
RESEARCH Open Access

Reducing confounding and suppression effects in
TCGA data: an integrated analysis of
chemotherapy response in ovarian cancer
Fang-Han Hsu1, Erchin Serpedin1, Tzu-Hung Hsiao3, Alexander JR Bishop3,4, Edward R Dougherty1,2*,
Yidong Chen3,5*

From IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS) 2011
San Antonio, TX, USA. 4-6 December 2011

Abstract

Background: Despite initial response in adjuvant chemotherapy, ovarian cancer patients treated with the
combination of paclitaxel and carboplatin frequently suffer from recurrence after few cycles of treatment, and the
underlying mechanisms causing the chemoresistance remain unclear. Recently, The Cancer Genome Atlas (TCGA)
research network concluded an ovarian cancer study and released the dataset to the public. The TCGA dataset
possesses large sample size, comprehensive molecular profiles, and clinical outcome information; however, because
of the unknown molecular subtypes in ovarian cancer and the great diversity of adjuvant treatments TCGA patients
went through, studying chemotherapeutic response using the TCGA data is difficult. Additionally, factors such as
sample batches, patient ages, and tumor stages further confound or suppress the identification of relevant genes,
and thus the biological functions and disease mechanisms.

Results: To address these issues, herein we propose an analysis procedure designed to reduce suppression effect
by focusing on a specific chemotherapeutic treatment, and to remove confounding effects such as batch effect,
patient’s age, and tumor stages. The proposed procedure starts with a batch effect adjustment, followed by a
rigorous sample selection process. Then, the gene expression, copy number, and methylation profiles from the
TCGA ovarian cancer dataset are analyzed using a semi-supervised clustering method combined with a novel
scoring function. As a result, two molecular classifications, one with poor copy number profiles and one with poor
methylation profiles, enriched with unfavorable scores are identified. Compared with the samples enriched with
favorable scores, these two classifications exhibit poor progression-free survival (PFS) and might be associated with
poor chemotherapy response specifically to the combination of paclitaxel and carboplatin. Significant genes and
biological processes are detected subsequently using classical statistical approaches and enrichment analysis.

Conclusions: The proposed procedure for the reduction of confounding and suppression effects and the semi-
supervised clustering method are essential steps to identify genes associated with the chemotherapeutic response.
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Background
Ovarian cancer is prevalent in women [1] and is associated
with a high mortality rate as it is usually diagnosed at an
advanced stage [2]. A standard treatment of advanced
ovarian cancer involves surgical resection followed by
cycles of adjuvant chemotherapy, typically a combination
of taxane-based regimens and platinum-based cytotoxic
agents [3]. The combination of paclitaxel and carboplatin
is one of the most common first-line treatments of ovarian
cancer [4,5]. The mechanism of action (MOA) of pacli-
taxel is to stabilize microtubules and as a result it induces
mitotic arrest and apoptosis [6], and the MOA of carbo-
platin is to bind with DNA and form intra-strand cross-
links so as to inhibit DNA replication and transcription,
and eventually activate the p53-dependent apoptosis [7].
In most patients, the initial responses to the combination
of paclitaxel and carboplatin are good; however, subse-
quent relapses frequently occur [8]. Unraveling the under-
lying mechanisms causing chemoresistance is crucial for
personalized therapy and the improvement of patients’
long-term survival.
Microarrays have been used to study genes and molecu-

lar functions associated with chemoresistance. For exam-
ple, Jazaeri et al. (2005) detected differentially expressed
genes among primary chemosensitive, primary chemore-
sistant, and postchemotherapy tumors using cDNA-based
microarrays [9]. Additionally, Hartmann et al. (2005)
applied a supervised learning algorithm and selected 14
genes to predict the relapsed outcome of ovarian cancer
patients after platinum-paclitaxel chemotherapy [10]. Ete-
madmoghadam et al. (2009) further considered chromoso-
mal aberrations and proposed that DNA copy number
alterations (CNAs) at genes such as CCNE1 and NCOA3
are associated with chemoresistance [11]. While many stu-
dies had proposed genes or pathways associated with che-
motherapeutic response, most of these studies suffered
from limited number of patients and patient diversity, as
well as other confounding factors to a certain extent, parti-
cularly when the samples were derived from patients with
different treatment plans. Since these factors such as
tumor stage, subtype, and different chemotherapies may
change clinical outcome significantly, reliable results could
be difficult to achieve if these confounding effects were
not adequately addressed during statistical analysis.
In this regard, the Cancer Genome Atlas (TCGA) data

need to be carefully assessed for eligibility to a che-
motherapy study. Recently, the TCGA Research Network
concluded an ovarian cancer study with thousands of
microarray data including mRNA expression, DNA copy
number, miRNA, SNP, and CpG methylation data from
more than 500 ovarian tumor samples [12]. While a large
number of samples provide ample opportunities to carry
out sophisticated survival analysis, caution should be
taken: patient ages, tumor stages and treatment cycles

may confound the survival outcome, while various thera-
peutic compounds, their combination and sample proces-
sing batches may suppress the detection without proper
handling. As an example, among more than 500 patients,
treatments include avastin, bevacizumab, carboplatin, cis-
platin, cytoxan, docetaxel, doxoribicin, etoposide, gemci-
tabine, navelbine, paclitaxel, and others. In addition,
these samples were processed in 13 batches.
Herein, a procedure for reducing the confounding and

suppression effects is proposed, in which, factors such as
experimental batches, clinical treatment, patient ages,
tumor stages, and molecular classifications are carefully
considered and dealt with. Beginning with a batch effect
correction, we chose eligible samples through a rigorous
sample selection process. In this paper, we will focus only
on patients with paclitaxel and carboplatin treatment in
order to remove possible confounding factors due to bet-
ter drug or treatment combination when examining the
survival outcome, and in the meantime, to maximize the
ability of discriminating tumor subtypes. After the selec-
tion, 85 ovarian cancer samples treated only with the com-
bination of paclitaxel and carboplatin were selected for
training, and another independent 83 samples treated
mainly with the combination of paclitaxel and carboplatin
but including some other drugs were applied for testing.
Then, gene expression, copy number, and methylation
data were analyzed in a novel semi-supervised clustering
method. By performing a series of statistical hypothesis
testing and clustering tasks, two molecular classifications
with poor progression-free survival (PFS) were identified.
Comparing these classifications to other samples with
good PFS, genes significantly associated with chemothera-
peutic response were detected, and enriched biological
processes were further examined using a gene ontology
enrichment analysis method.
In this paper, the proposed procedure and the semi-

supervised clustering method are detailed with flow-charts
and mathematical explanations in Methods. In Results, the
clustering results and the subsequent differences in che-
motherapeutic response are compared via Kaplan-Meier
curves. Discussions of analysis results and conclusions are
provided in Discussion and conclusions.

Methods
Getting started from collecting data, this section
demonstrates the methods and criteria we applied for
achieving the results. First of all, we downloaded the
ovarian cancer data from the TCGA repository website
(http://cancergenome.nih.gov/). Level 3 gene expression
data derived from Aymetrix U133A platform, level 2
copy number data derived from Agilent CGH-1x1M
platform, and level 3 methylation data derived from Illu-
mina HumanMethylation27 platform were chosen and
downloaded. The gene expression data are constituted
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of 12,042 normalized log2 values, and each value repre-
sents an expression level of a gene. Copy number data
contain 962,434 normalized log2 ratios among which
358,119 ratios with gene annotations were utilized. To
match these copy number ratios with gene expression
levels, values corresponding to a same gene were aver-
aged. Methylation data are 27,578 beta values, and each
value refers to the percentage of methylation for a speci-
fic CpG site. Among the 27,578 beta values, 19,448
linked to 10,068 unique genes included in the gene
expression data were considered in this study. In total, a
cohort of 514 tumor samples comprehensively contain-
ing gene expression, copy number, and methylation pro-
files was obtained.
The procedure for the reduction of confounding and sup-

pression effects is described in the following subsections.

As shown in Figure 1, the first step for using the TCGA
data was batch effect correction. Then, a rigorous process
for sample selection was proposed for finding two indepen-
dent patient cohorts who went through the combination of
paclitaxel and carboplatin treatment: one for training and
one for testing. A semi-supervised clustering approach was
further applied for identifying molecular classifications.
Based on the identified classifications, further validated
through testing patient cohort, differentially expressed
genes were detected by comparing samples with good
response to those with poor response, and significant ontol-
ogies were found using an enrichment analysis.

Batch effect correction
Batch effect correction was applied to all 514 samples.
Due to the large sample size, TCGA samples were

Figure 1 The procedure. The proposed procedure for the reduction of confounding effects and suppression effects.
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derived from different institutions, and experiments
were performed on different dates; these factors may
cause quantitative differences in measurements and
might lead to false discovery specifically if they are not
properly dealt with [13]. In this study, location and scale
(L/S) adjustments [14] were applied to eliminate batch
effects in gene expression and methylation data. We did
not perform batch correction to aCGH arrays due to
the fact that it assumes a comparative hybridization to
normal DNA on the same array; hence, it is less prone
to batch effects. For gene expression, we assumed that
the medians and variances of measures from different
batches should be ideally the same. Let gi represents the
vector of gene expression values for gene i from all 514
samples, gij denotes the vector of gene expression values
for gene i from samples corresponding to batch j, and
gijk represents the gene expression value for gene i from
batch j and sample k. The adjusted gene expression
value g∗

ijk for gene i from batch j and sample k is given
by

g∗
ijk = Mi + (gijk − Mij)

σ̂gi

σ̂gij
, (1)

where Mi refers to the median of gi, and Mij denotes
the median of gij. Also, σ̂gi and σ̂gij are the estimated
standard deviations of gi and gij , respectively, and
whose expressions are given by

σ̂gi =
[

1
N − 1

N∑
k=1

(gijk − ḡi)
2
]1
2
,

(2)

σ̂gij =

⎡
⎣ 1
Nj − 1

∑
k∈Kj

(gijk − ḡij)
2

⎤
⎦
1
2
, (3)

where N refers to the total number of samples, Nj

denotes the number of samples in batch j, and Kj stands
for the samples in batch j. The adjustment of methyla-
tion data is somewhat different since beta values have a
bounded range (from 0 to 1) and exhibit a slight bimo-
dal distribution [15]. Again, let bi and bij represent two
vectors of beta values for gene i across all 514 samples
and batch j, respectively. To enforce beta values from
different batches to have the same median, the methyla-
tion beta value bijk for gene i from batch j and sample k
is rescaled, and the adjusted value b∗

ijk is given by

b∗
ijk =

⎧⎨
⎩
bijk

M′
i

M′
ij
, if bijk ≤ M′

ij,

M′
i + (bijk − M′

ij)
(1−M′

i)
(1−M′

ij)
, if bijk > M′

ij

, (4)

where M′
i and M′

ij refer to the medians of bi and bij,
respectively.

Sample selection
After correcting the batch effect, a rigorous sample selec-
tion process was applied for finding the eligible samples
for a targeted chemotherapy response. The ultimate goal
of this step is to derive as many eligible samples as possi-
ble with the least possible confounding effects for both
training and testing. To meet this requirement, clinical
data were carefully examined. Since the criterion used for
distinguishing a good response from a poor response was
the progression free survival (PFS) time, which is defined
in the next subsection, factors related to prognosis, such
as tumor stages, drugs, and treatment time, were consid-
ered. As shown in Figure 2, we started with 514 samples
profiled with all three techniques: gene expression, copy
number, and methylation. Then, we considered samples
only from advanced tumor stages (i.e., stage III and stage
IV) and restricted samples to be quintessentially treated
with paclitaxel and carboplatin: the treatment had to be
started within 30 days after surgical resection and to last
for at least 4 cycles. As a result, there were 168 samples
which met this treatment requirement. A subset of 85
samples never treated with any other drugs before a fail-
ure event (tumor progression, tumor recurrence, death,
or censored observation) were selected for training.
Another subset of 83 samples treated with paclitaxel and
carboplatin but involved in other treatment were selected
for testing. The training/testing datasets were not chosen
randomly since the 83 samples treated with other drugs
may mislead the discovery of unique molecular patterns
confounded by treatment effect. Nevertheless, these 83
samples are valuable for providing supporting evidence
and justification if patterns or results found in training
can also be observed in testing.

Semi-supervised clustering
Semi-supervised clustering has been proposed and
applied for identifying molecular subtypes in a variety of
studies [16]. It outperforms unsupervised learning and
naive splitting with an arbitrary survival threshold in
detecting molecular subtypes since both the clinical out-
come and the distribution overlapping between good
prognosis and poor prognosis are considered [17].
Herein, a carefully designed semi-supervised clustering
method is proposed. By using a log-rank survival test and
a series of refinement processes, in which the gene
expression data were embedded, significant features
related to patients’ survival were selected. With an addi-
tional scoring function for data discretization, classifica-
tions with similar patterns but distinct chemotherapy
responses can be identified using classical hierarchical
clustering. In this study, we focused on obtaining geneti-
cally altered genes, rather than transcriptionally dysregu-
lated genes. However, we do require genes with copy
number changes with concordant gene expression

Hsu et al. BMC Genomics 2012, 13(Suppl 6):S13
http://www.biomedcentral.com/1471-2164/13/S6/S13

Page 4 of 15



change, potentially driving the phenotypic change.
Following this objective, the semi-supervised clustering
was applied to both the copy number data and the
methylation data, and the methods from feature selection
to hierarchical clustering for both data sets were basically
the same. We only detail the clustering steps for copy
number data. The modifications for methylation data are
demonstrated later.
Feature selection
To reduce suppression effects due to the genomic (or epi-
genomic) differences and maximize the ability of discrimi-
nating poor prognosis from good prognosis, a rigorous
feature selection process was applied, in which, factors
such as patient ages and tumor stages were carefully con-
sidered to minimize confounding effects.
A feature in copy number data refers to a gene in human

genome, and the feature selection was done basically by a

univariate log-rank test, which is a non-parametric hypoth-
esis test comparing the survival functions of two groups of
samples, and a series of feature refinements. First of all, we
define PFS as the interval between the date of surgical
resection and the date when a failure event occurred (i.e.,
disease progression). For samples without progression,
recurrence, or death, the dates of last follow-up were con-
sidered as PFS with censoring. Second, based on the copy
number ratio cik for gene i from sample k, copy number
statuses were categorized into gain (cik > 0.4), normal (-0.5
≤ cik ≤ 0.4), and loss (cik < -0.5). Like a scanning process,
the survival functions of the samples with normal copy
number were tested against those with copy number gain
(normal vs gain) as well as those with copy number loss
(normal vs loss), feature by feature. To ensure the confi-
dence in hypothesis testing, features leading to a small
sample size (i.e., less than 15%, or less than 13) in either

Figure 2 The sample selection. The rigorous process for sample selection.
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group were not considered, and features resulting in log-
rank p-values less than 0.05 were then selected as candi-
dates. After this, confounding factors such as ages and
tumor stages were considered for feature refinement. Spe-
cifically, if the median of ages in both groups of samples
were significantly different (p-values less than 0.05) in a
Wilcoxon rank-sum detection test, or, if these two groups
of samples’ tumor stage assignment are distribute signifi-
cantly differently (p-values less than 0.05 by Fisher’s Exact
test), then the selected features were removed from the
candidates to eliminate possible detrimental effects from
confounding factors. Moreover, the candidates were
further refined using gene expression fold-changes. Similar
to the scanning process used for survival comparison, the
averaged gene expression levels derived from both groups
of samples were compared, and the candidates causing
expression fold-changes larger than 1.3 (or smaller than
1/1.3) were retained while those without significant expres-
sion fold-changes were disqualified for further considera-
tion. We applied a relatively loose cutoff here only to
preserve the concordance of gene expression alteration to
the copy number change.
Data discretization
After feature selection, a scoring function was applied to
the copy number data in the selected genes. Instead of
using the original copy number ratios, which may be noisy
and contain unrelated information, the hierarchical clus-
tering scheme was applied to the data, discretized using a
scoring function, called F-score, which transfers the
grouping information and the survival conditions into dis-
crete numbers, 1 (favorable), 0 (unknown), and -1 (unfa-
vorable). Specifically, for a feature i selected from testing
the gains against the normal, the F-score Fik for feature i
and sample k on copy number data is given by

Fik =

⎧⎪⎨
⎪⎩
1, if cik ≥ −0.5, k ∈ Ki

Long

0,

−1,

if cik < −0.5 or cik = NaN

if cik ≥ −0.5, k ∈ Ki
Short

, (5)

where Ki
Long and Ki

Short refer to the samples with longer
PFS survival and the samples with shorter PFS survival,
respectively, determined by the log-rank test while eval-
uating the relation between PFS and CNAs for feature i
(refer to Subsection Feature selection). Additionally,
cik = NaN refers to missing copy number ratios in fea-
ture i of sample k. Similarly, for a feature i selected
from testing copy number losses against the normal, the
F-score Fik for feature i and sample k on copy number
data is given by

Fik =

⎧⎨
⎩
1, if cik ≤ 0.4, k ∈ Ki

Long

0, if cik > 0.4 or cik = NaN
−1, if cik ≤ 0.4, k ∈ Ki

Short

. (6)

The scores were assigned on a feature-by-feature basis.
If a feature was selected twice in both cases (i.e., the gains
versus the normal and the losses versus the normal), the
F-scores were assigned according to the selection with
smaller log-rank p-value.
Identification of molecular classifications
Based on the selected features and discretized copy
number data, hierarchical clustering was applied for
identifying the molecular classifications associated with
chemotherapy response. The distances dkk ’ between
samples k and k’ were evaluated using the Jaccard coffie-
cient, which is given by

dkk′ =
#(Fk �= Fk′)

#[(Fk �= 0) ∨ (Fk′ �= 0)]
, (7)

where Fk indicates the vector of F-scores in sample k,
Fk’ refers to the vector of F-scores in sample k’, and the
length of these vectors are equal to the number of
selected features. With all pairs of sample-sample dis-
tance being evaluated using Eq. (7), complete linkage
was applied, and subsequent clusters derived. We used
Kaplan-Meier analysis to check if these clusters exhib-
ited significantly different survival distributions, and
proposed molecular classifications if the log-rank
p-value was less than 0.05.
Justification of selected features and identified
classifications
The weighted K-Nearest Neighbor algorithm (weighted
KNN) was applied to the testing datasets to justify the
proposed classifications with the selected features. First
of all, the testing samples were discretized in the
F-scores using the same features and criterion men-
tioned in Subsection Data discretization. Then, the clus-
ter of samples in the training datasets enriched with
unfavorable scores were labeled as poor profiles (l = -1)
while the other cluster of samples were labeled as good
profiles (l = 1). Using the Jaccard coffiecients as sample-
sample distances, the discriminant function Pf for an
independent sample f in the testing dataset was consid-
ered

Pf =

K∑
h=1

(1/dfh)lh

K∑
h=1

1/dfh

, (8)

where lh stands for the corresponding label of the
sample h, and dfh denotes the distance between the sam-
ple f in the testing dataset and its h-th nearest sample in
the training dataset, which is given by

dfh =
max[#(Ff �= Fh), 1]

#[(Ff �= 0) ∨ (Fh �= 0)]
, (9)
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where Ff indicates the array of F-scores in sample f ,
and Fh refers to the array of F-scores in sample h. The
maximum function used in Eq. (9) is to ensure no zero
in denominator in Eq. (8). The sample f in the testing
dataset was classified as a good profile if Pf > 0 or as a
poor profile otherwise. In this study, K was chosen to be
3. Samples classified as good profiles as well as those
samples classified as poor profiles were compared using
the Kaplan-Meier survival analysis.
Modifications for methylation data
The proposed semi-supervised clustering was also
applied to the methylation data. In order to fit the
method, the batch-adjusted beta values for gene i from
sample k were categorized into three statuses: hyper-
methylated (b∗

ik > 0.75 quantile), normal methylated
(0.25 ≤ b∗

ik ≤ 0.75 quantile), and hypomethylated
(b∗

ik < 0.25 quantile). Using the same criteria for log-
rank testing, features (i.e., CpG sites) resulting in
p-values less than 0.05 upon hypermethylated versus
non-hypermethylated, or hypomethylated versus non-
hypomethylated, were selected as candidates. Because
of the continuous nature of beta values, the candidate
refinement was moderately adjusted: if the beta values
for a candidate feature exhibit a large correlation with
the sample ages (Spearman correlation > 0.5), or if the
beta values for the candidate feature derived from the
stage III samples and the stage IV samples were signifi-
cantly different in median by Wilcoxon rank-sum test,
this candidate was removed from further consideration.
Except for the aforementioned differences, other steps
for identifying molecular classifications such as the can-
didate refinement using expression fold-change (larger
than 1.3 or smaller than 1/1.3), F-scoring, and the hier-
archical clustering (with the Jaccard coffiecient and
complete linkage) remain the same. To illustrate the
F-score F′

ik for feature i and sample k on methylation
data more clearly, the following relation is provided. For
a feature i, found PFS-related after feature refinement,
the F-score F′

ik for sample k is given by

F′
ik =

⎧⎨
⎩
1, if k ∈ Ki′

Long

0, if b∗
ik = NaN

−1, if k ∈ Ki′
Short

, (10)

where Ki
Long and Ki

Short refer to the samples with longer
survival and the samples with shorter survival, respec-
tively, determined by the log-rank test while evaluating
the relation between PFS and hypermethylation or hypo-
methylation in feature i in the feature selection for
methylation data. Also, b∗

ik = NaN refers to missing beta
values in feature i of sample k. After data discretization,
hierarchical clustering was applied to identify molecular
classifications associated with chemotherapy response.
Moreover, the testing datasets were also classified using

the weighted KNN algorithm for classification
justification.

Identification of significant genes and ontologies
Once the molecular classifications associated with che-
motherapy response were identified, differentially
expressed genes in comparing the poor copy number pro-
files and the good profiles, or in comparing the poor
methylation profiles and the good profiles, were detected
using classical statistical approaches and methods for gene
expression analysis. The good profiles mentioned herein
study refer to the samples neither classified as poor copy
number profiles nor classified as poor methylation profiles.
Since confounding and suppression effects were reduced
by the proposed procedure, more strict thresholds were
simultaneously applied: fold change larger than 1.5 and
t-test p-values less than 0.01. After deriving the significant
gene set, enriched gene ontology terms (biological pro-
cesses) were identified using the Gene Ontology Enrich-
ment Analysis Software Toolkit (GOEAST) [18] available
online at: http://omicslab.genetics.ac.cn/GOEAST/.

Results
Batch effect correction
To exemplify how the L/S adjustment modified the micro-
array data for batch effect correction, the gene expression
values and methylation data of POLR2L, a gene encoding
a subunit of RNA polymerase II, before and after the cor-
rection were compared in this section. POLR2L is one of
the human housekeeping genes steadily expressed in cells.
If the samples had been well assigned to random batches
during the experimental design step, the medians and var-
iances of the measures from different batches would
approach the same values. To justify this, the PFS among
all pairs of batches were compared and tested using the
log-rank test; as a result, the PFS among most pairs of
batches were found not significantly different (data is
shown in the Additional file 1: Figure S1), indicating a ran-
dom sample assignment of batches. However, as shown in
Figures 3a and 3c, the measures from different batches,
after normalization before batch effect correction, exhibit
significant differences, particularly noticeable in medians
(the red horizontal lines within the boxes). Figure 3b illus-
trates the gene expression data adjusted after batch effect
correction using Eq. (1), and Figure 3d illustrates the
methylation data adjusted after batch effect correction
using Eq. (4). In these figures, the medians from different
batches were aligned to the same values.

Selected samples
From 514 tumor samples with gene expression, copy
number, and methylation data, a subset of 85 samples
were selected for training, and a subset of 83 samples
were selected for testing according to the procedure
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outlined in Figure 2. As shown in the Additional file 1:
Figure S2, the frequency of copy number alterations in
the subset of 85 training samples is nearly the same as
that in all 514 tumor samples, indicating no significant
sampling bias in this regard due to the non-random
selection.
The clinical characteristics of the 85 samples for training

and the 83 samples for testing are generally identical
except for the survival outcome. As shown in Table 1, the
number of samples diagnosed in stage III and stage IV are
71 and 14 in the training dataset, respectively, while they
are 68 and 15 in the testing dataset, respectively. More-
over, the minimum, maximum, and median age of the
training dataset are 36, 87, and 58 years old, respectively,

while these measures in the testing dataset are 34, 81, and
59 years old, respectively. However, as shown in Addi-
tional file 1: Figure S3, the testing samples show moderate
improvement in PFS (log-rank p-value equal to 0.076),
and the improvement might be attributed to the utilization
of additional drugs other than paclitaxel and carboplatin.
Considering treatments may affect PFS, especially with
additional drugs that may prolong patients survival time,
we set aside 83 samples only for testing purpose in order
to avoid possible confounding effects, while maintaining
85 samples with paclitaxel and carboplatin treatment only
to minimize the suppression effect at the same time during
the training stage. By doing so, we optimized the trade-off
between the sample size and analysis confidence, assuming

Figure 3 The batch effect correction. The box plot before and after the batch effect correction for the housekeeping gene POLR2L. (a) The
original and (b) the adjusted gene expression values (in log2). (c) The original and (d) the adjusted methylation beta values.

Table 1 The characteristics of samples

Clinical characteristics Measure Training data Testing data

Number of samples 85 83

Number of samples in stage III 71 68

Number of samples in stage IV 14 15

min. 36 34

Ages (years old) medium 58 59

max. 87 81

25th percentile 238 283.25

PFS (days) median 396 458

75th percentile 618.25 684

Number of samples with censored observation 14 22

Treatment paclitaxel carboplatin paclitaxel carboplatin other drugs

The clinical characteristics of the training samples and the testing samples.
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that the 83 testing samples involving additional treatments
preserve similar molecular signatures observed from the
85 training sample set.

Molecular classifications identified using semi-supervised
clustering
Selected features
As shown in Figure 4a, among 12,042 genes, 344 genes
revealed significant differences in PFS with altered DNA
copy numbers. After removing copy number changes that
might be related to patient ages or tumor stages, there
were 286 genes remained as candidates. Finally, gene
expression concordance requirement (1.3 fold-change)
reduced the set of candidate genes to 134. These 134
selected genes are listed in Additional file 1: Table S1.
Similarly, 59 CpG sites were selected (the procedure is
shown in Figure 4b) from the methylation data. The genes
associated to the 59 CpG sites are listed in Additional
file 1: Table S2.
Training results
Figure 5a illustrates the clustered results upon copy num-
ber profiles using the proposed semi-supervised clustering
method. In the figure, each column of the heatmap pre-
sents a copy number profile in 134 selected genes from
one training sample. The columns are merged using the
Jaccard distance derived from Eq. (7) with the complete
linkage algorithm. The features displayed in rows are
ordered by chromosomal positions from top to bottom.
F-scores as 1 (favorable) derived from Eqs. (5) and (6) are
shown in dark blue; F-scores as -1 (unfavorable) are
shown in white, and F-scores as 0 are shown in light blue.
The 85 training samples can be split into two distinct clus-
ters: the right cluster with 18 samples enriched with unfa-
vorable scores (termed 18 poor prognosis tumors, or 18
PPTs) and the left cluster with 67 samples enriched with
favorable scores (termed 67 good prognosis tumors, or 67
GPTs). The majority of unfavorable scores in the right
cluster corresponds to probes in chromosome 1p34.3 to
1p34.1, indicating a dominant region that might be asso-
ciated with chemotherapy response. Figures 5b and 5c
reveal the original copy number ratios and the z-trans-
formed gene expression values, respectively, in the same
order. As shown in Figure 5b, the enriched unfavorable
scores mainly result from copy number amplifications ran-
ging from 1p34.3 to 1p34.1. Also, up-regulation in gene
expression corresponding to the copy number amplifica-
tions can be observed in Figure 5c.
The clustered results on methylation profiles are shown

in Figure 6a. Again, favorable scores are shown in dark
blue; unfavorable scores are shown in white, and null
values are shown in light blue. The columns are samples
merged by Jaccard distance derived from Ed. (7) with
complete linkage, similar to Figure 5a, and the rows
stand for the 59 selected CpG sites significantly

associated with PFS. Unlike rows in Figure 5a, rows in
Figure 6a are ordered by hierarchical clustering. Similarly,
the 85 training samples can be split into two clusters: one
with 30 samples enriched with unfavorable scores, and
one with 55 samples enriched with favorable scores (30
PPTs and 55 GPTs, respectively). Figure 6b shows the
batch-adjusted methylation data. For every 85 measures
in a row, the smallest value (0th percentile) is shown in
green, and the largest value (100th percentile) is shown
in red. In addition, the median (50th percentile) is shown
in black, and other values are shown in colors derived
from linear interpolation. As shown in the figure, the
selected CpG sites are generally hypomethylated in the
30-sample cluster. However, for those genes correspond-
ing to the selected CpG sites, no significant difference in
gene expression is observed.
The training results derived from both the copy num-

ber data and the methylation data are integrated and
shown in Figure 7. A Venn diagram, shown in Figure
7a, illustrates that 18 PPTs (in the right dark gray circle)
demarcated by the amplifications in 1p34.3 - 1p34.1 and
30 PPTs (in the above dark gray circle) due to hypo-
methylation in specific CpG sites, with only 8 samples
overlapping, result in total of 40 PPTs. Other than these
PPTs, 45 GPTs determined by both copy number and
methylation profiles are shown in light gray. The 40
PPTs reveal distinct difference in PFS while comparing
with 45 GPTs. As shown in Figure 7b, where the survi-
val function of 40 PPTs is shown in black and the survi-
val function of 45 GPTs is shown in light gray, the
difference in PFS between the black and the light gray is
significant with log-rank p-value of 4.0 × 10-5, indicating
the potential existence of molecular subtypes with dis-
tinct chemotherapy response.
Testing results
To justify the selected features and identified molecular
classifications derived from the training samples, the
weighted KNN algorithm detailed previously was applied
to 83 independent testing samples, and the classified
results based on both the copy number profiles and the
methylation profiles were integrated and shown in Fig-
ure 8a. As shown in the Venn diagram, 8 PPTs classified
using copy number profiles (in the right dark gray cir-
cle) and 19 PPTs classified using methylation profiles
(in the above dark gray circle), with a small extent of
overlapping (3 samples), result in a total of 24 PPTs.
With the remaining 59 GPTs either classified using
copy number profiles or methylation profiles, the PFS of
the poor and the good prognosis were compared and
tested. As shown in Figure 8b, the log-rank p-value
comparing the light gray (good) to the black (poor) is
0.021, and the Kaplan-Meier curves in testing reveal
similar patterns to those in the training. These results
validate the finding we derived from the training dataset.
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Significant genes and enriched ontologies
Significant genes and enriched ontologies were identified
using classical statistical approaches and an enrichment
analysis. Based on the training results, as shown in the
Venn Diagram and the Kaplan-Meier curves in Figure 7,
two molecular classifications associated with poor che-
motherapy response (18 PPTs from copy number data

and 30 PPTs from methylation data) and one group of
samples with good chemotherapy response were identi-
fied. We begin with a comparison of the 18 PPTs
derived from copy number profiles to the 45 GPTs.
Using t-test and expression fold-change, 107 differen-
tially expressed genes between these two groups of sam-
ples were detected, and the top 15 differentially

Figure 4 The feature selection. The filtering process of feature selection. The goal of feature selection is to detect features associated with PFS
and gene expression changes but not related with patient ages and tumor stages. As a result, (a) 134 features (genes) were selected from copy
number data, and (b) 59 features (CpG sites) were selected from methylation data.
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Figure 5 The clustered results from the copy number profiles. (a) The clustered results derived from the copy number profiles of the 85
training samples. Favorable scores (F = 1) are represented in dark blue; unfavorable scores (F = -1) are represented in white, and the unknown
(F = 0) are represented in light blue. Columns are samples (merged by complete linkage), and rows are genes ordered by chromosomal
positions. (b) The original copy number ratios in the same sample order and the same feature order. Positive ratios are shown in red, and
negative ratios are shown in green, with the brightest red referring to copy number ratios larger than or equal to 2, the brightest green referring
to a ratios smaller than or equal to -2, and the darkest color referring to a ratio of 0. (c) The z-transformed gene expression values in the same
sample order and the same feature order. The red and green colors are shown in a same way but with different maximum and minimum,
which are 1 and -1, respectively.

Figure 6 The clustered results from the methylation profiles. (a) The clustered results derived from the methylation profiles of the 85
training samples. Favorable scores (F = 1) are represented in dark blue; unfavorable scores (F = -1) are represented in white, and the unknown
(F = 0) are represented in light blue. Columns are samples, and rows are CpG sites. Both columns and rows are merged by complete linkage. (b)
The batch-adjusted methylation data in the same sample order and the same feature order. Among 85 beta values corresponding to a specific
feature, the largest value (100th percentile) is shown in red, and the smallest (0th percentile) is shown in green. Also, the median (50th
percentile) is shown in black, and all other values are revealed in color derived by linear-interpolation.
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expressed genes ranked by t-test p-values are shown in
Additional file 1: Table S3. Moreover, significant biologi-
cal processes were subsequently identified using
GOEAST [18]. The top 15 biological processes ranked
by p-values are listed in Additional file 1: Table S4,
where all of the listed biological processes resulted in a
p-value less than 1.8 × 10-5. The other 30 PPTs derived
from methylation profiles were also compared to the 45
GPTs, and 34 differentially expressed genes were
detected using t-test and expression fold-change. Simi-
larly, the top 15 differentially expressed genes ranked by
t-test p-values are shown in Additional file 1: Table S5,
and the top 15 significant altered biological processes
are listed in Additional file 1: Table S6.

Discussion and conclusions
As high-throughput technologies such as microarray and
short-read sequencing become more and more popular in
biological studies, the complexity and dimensions these
datasets possess make the statistical analysis more difficult.
Additionally, extraneous variables resulting from sample
variability may hinder analysts from avoiding false discov-
ery and subsequently achieving reliable results. Dealing
with these extraneous variables, whether confounding or

suppression, is challenging. To address these issues, we
proposed a procedure for the reduction of confounding
and suppression effects, in which a batch effect correction,
a sample selection process, and a semi-supervised cluster-
ing method were considered. The batch effect correction
used an L/S adjustment to eliminate confounding effects
due to experimental differences, and the sample selection
was designed to focus on single chemotherapy, reducing
variability due to different treatments. After batch effect
correction and sample selection, a novel semi-supervised
clustering method that further addressed the confounding
from ages and tumor stages was applied, and gene expres-
sion values, DNA copy number ratios, methylation data,
and clinical information were analyzed for unraveling
molecular classifications associated with chemotherapeutic
response. As a result, significant genes and enriched ontol-
ogies were identified.
The batch effect due to experimental processing is a

known issue in microarray studies, and there has been
several attempts to correct the batch effect for gene
expression profiling experiments. For example, the soft-
ware “COMBAT” [14] utilized empirical Bayes frame-
works for adjusting the batch effect in gene expression
particularly when the sample size is small. Despite the

Figure 7 The training results. (a) The Venn diagram demonstrates the clustered results derived from the 85 training samples. Among the 85
training samples, a total of 40 samples, 18 with poor copy number profiles and 30 with poor methylation profiles, were detected as PPTs; the
other 45 samples without either poor copy number profiles or poor methylation profiles were grouped as GPTs. (b) The Kaplan-Meier curves
reveal distinct PFS functions between the union of the 40 poor profiles and the 45 good profiles.
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existence of sophisticated algorithms for batch adjust-
ment in gene expression, we applied the simple L/S
method for batch effect correction, since the TCGA data-
set has large sample size (larger than 25) in most batches.
Moreover, the simple L/S method can be easily extended
and applied to the methylation beta values without caus-
ing much difficulty and computational burdens. To
further improve the L/S method, one could consider to
apply the median of absolute deviation (MAD) instead of
Eq. (2) for estimating the standard deviation in a more
robust way [19].
The molecular classifications were identified from copy

number and methylation profiles. CNAs are common
genomic aberrations shown to associate with mRNA
expression level changes, gene function modifications,
and significant differences in prognosis of a variety of
tumors [20]. Also, methylation status has been implicated
in affecting the drug response [21]. Since these genomic
or epigenomic mutations do not necessarily lead to linear
changes in gene expression levels [22,23], expression
fold-change rather than Pearson correlation was applied
to evaluate their effects on transcription. For the semi-
supervised clustering, the log-rank test was initially
applied to select significant features associated with PFS.

After removing features not affecting transcription or
potentially correlated with ages and stages, a scoring
function was applied to discretize and denoise data.
Then, the classical hierarchical clustering method was
applied, and two molecular classifications associated with
poor chemotherapy response were identified. Interest-
ingly, in the classification detected from copy number
profiles, unfavorable scores were enriched in the region
of 1p34.3 - 1p34.1, indicating a dominant CNA segment
that might affect chemotherapy response. Also, in the
classifi-cation detected from methylation profiles, sam-
ples were generally hypomethylated in the selected CpG
sites. It is a good opportunity to further examine these
regions for a better understanding of chemoresistance.
Differentially expressed genes detected by comparing

the tumors with poor prognosis to the samples with
good prognosis provide us candidate genes for studying
the functions or mechanisms differentiating chemother-
apy response. Comparing with the 14 genes selected by
Hartmann et al. [10] for predicting the platinum-pacli-
taxel chemotherapy response, we found SF3A3 was also
detected in this study. Moreover, many candidate genes
such as GNL2, RRAGC, RFC3, and ENC1 listed in
Additional file 1: Table S3 and Table S5 have also been

Figure 8 The testing results. (a) The Venn diagram demonstrating the clustered results derived from the 83 testing samples. Among the 83
training samples, a total of 24 samples, 8 with poor copy number profiles and 19 with poor methylation profiles, were classified as PPTs; the
other 59 samples without either poor copy number profiles or poor methylation profiles were classified as GPTs. (b) The Kaplan-Meier curves
reveal distinct PFS functions between the union of the 24 poor profiles and the 59 good profiles.
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reported as being differentially expressed in a related in
vitro study [24]. Obviously, these genes require further
validation in order to confirm their chemotherapy
response. In addition, genes involved in associated biolo-
gical processes, such as microtubule polymerization or
depolymerization, urogenital system development, were
detected using GOEAST. These results could be re-
assessed with network modeling, for example, the Boo-
lean Network (BN) and the Probabilistic Boolean Net-
works (PBN). Further mathematical modeling of this
type is an essential step to uncover the underlying
mechanism of chemoresistance in these tumors, to pro-
vide better prognosis, and ultimately to improve the
care of ovarian cancer patients.
The proposed procedure can help reduce confounding

for mining useful information; it is powerful but not omni-
potent. In fact, the best way to achieve a confident conclu-
sion may rely on rigorous experimental designs, not
simply relying on state-of-the-art statistical analysis techni-
ques. In other words, the less confounding factors an
experiment has, the more reliable results an experimental-
ist can generally achieve through a case-control study.

Additional material

Additional file 1: Supplementary figures and tables. This additional
file contains supplementary figures and tables mentioned in the study,
including Figures S1-S3 and Tables S1-S6.
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