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Abstract

Background: An essential step of a metagenomic study is the taxonomic classification, that is, the identification of
the taxonomic lineage of the organisms in a given sample. The taxonomic classification process involves a series of
decisions. Currently, in the context of metagenomics, such decisions are usually based on empirical studies that
consider one specific type of classifier. In this study we propose a general framework for analyzing the impact that
several decisions can have on the classification problem. Instead of focusing on any specific classifier, we define a
generic score function that provides a measure of the difficulty of the classification task. Using this framework, we
analyze the impact of the following parameters on the taxonomic classification problem: (i) the length of n-mers
used to encode the metagenomic sequences, (ii) the similarity measure used to compare sequences, and (iii) the
type of taxonomic classification, which can be conventional or hierarchical, depending on whether the
classification process occurs in a single shot or in several steps according to the taxonomic tree.

Results: We defined a score function that measures the degree of separability of the taxonomic classes under a
given configuration induced by the parameters above. We conducted an extensive computational experiment and
found out that reasonable values for the parameters of interest could be (i) intermediate values of n, the length of
the n-mers; (ii) any similarity measure, because all of them resulted in similar scores; and (iii) the hierarchical
strategy, which performed better in all of the cases.

Conclusions: As expected, short n-mers generate lower configuration scores because they give rise to frequency
vectors that represent distinct sequences in a similar way. On the other hand, large values for n result in sparse
frequency vectors that represent differently metagenomic fragments that are in fact similar, also leading to low
configuration scores. Regarding the similarity measure, in contrast to our expectations, the variation of the
measures did not change the configuration scores significantly. Finally, the hierarchical strategy was more effective
than the conventional strategy, which suggests that, instead of using a single classifier, one should adopt multiple
classifiers organized as a hierarchy.

Background
Rather than considering a single species in pure culture,
metagenomics goes beyond and focuses on the explora-
tion of entire microbial communities [1]. This focus is
possible only because of the recent improvements in
sequencing technology. As is typical of new concepts, the
emergence of this new paradigm has brought up some

new challenges. Among them, the manipulation and ana-
lysis of short reads deserves special attention.
In some cases, the phylogenetic diversity of a microbial

community is not well covered and, as a consequence,
only a few reads can be assembled [2]. Hence, one of the
first steps of a large-scale metagenomic analysis is to esti-
mate the phylogenetic distribution of the sample. One
approach to perform this task is the taxonomic classifica-
tion of the reads, which is the assignment of these reads
into phylogenetic categories [3].

* Correspondence: susan.higashi@inria.fr
1Laboratório Nacional de Computação Científica (LNCC), Petrópolis, RJ, Brazil
Full list of author information is available at the end of the article

Higashi et al. BMC Genomics 2012, 13(Suppl 5):S1
http://www.biomedcentral.com/1471-2164/13/S5/S1

© 2012 Higashi et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:susan.higashi@inria.fr
http://creativecommons.org/licenses/by/2.0


Essentially, there are three approaches to classifying
sequences into taxonomic categories. One possibility is
to focus on conserved gene markers (such as rRNA 16S)
to identify the source organism of the read. Because
rRNA is well conserved, this approach produces an accu-
rate taxonomic classification of the reads. Nevertheless,
because only a small fraction of the sequences contain
these gene markers, most of the reads of a metagenomic
sample cannot be classified using this approach [4].
Taxonomic classification can also be based on

sequence similarity, that is, the alignment of metage-
nomic reads to a reference dataset (for example using
BLAST [5]). This approach is an accurate method, as
long as a similar sequence is present in the database–
which is not always true for metagenomic projects [3].
Some examples of off-the-shelf software for metagenomic
analysis based on sequence similarity are CARMA [6]
and Megan [7].
Yet another way to perform the taxonomic classifica-

tion is to rely on a set of features that is induced by the
sequences of nucleotides, producing the so-called
composition-based classification [8]. Some features
employed in this case are: codon usage, GC content, and
oligonucleotide frequency (henceforth n-mer frequency).
The latter is usually considered to be a good choice,
because the n-mer frequencies carry phylogenetic signals
that are useful for extracting common patterns between
organisms at different taxonomic levels [9-11]. The fol-
lowing are some examples of software for taxonomic
classification based on n-mer frequencies: Phylopythia [4]
implements a support vector machine for classify-
ing sequences that are larger than 3 kbp, Phymm [12]
uses interpolated Markov modes (IMM) to classify reads
with at least 100 bp, TACOA [8] merges the k-nearest-
neighbor (k-NN) algorithm with kernelized learning stra-
tegies to handle sequences from 800 bp to 50 kbp, and
Treephyler [3] uses hidden Markov models (HMM) to
classify reads of 200 bp.
This work focuses on composition-based classification

using n-mer frequencies to encode genomic sequences.
Such an approach involves a series of decisions, regardless
of the specific classifier chosen to perform the task.
Usually, these decisions are based on a set of preliminary
experiments that account for one particular type of classi-
fier [4,13]. These studies provide valuable information
regarding the performance of a given category of classifier;
however, because they are biased by the peculiarities of
the classifier of choice, they provide little insight about the
characteristics of the classification problem itself. This
paper presents a general framework for the empirical
assessment of the impact that several decisions have on
the degree of separability of taxonomic classes. Thus,
instead of focusing on any classifier in particular, we focus
our study on the classification problem.

Here we refer to a specific configuration of the classifica-
tion problem as the setting induced by the following three
features: (i) the length of the n-mer word used to encode
the DNA sequences; (ii) the similarity measure adopted to
compare the sequences; and (iii) the strategy used to
assign sequences to taxonomic classes, which can be the
conventional approach, in which the sequences are con-
sidered independently, or the hierarchical approach, in
which the taxonomic context of each DNA fragment is
accounted for. The goal of the current work is to serve as
a guideline for the development of composition-based
metagenomic classifiers by providing some intuition as to
how the difficulty of the taxonomic classification problem
changes with respect to the variation in the features
described above.

Methods
Acquisition of datasets
We used two types of data: (i) complete genomes; and
(ii) synthetic metagenomic fragments. These datasets are
described in the following sections.
Complete genomes
The genomes were obtained from GenBank, the NCBI
database of genetic sequences [14]. We used only micro-
bial sequences, because the majority of metagenomic
studies are focused on this type of organism [15]. We
considered all 1, 032 microbial genomes sequenced until
January, 2010. Among these, 497 sequences had to be
removed because they had incomplete taxonomic line-
age or undefined nucleotides. Hence, the actual number
of genomes used was 535, which encompassed the
domains Bacteria and Archaea.
Synthetic metagenomic fragments
The synthetic fragments were generated by the program
MetaSim [16] using the genomes described above. Meta-
Sim is a metagenomic sequence simulator that can be
used to create sets of synthetic fragments reflecting the
taxonomic composition of typical metagenomic scenar-
ios. A total of 23, 000 fragments with ~ 400bp was gener-
ated under the sequencing conditions of Roche’s 454
pyrosequencer [17].

Preprocessing of datasets
We now describe how we preprocessed the data to per-
form our analysis.
Calculating n-mer frequencies
To encode the nucleotide sequences we calculated the
n-mer frequencies in each (meta)genomic sequence. To do
so, we counted the number of occurrences of all possible
n-mers in a given sequence, considering an overlap of n - 1
nucleotides (that is, we started from position 1 to n, then
from position 2 to n+1, and so on). This strategy gives rise
to a 4n-dimensional vector whose elements represent the
number of occurrence of each possible n-mer. We then
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divided the elements of such a vector by the total number
of n-mers contained in the sequence. For the experiments
with Kullback-Leibler (KL) divergence we used a slightly
different approach to count the n-mers, because the strat-
egy above could lead to a division by zero (see Equation 4).
In particular, we assumed that each n-mer had occurred at
least once, a method usually referred to in the literature as
“add-one smoothing” [18]. In the end, each sequence is
represented by a vector of n-mer frequencies (hereafter,
“vector of frequencies”). We will sometimes refer to a vec-
tor of frequencies as simply a “sequence” when there is no
risk of misinterpretation. Figure 1 illustrates the process
described above.
Determining taxonomic lineage
To associate the sequence with its corresponding taxo-
nomic lineage we used the information available at
NCBI Taxonomy and BioPerl, a toolkit for the manipula-
tion of genomic data [19]. The result of this process was
a vector comprising seven positions that were filled out
with NCBI taxids (taxonomy identifiers) corresponding
to each one of the seven taxa: domain, phylum, class,
order, family, genus, and species.

Score functions
The next step is implementing a score function, which
provides, under a specific configuration, a score for the
degree of separability of the taxonomic classes. To for-
mally define this function, we will adopt the following
notation. D = {G, F} is the dataset, in which G represents
the genomic sequences and F is the metagenomic syn-
thetic fragments. T = {do, ph, cl, or, fa, ge, sp} is the taxon
set, which represents the sequence’s taxonomic lineage.
N = {1, 2, . . . , 10} is the set of lengths of n-mers and S =
{1, 2, ∞, kl} represents the set of similarity measures,
where 1 is the 1-norm distance (Equation 1), 2 represents
the 2-norm (Euclidean) distance (Equation 2), and ∞ is the
∞-norm distance (Equation 3); kl is the Kullback-Leibler
divergence (Equation 4).

s1(x, y) =
4n∑
i=1

|xi − yi|, (1)

s2(x, y) =

(
4n∑
i=1

|xi − yi|2
)1/2

, (2)

s∞(x, y) = max
i=1,2,...,4n

|xi − yi|, (3)

skl(x, y) =
4n∑
i=1

xi ln
(
xi
yi

)
. (4)

A ={c, h} is the set of score measures. The element c
represents the conventional score measure, in which the
configuration is scored considering the sequence sepa-
rately, and the element h is the hierarchical score measure,
in which the configuration is scored with respect to the
sequence’s taxonomic context (see below). Considering
this notation the score function is defined as follows:

f : D × T × N × S × A → [0, 1]. (5)

Thus, f (d, t, n, s, a) = y represents a score y to the data-
set d, considering the taxon t, using a n-mer length of n to
encode the sequences and the similarity measure s to
check how similar the sequences are and, finally, using the
score measure a. In other words, the score y is a measure
of the degree of separability of the taxonomic classes in d
at level t under the specific configuration induced by n, s,
and a.
We now describe how we defined the score measures

that were used to evaluate the classification problem.
Conventional score measure
We want to assess the “separability” of the taxonomic
classes under a given configuration. A straightforward
way to do so would be to choose a specific type of classi-
fier and then measure its classification accuracy for each
possible combination of values for (d, t, n, s, a) (using
cross-validation, for example [20]). Note that in this case
we would be measuring the difficulty of the problem
under the assumptions made by that specific classifier.
For example, if we adopted a linear model such as the
Naive Bayes classifier, then we would be measuring how
well classes can be separated by a hyperplane [20].

Figure 1 Process of counting n-mer frequencies. Given a value for n, the first step is generating all of the n-mer words that are possible. In
the next step, we count the number of times that each word appears in the sequence. Finally, we normalize the frequency vector by dividing
each number of occurrences by the total number of n-mers.
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Therefore, if we want to make no assumptions regarding
the “shape” of the classes, the correct approach would be
to use a nonlinear model capable of representing any
boundary between the classes (such as a support vector
machine using an appropriate kernel [21]). However,
such an approach would require an expensive cross-
validation process to determine the correct level of com-
plexity of the model under each configuration (using, for
example, regularization [20]).
We want a measure of the separability of the classes that

can be efficiently computed and at the same time makes
no strong assumptions regarding the shapes of the classes.
A possible way of solving this problem is to base our mea-
sure on this simple observation: given a set of objects that
belong to different classes, the level of separability of the
classes can be assessed by the fraction of objects whose
closest neighbor belongs to the same class. Note that,
under this criterion, if the boundaries between the classes
are well defined, then the set of objects will usually be con-
sidered to be separable, regardless of the shape of the
classes. Therefore, this simple measure is an efficient way
of assessing the degree of overlap between classes.
Algorithm 1 presents a detailed description of the com-

putation of the proposed separability measure. Given a
configuration (d, t, n, s), for each sequence in d, we calcu-
late its nearest neighbor (NN) and check whether both
sequences belong to the same class at the taxonomic level
t. If so, then we add 1 to the configuration score. The
result is then normalized to fall in the interval [0,1]. We
call this approach the conventional score measure.
Algorithm 1: conventional_score(d, t, n, s)
/* Computes the conventional score for a given set of

DNA sequences */
Input: d Î D, t Î T, n Î N, s Î S
Output: Conventional score
1 score ¬ 0
2 m ¬ 0
3 foreach sequence di Î d do
4 if di is not the only representative of its class in d at

level t then
5 m ¬ m + 1
6 dj ¬ NN(di, d, n, s) ;/* nearest neighbor of di in d

using n-mers and measure s */
7 if class(di) = class(dj) at taxonomic level t then

score ¬ score + 1
8 return score/m
Note that, if a genome is the only representative of its

taxonomic group, then its nearest neighbor will necessa-
rily belong to another class, which biases downwards
the score measure shown in Algorithm 1. For this rea-
son, we classify a genome only if it is not the unique
example of its taxonomic class (line 4 of Algorithm 1).
In the dataset used in our experiments, classes with a
single member occur only at the taxonomic level of

species. Specifically, out of 535 genomes used in the
experiments, 328 were the unique representatives of
their species.
As shown in Algorithm 1, the conventional score is

the percentage of sequences that have the same lineage
as their nearest-neighbors at a given taxonomic level.
Incidentally, this approach is similar to using the
k-Nearest-Neighbor (k-NN) classifier with k = 1 (except
that in the latter case we would not eliminate classes
with a single representative) [22]. This approach is in
accordance with our objective of focusing our analysis
on the classification problem, because the 1-NN classi-
fier does not make strong assumptions regarding the
shape of the classes [20].
Hierarchical score measure
Given the hierarchical structure of the taxonomic classifi-
cation task, one might wonder whether it is a good strat-
egy to decompose the problem into simpler sub-problems
that are defined at each taxonomic level. More specifically,
instead of using a single classifier, one would have a hier-
archy of classifiers that are organized according to the
taxonomic tree. In this case, a given DNA sequence would
be classified as follows: first, a classifier at the highest hier-
archical level would determine the domain to which the
sequence belongs. Then, the DNA sequence would be
classified at the next hierarchical level, the phylum, with
the particular classifier used to do so determined by the
domain the sequence was assigned to at one level above.
Following the same reasoning, the sequence would then
be passed on to the classifier that is responsible for the
specific phylum that it was assigned to, and so on, until
the desired taxonomic level had been reached. This classi-
fication strategy has been used before in the literature
[4,23].
Note that, to compare the hierarchical scoring measure

with the conventional measure, we cannot simply apply
Algorithm 1 at each taxonomic level, because the nearest
neighbor of a given sequence defines its classification at all
of the taxonomic levels (and thus the hierarchical score
would coincide with the conventional score). Since we do
not want to introduce any bias in our analysis, we must
define a score measure that is compatible with our strategy
of measuring the separability between classes. This goal
can be accomplished as follows. Suppose that a given
sequence di has been correctly classified at taxonomic
level t. Then, to classify it one level below in the taxo-
nomic tree, t + 1, we can eliminate all of the
Sequences that do not belong to the same class as di at

level t. This procedure corresponds to selecting a specific
classifier in the hierarchical scheme described above. Next,
if we remove our initial assumption that di was correctly
classified at level t, it is clear that, by eliminating the
appropriate sequences of the dataset, an incorrect classifi-
cation at level t can be followed by a correct classification
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at level t + 1. This strategy is precisely what allows us to
evaluate the hierarchical classification using nothing but
the nearest neighbor of each DNA sequence.
Observe that eliminating the sequences that do not

belong to the same class as di at level t corresponds to
assuming that di was correctly classified at that level. Of
course, to have an accurate score function at level t + 1,
we must account for the possibility that the sequence
was incorrectly classified at level t. Clearly, a straightfor-
ward way to estimate the probability of a misclassifica-
tion at level t is to use the score function at that level.
Therefore, we define the hierarchical score measure
recursively: roughly speaking, the hierarchical score at
level t corresponds to the product between the conven-
tional score at the same level and the hierarchical score
one level above. Algorithm 2 provides a step-by-step
description of how to compute the proposed hierarchi-
cal score measure.
Algorithm 2: hierarchical_score(d, t, n, s)
/* Computes the hierarchical score for a given set of

DNA sequences */
Input: d Î D, t Î T, n Î N, s Î S
Output: Hierarchical score
1 if t = 1 then return conventional_score(d, t, n, s);

/* i.e., if t is “domain” */
2 else
3 score ¬ 0
4 m ¬ 0
5 foreach sequence di Î d do
6 d’ ¬ d with only sequences dk which belong to the

same class as di at level t - 1
7 if |d’| > 1 and di is not the only representative of its

class at level t then
8 m ¬ m + 1
9 dj ¬ NN(di, d’, n, s)
10 if class(di) = class(dj) at taxonomic level t then

score ¬ score + 1
11 return score/m * hierarchical_score(d, t - 1, n, s)
Using Algorithm 2, one can assess the degree of separ-

ability of taxonomic classes under a hierarchical classifica-
tion scheme without making any strong assumptions
regarding the shape of the classes. Therefore, the result of
such an analysis applies to any set of classifiers, including
a heterogeneous hierarchy composed of classifiers of dif-
ferent types.

Results and Discussion
As described above, in this work we assume that a given
configuration of the taxonomic classification problem is
defined by: (i) n, the length of n-mers used to encode the
sequences; (ii) s, the similarity measure used; and (iii) a,
the score measure, which can be the conventional measure
or the hierarchical measure (Algorithms 1 and 2, respec-
tively). To provide an empirical basis for the development

of composition-based metagenomic classifiers, we ana-
lyzed the separability of taxonomic classes under different
configurations of the classification task.
We performed 10 * 4 * 2 = 80 experiments with the

genomic dataset and 8 * 4 * 2 = 64 experiments with
the synthetic metagenomic fragments data (in both cases
the three numbers correspond to |N|, |S|, and |A|, respec-
tively; see Equation (5)). In total, we performed 80 + 64 =
144 experiments. Our analysis addresses the impact of
parameters n, s, and a over the configuration scores.
Although we also discuss other taxonomic levels, we focus
our analysis on the classification problem at the taxon
species.

Complete genomes
The genomic dataset comprises 535 genomes encom-
passing 386 different species. Considering the conven-
tional score measure, the configuration scores for this
type of data at the level of species varied from f (G, sp,
1, kl, c) = 0.275, for the worst configuration, to f (G, sp,
5, 2, c) = 0.512, for the best configuration. The hierarch-
ical scores varied between f (G, sp, 1, 2, h) = 0.378 and f
(G, sp, 7, kl, h) = 0.532.
Figure 2 presents the configuration scores that were

generated on the genomic dataset over the different taxa
for n = 5 (this value was the value of n that generated the
highest conventional scores). As shown in the figure, as
we go downward in the taxonomic tree (t ® species), the
configuration score decreases. This decrease is expected,
because a correct nearest-neighbor classification at level t
implies a correct classification at level t - 1 (but not the
converse). Observe that in the left graph in Figure 2 the
score function actually increases when one moves from
the taxon genus to the species. This increase is due to the
removal of unique representatives of some species, as
explained above. Surprisingly, varying the similarity mea-
sure s did not result in remarkable differences in the
scores. As shown in Figure 2, the scores referring to s = 1,
s = 2, and s = kl are very similar, and the scores computed
with s = ∞ differ only slightly from the others. This phe-
nomenon was observed across all configurations. Thus,
from this point on, we will fix the similarity measure at s =
kl and study the impact of the other variables over the
scores.
Figure 3 shows the genomic scores per n-mer length

for the different taxa. In Figure 3, it is difficult to identify
the value of n that produces the best score, because from
n = 2 to n = 8 the score curve is almost flat. From n = 1
to n = 2 there is a rough increase in the scores. This
increase was expected, because n = 1 means counting the
frequencies of the nucleotides A, T, C, and G, which does
not provide sufficient information about the sequences to
discriminate between the classes. In general, a small
value for n represents two different sequences in a similar
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way. As an example, consider the taxonomic tree shown
in Figure 4, which includes the phyla Crenarchaeota,
Actinobacteria, Bacteroidetes, Thermotogae, and Chla-
mydiae. Although these phyla are distant from a taxo-
nomic point of view, some of their members give rise to
very similar frequency vectors, as shown in Table 1.
Observe also that from n = 8 to n = 10 the scores

decrease slightly. This decrease is a consequence of the
fact that, when n ≥ 8, the number of possible n-mer
sequences is very large, which results in sparse frequency
vectors with a low discriminative power. For example, if
the similar sequences di = AAATGGTA and dj =
AGATGGTA are encoded with n = 8, the result is two vec-
tors with 65, 536 positions filled with zeros in all but one
position, which would contain a “1” representing the
words di and dj. Hence, we have two extremely similar
sequences represented by two different frequency vectors,
which clearly disrupts the score function f.
Concerning the two score measures, the hierarchical

approach presented slightly better performance than the

conventional score, as shown in Figures 2 and 3. This
relationship suggests that decomposing the classification
task into smaller sub-problems does indeed make the
problem easier.

Synthetic metagenomic fragments
The synthetic dataset comprises 23, 000 fragments with
approximately 400bp. As mentioned previously, these
sequences were generated with the sequences simulator
MetaSim [16] under the sequencing conditions of the 454
pyrosequencer. The configuration scores at the level of
species varied between f(F, sp, 8, ∞, c) = 0.007 and f(F, sp,
4, kl, c) = 0.112 for the conventional score function, and
between f (F, sp, 7, 1, h) = 0.113 and f (F, sp, 4, 1, h) = 0.5
when the hierarchical measure was considered.
Figure 5 shows the value of the score as a function of the

taxonomic level t when n = 4. The first thing that stands
out in this figure is the fact that, for the synthetic data,
the advantage of using the hierarchical score measure over
the conventional measure is much more expressive than

Figure 2 Configuration scores per taxon for a genomic dataset (d = G). The graph on the left presents the scores for the configuration
(G,-, 5, -, c) and graph on the right presents the scores for the configuration (G, -, 5, -, h).

Figure 3 Configuration scores per n-mer word length for the genomic dataset. The graph on the left was generated under the
configuration (G, -,-, kl, c), and graph on the right was generated under (G, -,-, kl, h). All of the seven taxonomic levels are considered.
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with complete genomes. This result indicates that, when
sequences are short, the overlap between the classes is less
correlated with the taxonomic tree. In other words, the
overlap between two classes at level t is not strongly
affected by the fact that they belong to the same class at
level t - 1. A possible explanation for this phenomenon is
that shorter sequences give rise to higher variability within
each class.
Again, changing the similarity measure s did not have a

significant impact on the scores. Note, however, that with

metagenomic fragments the use of s = ∞ has a degenerat-
ing impact over the scores which is more noticeable than
the trend observed in the case of complete genomes (com-
pare Figures 2 and 5). Figure 6 shows the conventional
and hierarchical scores as a function of n when the KL
divergence is adopted as the similarity measure. Here we
observe curves similar to the curves shown in Figure 3,
with the peak of each curve shifted slightly to the left. This
change makes sense, because with shorter sequences the
“sparsification” of frequency vectors discussed in the

Figure 4 Taxonomic tree. Taxonomic tree for phyla, including Crenarchaeota, Actinobacteria, Bacteroidetes, Thermotogae, and Chlamydiae.

Table 1 1-mer frequencies for sequences in five different phyla.

Sequence Sequence representation Phylum

d1 0.2613 0.2611 0.2379 0.2397 Bacteroidetes

d2 0.2606 0.2612 0.2390 0.2392 Actinobacteria

d3 0.2445 0.2443 0.2557 0.2554 Thermotogae

d4 0.2430 0.2584 0.2439 0.2547 Chlamydiae

d5 0.2690 0.2678 0.2317 0.2315 Crenarchaeota
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previous section occurs at smaller values of n. Addition-
ally, note how the conventional scores of the metagenomic
dataset are low at the taxonomic level of order and below.
This trend suggests that using a single classifier in this
case might not be the best alternative. Such an observation
could be particularly helpful in the future development of
composition-based classifiers, because one of the major
problems with real metagenomic projects is the difficulty
of obtaining accurate classification at lower taxonomic
levels [8,12].
In summary, we observed that the scores associated

with metagenomic data are in general smaller than the
scores generated with genomic data, and using a hier-
archical classification approach in this case appears to be
even more beneficial. Moreover, the value of n that gen-
erated the best results decreased from n ≈ 7 to n ≈ 4,
which indicates that, when dealing with metagenomic

fragments with approximately 400bp, there is no point in
using frequency vectors that have a dimension much
higher than 256.

Discussion
In this section we summarize the results presented in
the previous sections and provide an overview of our
analysis. To accomplish those goals, we show in Figure
7 the scores that were generated with the genomic data
at the level of species as a function of n and s, and in
Figure 8 we show the same information for the scores
generated with the metagenomic dataset. From examin-
ing these figures, we arrive at the following conclusions:
• The scores are an approximately concave function of

n with a maximum value that is between 4 and 7; the
“optimal” value of n is smaller for the metagenomic
dataset.

Figure 5 Configuration scores per taxon for the metagenomic synthetic fragments dataset (d = F). The graph on the left was generated
under configuration (F, -, 4, -, c) and the graph on the right was generated under configuration (F, -, 4, -, h).

Figure 6 Configuration scores per n-mer word length for the metagenomic dataset. The graph on the left was generated under the
configuration (F, -,-, kl, c) and graph on the right was generated under the configuration (F, -,-, kl, h). All of the seven taxonomic levels are considered.
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• Changing the similarity measure s does not have a
strong effect on the scores.
• The hierarchical classification scheme appears to

be a better alternative for both genomic and metage-
nomic data; however, in the latter case, its advantage
over the conventional classification approach is more
evident.
• In general the scores that are associated with the

metagenomic data are smaller than the scores that are
associated with the genomic data, but the difference is
more significant under the conventional classification
scheme.
In conclusion, we show in Table 2 the configurations

that produced the best results in both datasets. The
values shown in Table 2 can serve as a starting point in
the development of composition-based metagenomic
classifiers.

Conclusions
Taxonomic classification is an essential step within a
metagenomic study, since this is the first step of a meta-
genomic analysis and its result is used as a basis to

posterior investigations. Usually, composition-based
metagenomic classifiers are configured based on preli-
minary experiments that account for a specific type of
classifier. In this work we proposed to shift the focus of
the analysis to the classification task itself. To make this
shift, we presented a general framework that can be
used to study the impact of several decisions on the dif-
ficulty of the classification problem (that is, how “separ-
able” the classes are under different configurations of
the task).
In this work we focused the analysis on the impact of

three factors in particular: (i) the length of the n-mers
used to encode the DNA sequences; (ii) the similarity
measure used to compare frequency vectors; and (iii)
the underlying classification scheme (hierarchical or
conventional). The results presented provide some intui-
tion on how the difficulty of the classification problem
changes as a function of the features above. Because our
analysis does not assume any structure of the classifica-
tion problem, it can be used as a guideline for the devel-
opment of composition-based metagenomic classifiers of
any type. Moreover, the framework presented in this

Figure 7 Scores as a function of n and s for a genomic dataset (d = G). The x-axis represents the length of the n-mer sequences. The top
graph is the conventional score function (G, sp, -,-, c), and the bottom graph is the hierarchical score function (G, sp, -,-, h).

Higashi et al. BMC Genomics 2012, 13(Suppl 5):S1
http://www.biomedcentral.com/1471-2164/13/S5/S1

Page 9 of 11



work can be used for the analysis of the impact of other
factors over the taxonomic classification task.
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