 mutations [24],
even though the P53 DNA-binding domain covers
approximately half of the P53 protein (193 of 393 amino
acids). In our study, 27 of the 31 mutations in the P53
protein occurred within the P53 DNA-binding domain.
Mutation within the domain has been shown to have
multiple detrimental effects including reduced DNA
binding affinity, protein misfolding, protein instability
and loss of ability to oligomerize (reviewed in [25]). The
APC gene contains seven repeats of the APC_crr domain
that bind to the Arm domains of the beta-catenin protein
in addition to thirteen other distinct domains [26]. Trun-
cating mutations mainly within the region of the protein
containing the second and third repeats of the APC_crr
domain, also referred to as the “mutation cluster region”,
are known to eliminate APC’s ability to bind and down-
regulate beta-catenin, critically impairing its function as a
tumor suppressor gene in the Wnt signalling pathway
[26,27].
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Despite not reaching significance at the gene level in
our colon cancer mutation set, the PIK3CA gene ranked
in the top five highest, normalized mutation frequencies
in the breast cancer set (see Additional file 3), and was
also a top colorectal CAN gene in the Wood et al. study.
PI3KCA functions in signal transduction pathways to
mediate signalling for processes such as cell growth and
survival, and has been found to be oncogenic in several
different cancer types [28]. PIK3CA contains a total of
five domains, so we compared the domain peaks identi-
fied by our method to the domains identified with high
mutation prevalence, a measure commonly applied to
identify genes mutated in a high percentage of patients.
We found that while the PI3K_p85B domain, which is
responsible for binding the PI3K p85 subunit to form a
heterodimer [29], was identified as a significant domain
peak in both cancer types, the domain only had a high
mutation prevalence (threshold of 0.04) in the colon can-
cer set (Figure 5). We also did not find significant muta-
tion frequency or high mutation prevalence in the
PI3K_rdb, RAS-binding domain, or in the PI3K_C2
domain, which contains signals for the cellular localiza-
tion of the PIK3CA protein [30]. The final two domains
in the gene, the PI3Ka helical domain and the PI3_PI4_-
kinase domain, contain known somatic missense muta-
tion hotspots in a variety of cancer types including colon
and breast cancer [31]. Only the PI3Ka helical domain
had significant mutation frequency and high prevalence
in the breast cancer dataset. The PI3Ka domain did not
reach significant mutation frequency in the colon cancer
set. We also found few mutations from either cancer set
in the PI3_PI4_kinase domain, however, the C-terminal
region of the domain is believed to be partially disordered
[32], likely preventing alignment of the domain model to
that region. Therefore, the domain did not pick up muta-
tions in the hotspot.

Together, these examples demonstrate both the advan-
tages and a potential drawback for our domain-based
approach. While the traditional, gene centric view of
mutation does not consider the location of mutations
within the PIK3CA gene, our domain-centric approach
captures the functional modularity of protein domains and
enables us to reveal specific domains critical to the cancer
development process. Our approach also identifies
domains with significant mutation frequency that might
be missed by approaches based on mutation prevalence, as
illustrated by the identification of significant mutation fre-
quency in the PI3K_p85B domain in breast cancer
patients. Yet, the power of our approach is derived from
aggregating mutations from all genes containing a particu-
lar domain, therefore currently restricting our method to
identifying significant mutation frequency inside domain
regions. More work will be needed to extend the scope of
our approach to other regions of the genome.
Comparison of the gene and domain landscapes also

enabled us to identify a small number of domains, seven
in total, which retained mutations even after the removal
of mutations contributed from significantly mutated
genes. The WAP domain in particular retained a signifi-
cant number of mutations aggregated from the WFDC5,
SLPI and KAL1 genes even after the removal of mutations
from the significantly mutated WFDC8 gene. The WAP,
whey acidic protein-type, domain contains four disulfide
bonds at its core, characteristic of genes with protease
inhibitor activity [33]. WFDC8 has no known association
to cancer, however, WFDC5 has been shown to be upre-
gulated in genes undergoing P53 induced apoptosis [34],
and SLPI has been shown to promote malignancy in a
lung cancer cell line due to its protease inhibitor function
[35]. In addition, mutations in KAL1 are responsible for
Kallmann syndrome [36]. Therefore, because of the
known cancer and disease relevance of mutations in the

Figure 5 Comparison of mutation prevalence in PIK3CA domains from colon and breast cancer Depiction of the mutation prevalence in
colon and breast cancer for domains occurring on the PIK3CA gene. Each box represents a distinct domain from the PIK3CA gene. The color of
the domain reflects the mutation prevalence for the domain – a mutation prevalence color scale is shown on the right. The mutation
prevalence is calculated as the number of mutations occurring in the domain divided by the number of patients in either the colon (100) or
breast (522) cancer sets. Each domain is labelled with the count of mutations found within the domain in the PIK3CA gene, with the mutation
prevalence in parenthesis.
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WAP domain of other genes, the presence of mutations in
the WAP domain of WFDC8 encourage further study of
the role of WFDC8 in colon cancer development.
The examples discussed above, in which significant

domain peaks correspond to at least one significant gene
peak only constitute 14 of the 45 significantly mutated
domains from the colon tumor set. The other 31 domain
peaks correspond to genes without significant mutation
frequencies which are undetected in the gene landscape.
Because these domains do not occur in significantly
mutated genes, they would likely not be found by tradi-
tional, gene-centric studies, but may reveal the disruption
of potentially critical functional mechanisms within the
cancer tissues. One of these peaks corresponds to the
cortactin-binding protein-2 domain, CortBP2, that was
mutated in four genes, CTTNBP2NL (1 mutation),
CTTNBP2 (2 mutations), FILIP1 (5 mutations), and
FILIP1L (1 mutation). Interestingly, FILIP1L is a highly
conserved protein known to inhibit proliferation and
migration and increase apoptosis in endothelial cells [37].
This anti-angiogenic protein acts as a tumor suppressor
and its loss of function has been implicated in ovarian
cancer, head and neck squamous cell carcinoma and oli-
godendrogliomas [38,39]. While the mutation frequency
for the FILIP1L gene was not significant in our study,
CortBP2 ranked in the top 75 domains with the highest
mutation frequency, suggesting a novel role in colon can-
cer development for FILIP1L and the other genes con-
taining mutations in the CortBP2 domain. As with any in
silico analysis, however, the identification of domains and
genes with suspected roles in cancer development can
only generate new hypotheses that must ultimately be
experimentally validated.

Conclusions
New methods are critically needed to distinguish muta-
tions that drive tumor initiation and development from
the millions of variants being identified in current large-
scale tumor sequencing projects. Our novel, domain
mutational landscape approach for identifying potential
driver mutations in significantly mutated domains
reveals many properties that traditional gene landscapes
cannot reveal while also adding the functional context
necessary for understanding how individual mutations
contribute to cancer development. We also compared
the mutational landscapes for breast and colon cancer,
demonstrating the potential for the domain landscape to
identify functional similarities among different cancer
types. Determining which mutations are most important
for tumorigenesis will shed new light on the selective
pressures experienced during the process and will ulti-
mately provide a new set of gene and domain targets for
drug development.

Methods
Cancer mutation datasets
Controlled access, whole-exome mutation data for 100
colon adenocarcinoma patients and 522 breast invasive
carcinoma patients were downloaded from the TCGA
Data Portal (http://tcga-data.nci.nih.gov/tcga/) using the
mutation files from the ucsc.edu_COAD.IlluminaGA_D-
NASeq.Level_2.1.0.0 and ucsc.edu_COAD.SOLiD_DNA-
Seq.Level_2.1.0.0 directories downloaded on September
13th, 2011 and the genome.wustl.edu_BRCA.Illumina-
GA_DNASeq.Level_2.3.0.0 directory downloaded on
September 21st, 2011 respectively. The individual patient
records listed both somatic and germline SNVs and short
insertions and deletions (indels) in addition to the tumor
and matched normal tissue genotypes for each mutation.
The patient records were filtered to remove germline
mutations and mutations that did not pass the quality
control filter. A union set of somatic SNVs and indels
was created for each cancer type from the individual
patient records by identifying all somatic mutations pre-
sent in at least one patient. The genotypes of all patients
were then examined for each mutation in the union set
to count the number of times the mutation occurred
somatically in the patient population. The ANNOVAR
program was used to filter out mutations present in
dbSNP (release 130) in order to remove mutations
known to be polymorphic, therefore unlikely to be cancer
driver mutations [40]. ANNOVAR was also used to
annotate the mutations within protein coding regions
with their associated effects. SNVs were classified as
either causing (nonsynonymous SNVs) or not causing
(synonymous SNVs) amino acid changes, or either caus-
ing the gain (stop-gain) or loss (stop-loss) of a stop
codon. Insertions and deletions were classified to either
cause (frameshift) or not cause (nonframeshift) a shift in
the reading frame. Synonymous SNVs were filtered out
of the union set of mutations as they were assumed to be
unlikely to affect cancer development. Somatic mutation
counts after annotation and filtering are provided for
colon (Table 1) and breast cancer (see Additional file 1 –
Table S1).

Protein and protein domain datasets
A set of 33,963 human proteins from the RefSeq database
[41] was downloaded via NCBI’s E-utilities service. Multi-
ple sequence alignments for all Pfam [17] protein domains
were downloaded from the Conserved Domains Database
(CDD) [9], and hidden Markov models (HMMs) were
built for the domains using the hmmerbuild tool
(HMMER version 2.3.2) [42] using default parameters
with the global option. HMMER’s hmmpfam tool was
then used to search for complete Pfam domains in all
RefSeq proteins using an E-value cutoff of 0.001. Of the
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11,912 Pfam domains, 4,265 mapped to at least one Refseq
protein.

CAN gene datasets
The sets of breast and colorectal cancer candidate genes
were downloaded from the Supporting Online Materials
section of the Wood et al. study, tables S4A and S4B.

Mapping mutations to individual proteins and domains
All somatic, protein coding mutatons were mapped to
individual proteins using ANNOVAR’s exonic variant
annotations via the RefSeq transcript accession numbers
corresponding to our RefSeq protein accessions [40].
Mutations were mapped to specific protein domains
using the hmmpfam alignment output. The method for
mapping mutations to their domain positions was pre-
viously described for our Domain Mapping of Disease
Mutations (DMDM) database (http://bioinf.umbc.edu/
DMDM) [13]. We defined the “cancer gene set” as the
set of all genes containing at least one somatic mutation
after filtering of synonymous SNVs and known poly-
morphisms. For each gene in the cancer gene set, the
longest RefSeq protein isoform was then identified,
defining the “cancer protein set”. Only mutations in the
longest isoform were considered to avoid replicating
individual mutations in the DNA across multiple pro-
teins. Insertions and deletions were mapped to proteins
and domains using the starting position of the mutation.

Calculation of normalized mutation frequency
To determine genes and domains frequently mutated in
the patient populations, we first obtained the count of
somatic mutations from all patients falling within the
protein coding region of each gene, defined in the pro-
tein cancer set, and within each protein domain.
Because longer regions of DNA are generally expected
to accumulate more mutations than shorter regions, we
then normalized the gene mutation counts by dividing
each count by the length of the gene’s corresponding
protein in the protein cancer set. Domain mutation
counts were normalized by dividing by the cumulative
length of all occurrences of the domain within the pro-
tein cancer set.

Calculation of significantly mutated genes and domains
To detect driver mutations in proteins and domains
from a background of passenger mutations, we adapted
a method used to estimate the local false discovery rate
in microarray experiments by Efron et al. [21]. We
adjusted the mutation frequency by the length of the
domain and use the relative frequency as the success
probability (p). We normalized p using the signal to
noise ratio of the Bernoulli distribution, which results in
a normalized score, z, as follows:

z p p p   / sqrt 1 (1)

We used aheuristic cut-off of 150 amino acids for the
minimum protein or domain length to be included in
our analysis. We estimated the null distribution using
the “locfdr” package from R and applied these statistics
to identify all protein and domains with a local false dis-
covery rate < 0.1.

GO term enrichment analysis
Gene Ontology terms (GO terms) [43] for all human
genes were downloaded from the BioMart portal [44],
and were mapped to RefSeq proteins by their corre-
sponding gene symbols. GO terms for individual Pfam
domains were obtained from the “pfam2go” file on the
Gene Ontology website. The annotations contained in
the pfam2go file are derived from mappings of Pfam
domains to InterPro domains [45], which are manually
annotated with GO terms. Many domains still have
unknown or unclear function, therefore we were only
able to obtain GO term annotations for approximately
40% of the domains containing at least one somatic
mutation. To account for differences in the specificity of
GO term annotations, each annotated protein and
domain was subsequently assigned all GO terms from
all possible paths from the root of the ontology (not
including the root term itself) to the annotated GO
terms using the full GO ontology in OBO v1.2 format.
Individual GO terms from the biological process and
molecular function ontologies were tested for enrich-
ment in proteins and domains with significant mutation
frequencies using the “calculateStatistic” function of the
Text::NSP::Measures::2D::Fisher::right Perl module. For
each GO term, the counts for the R function corre-
sponded to a 2 x 2 contingency table based on the
counts of proteins or domains either assigned the GO
term, or not assigned the GO term, and either having a
significant or insignificant mutation frequency. Only
proteins and domains containing at least one somatic
mutation were considered.

Additional material

Additional file 1: Contains supplementary tables S1 to S7 Table S1 –
Mutation counts for breast cancer Table S2 – Shared significantly
mutated genes in colon and breast cancer Table S3 – Shared
significantly mutated domains in colon and breast cancer Table S4 – GO
terms enriched in domains significantly mutated in colon cancer Table
S5 - GO terms enriched in domains significantly mutated in breast
cancer Table S6 – GO terms enriched in genes significantly mutated in
colon cancer Table S7 - GO terms enriched in genes significantly
mutated in breast cancer

Additional file 2: Top genes highly mutated in colon cancer tumor
genomes Complete list of significantly mutated genes from the colon
cancer set. Gene name, representative protein length, and number of
mutations are listed.
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Additional file 3: Top genes highly mutated in breast cancer tumor
genomes Complete list of significantly mutated genes from the breast
cancer set. Gene name, representative protein length, and number of
mutations are listed.

Additional file 4: Top domains highly mutated in colon cancer
tumor genomes Complete list of significantly mutated domains from
the colon cancer set. Gene name, Pfam domain accession, number of
mutations, cumulative domain length, and genes containing mutations
in the domain are listed.

Additional file 5: Top domains highly mutated in breast cancer
tumor genomes Complete list of significantly mutated domains from
the breast cancer set. Gene name, Pfam domain accession, number of
mutations, cumulative domain length, and genes containing mutations
in the domain are listed.
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CAN genes: candidate cancer genes identified by the Sjöblom et al. and
Wood et al. studies [12]; GO: Gene ontology; LFDR: Local false discovery rate;
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