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Abstract

Background: Differential expression detection for RNA-seq experiments is often biased by normalization
algorithms due to their sensitivity to parametric assumptions on the gene count distributions, extreme values of
gene expression, gene length and total number of sequence reads.

Results: To overcome limitations of current methodologies, we developed Differential Feature Index (DFI), a non-
parametric method for characterizing distinctive gene features across any number of diverse RNA-seq experiments
without inter-sample normalization. Validated with qRT-PCR datasets, DFI accurately detected differentially
expressed genes regardless of expression levels and consistent with tissue selective expression. Accuracy of DFI
was very similar to the currently accepted methods: EdgeR, DESeq and Cuffdiff.

Conclusions: In this study, we demonstrated that DFI can efficiently handle multiple groups of data
simultaneously, and identify differential gene features for RNA-Seq experiments from different laboratories, tissue
types, and cell origins, and is robust to extreme values of gene expression, size of the datasets and gene length.

Background
High-throughput RNA-sequencing (RNA-seq) enables
researchers to quantify genome-wide gene expression
with high resolution [1]. At the same time, it raises many
new challenges for data processing and analysis. One
major challenge is how to effectively combine, compare
and contrast samples to identify differential gene features.
The common sense answer to this question is to apply an
effective inter-sample normalization procedure before
starting any type of comparative analysis on the samples
from different sites, as well as on the samples from the
same dataset [2-4]. On the other hand, it has been shown
that the choice of normalization method itself could be a
major factor that determines estimates of differential
expression [5].
After the alignment of high throughput short sequence

reads to the reference genome, expression levels can be
quantified in terms of total number of reads that are

aligned to the genes. Then, generally, a proper normaliza-
tion algorithm is used to estimate expression levels for
comparative analyses. One of the problems with high
throughput sequencing is longer genes are sequenced
more and have larger gene counts [6]. The first and most
commonly used normalization method RPKM (reads per
kilobase of exon per million mapped reads) [7] addresses
this bias by simply scaling counts by the gene length.
Later studies have shown that more sophisticated weight-
ing methods are needed to lessen this bias [5,8]. Another
challenge with sequencing is modelling the distribution
of the gene counts, as differences in relative distributions
of the samples would affect the detection of differential
expression [3]. Poisson [1] and negative binomial distri-
butions [9,10] are the most commonly used ones to
model the gene count data. These models are parametric
i.e. require assumptions on the distribution of the data.
However, in the real scenario, these distribution assump-
tions might not always hold true [5] and estimation of
the model parameters can be very difficult [11].
Here, we introduce Differential Feature Index (DFI) to

identify distinctive features across a large set of diverse
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experiments using read counts without any direct inter-
sample normalization. The DFI method is non-parametric
(i.e. calculations of DFI do not require any assumptions on
the distribution of the data) and unsupervised (i.e. does
not require group information to identify differential fea-
tures). In this study, first, we compared DFI to currently
accepted methods [4] such as EdgeR [9], DESeq [10] and
Cuffdiff [12], as well as the classical t-test. Then, we evalu-
ated the efficiency of DFI in comparing multiple groups of
data from different research groups at the same time. We
found that DFI was effective and robust for selecting
differential gene features for RNA-Seq experiments from
different laboratories, tissue types, and cell origins.

Results
Differential Feature Index (DFI) approach
DFI can identify distinctive gene features across a large set
of diverse experiments without any direct inter-sample
normalization. DFI is defined as the average pair-wise
variation between any particular gene and all the other
genes. Workflow for DFI calculation is shown in Figure 1.
The DFI is a non-parametric (i.e., calculations of DFI do
not require any assumptions on the distribution of the
data) and unsupervised (i.e., does not require group infor-
mation to identify differential features) approach to iden-
tify differential features.

A large DFI implies that the gene varies substantially
across all experiments and can be considered as a feature
to differentiate them, while a small DFI means expression
of this gene is quite stable across all experiments. Thus,
one can order the gene features based on DFI values and
identify differential features. In this paper, we selected top
one percent of the gene features as differentially expressed.

Accuracy of DFI compared to other methods when
evaluating results pair-wise
To evaluate accuracy of DFI method in identifying differ-
entially expressed genes, we used 42 RNA-seq experi-
ments [5] conducted on two biological samples from
Microarray Quality Control Project (MAQC): Ambion’s
human brain reference RNA (14 experiments) and Strata-
gene’s universal human reference (UHR, 28 experiments)
(SRA Project ID: SRP001847) (Table 1). We first com-
puted DFI values using the gene counts from these sam-
ples. As part of the MAQC project, about one thousand
genes were assayed by qRT-PCR for relative quantifica-
tion of these two samples [13]. We considered this qRT-
PCR dataset as a gold-standard and explored the relation-
ship between true differential expression and DFI values.
We used the same thresholds with a previously published
method [5] and considered genes with log2-fold changes
greater than 2 and less than 0.2 as differentially expressed

Figure 1 The DFI calculation workflow. Rather than transforming whole datasets by normalization, each data point is compared to the other
data points in the same dataset in a pair-wise fashion. The standard deviation of this ratio becomes a measure of the variability of a given gene
among the multiple datasets being compared.
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(true positives) and non-differentially expressed (true
negatives) respectively.
DFI is a single measure to rank differentially expressed

features. When we examined relationship between DFI and
qRT-PCR fold changes, we observed that changes in qRT-
PCR are directly correlated with DFI values (Figure 2).
Then, we examined the relationship between FDR adjusted
p-values and fold changes reported by EdgeR, DESeq, Cuff-
diff and t -test, and qRT-PCR fold changes. P-values did
not show any correlation with qRT-PCR fold changes
(Figure 3A). P-values only denote the probability of obser-
ving the reported fold-change by chance. On the other
hand, fold changes reported by these methods are highly
correlated with qRT-PCR fold changes (Figure 3B).
Next, we employed qRT-PCR data to construct receiver-

operator characteristic (ROC) curves. These plots illustrate
performance of the differential expression methods on
classifying true differential expression against false discov-
eries. For EdgeR, DESeq, Cuffdiff and t-test, first, we
plotted ROC curves based on p-values alone. The ROC
curves illustrate that the DFI ranking method is more
accurate than the p-values reported by the other methods
under consideration (Figure 4A). Next we plotted ROC
curves based on fold changes reported by these methods.
We only considered the genes with a p-value smaller than
0.01 -the most commonly used threshold for these meth-
ods. ROC curves demonstrate that all methods perform
similarly (Figure 4B). When the entire fold changes
reported by EdgeR, DESeq, Cuffdiff and t-test are
examined (Figure 3B), indeed, their clear correlation with

qRT-PCR fold changes would necessitate this level of
accuracy. Nevertheless, DFI ranking is superior, since it is
a single criteria and as accurate as the combination of fold
change and p-value criteria of the other methods.

Simultaneous comparison of two groups from multiple
studies
We further tested DFI method in comparing RNA-seq
data for two tissues with 15 experiments on brain and 16
on liver collected from four different projects in NCBI’s
SRA (one brain study, two liver studies, one study
containing both brain and liver tissues) (Table 1). We
selected top one percent of the genes (when ranked by
DFI) as differential gene features (Additional file 1).
When selected genes and samples were hierarchically
clustered by Pearson correlation coefficient (Figure 5),
these genes are separated into two groups. Gene function
enrichment analysis using Ingenuity Pathway Analysis
(IPA) confirmed that the genes with high expression
levels in each tissue are highly tissue specific (Additional
file 1).

Simultaneous comparison of multiple groups form same
study
Next, we tested the DFI method in selecting differential
gene features of RNA-seq data for three cell lines; 9 experi-
ments on leukemia, 4 experiments on liver carcinoma and
7 experiments on blood (SRA Project ID: SRP000228)
(Table 1). We selected top one percent of the genes (when
ranked by DFI) as differential gene features (Additional

Table 1 mRNA-seq experiments from NCBI SRA.

Tissue/cell line Number of
experiments

SRA
project ID

Project name

Kidney 3 SRP000225 Illumina sequencing human kidney RNA samples to study mRNA expression levels

Liver 3

GM12878 (Blood) 7 SRP000228 RNASeq expression profiling for ENCODE project

Hep2G (Liver
Carcinoma)

4

K562 (Leukemia) 9

Brain 1 SRP000626 Deep surveying of alternative splicing complexity in the human transcriptome by high-
throughput sequencing

Cerebral Cortex 1

Heart 1

Liver 1

Lung 1

Skeletal Muscle 1

Liver female 1 6 SRP001558 Sex-specific and lineage-specific alternative splicing in primates

Liver male 1 6

Brain MAQC2 14 SRP001847 Evaluation of Statistical Methods for Normalization and Differential Expression in mRNA-Seq
Experiments

UHR MAQC2 28
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file 2). Hierarchical clustering of the experiments and
genes based on these selected gene features (Figure 6)
shows clear separation of the three cell lines. Also, top
functional annotations reported by IPA for the genes with
high levels in each cell line are highly consistent with the
cell types (Additional file 2).

Simultaneous comparison of multiple groups from
multiple studies
Finally, we calculated DFI values for 86 RNA-seq experi-
ments from 5 different projects in NCBI’s SRA including
experiments on 15 brain, 16 liver, 3 kidney, 1 lung, 1
heart, 1 skeletal muscle, 1 cerebral cortex, 7 GM12878, 4
Hep2G, 9 K562, and 28 universal human reference (UHR)
samples (Table 1). When genes with large DFI are selected
and samples were hierarchically clustered by Pearson
correlation coefficient, tissue origin drove the clustering
(Figure 7). As examples, liver samples from 3 different stu-
dies, brain samples from 2 different studies and a cerebral
cortex sample clustered tightly together in appropriate
groupings. Even a single lung sample stood out by itself

and did not correlate with others. As the DFI values
diminished, all of the samples correlated to each other
(Figure 7). This confirmed the differentiation power of the
DFI ranking in a single step.

Discussion
We demonstrated that DFI is a highly effective and
robust method for selecting gene features for RNA-seq
experiments from multiple groups of samples. First, DFI
is robust to the variation in total number of sequence
reads across experiments. A recent study [3] suggested
that incorporation of total number of sequence reads in
normalization may impact comparative results. Further-
more, another study [11] has shown that sequencing
depth itself affects the identification of genes as differen-
tially expressed. DFI formulation is independent of total
number of sequence reads, since calculations starts with
pair-wise ratios of the gene counts within each experi-
ment (Figure 1). This approach circumvents the need to
normalize total number of reads. Out of 4.4 million to
54.8 million total number of sequence reads in above 86

Figure 2 Scatter plot showing log2 qRT-PCR fold changes for 935 genes (x-axis) and DFI values (y-axis).
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RNA-seq experiments 0.3 million to 16.3 million reads
were aligned to the reference genome (Additional file 3:
Figure S1). This large variation did not affect the DFI cal-
culations and the clustering of the experiments. For exam-
ple, 16 liver experiments from 3 different studies clustered

very tightly (Figure 5) although total number of sequences
reads in the samples varied between 2.8 million and
14 million.
Second, DFI is robust to low and high gene counts.

Two main problems occur with normalization methods

Figure 3 (A) Volcano plots showing log2 qRT-PCR fold changes for 935 genes (x-axis) and -log10 p-values for EdgeR, DESeq, Cuffdiff, and t-test
(y-axis). (B) Scatter plots showing log2 qRT-PCR fold changes for 935 genes (x-axis) and log2 fold changes reported by EdgeR, DESeq, Cuffdiff
and t-test (y-axis).

Figure 4 ROC curves are plotted for DFI (black), EdgeR (red), DESeq (green), Cuffdiff (purple), and t-test (blue) methods based on qRT-
PCR validated genes. (A) Comparison of DFI and p-values reported by EdgeR, DESeq, Cuffdiff and t-test shows that DFI is more accurate than
p-values reported by the others. (B) Comparison of DFI and fold changes with p < 0.01 reported by EdgeR, DESeq and Cuffdiff shows that DFI is
comparable to the combination of fold change and p-value criteria of the others. Since fold changes for Cuffdiff and t-test were both RPKM
based they resulted in same values. Therefore, t-test is not plotted. Also, genes with less than 10 reads in both samples are not considered in
this evaluation.
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and differential expression statistics [5]: genes with high
counts are more likely to be discovered as differentially
expressed and genes with low counts tend to affect differ-
ential expression statistics. To test the robustness of DFI,
EdgeR and DESeq to extreme values of gene counts, we
eliminated genes with high or low expression and com-
pared differential expression rankings to the full gene set.
We demonstrated that DFI is the least affected by
extreme values of gene counts compared to EdgeR and
DESeq (Additional file 3: Figure S2).
Third, DFI is robust even when the number of samples

is small. In 100 tests, we randomly selected three samples
from each of the two groups in MAQC dataset and com-
pared the DFI ranking with the gold standard for each
test. ROC curves demonstrated that when testing low
numbers of datasets, the accuracy of the DFI ranking only

changed slightly between these 100 tests with the area
under ROC curve of 0.952 +/- 0.004 (Additional file 3:
Figure S3).
Finally, DFI is independent of gene length. A known

issue with the sequencing platforms is that longer genes
are sequenced more and end up with larger gene count
numbers [6]. Simply scaling gene counts by transcript
length, as in RPKM [7], is insufficient to cure this bias.
More sophisticated weighting methods are needed to
mitigate this bias [5,8]. On the other hand, DFI calcula-
tions are completely independent of gene length due to
its formulation (Equation 1). Including a scaling factor
on gene counts based on gene length only adds a con-
stant term to the standard deviation calculation. For this
analysis, every gene count gj is adjusted to its length by
multiplying lj:

Figure 5 Clustering of 15 brain and 16 liver RNA-seq experiments from 4 different studies. Heatmap shows hierarchical clustering of the
samples and top one percent of the gene features based on Pearson correlation coefficient (distance function for hierarchical clustering is
1-correlation). Brain and liver samples are clearly separated and functional annotations confirm the accuracy of the selected gene features.
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This adjustment will only add a constant term to the
elements of array Gjk. Although the mean of the array
will be shifted, the standard deviation calculation will
not be affected from this adjustment. Therefore, DFI
calculation is theoretically independent of the gene
lengths. Also, no association was observed between gene
lengths and DFI values calculated in this study (Addi-
tional file 3: Figure S4).
It is conceivable that application of DFI can be extended

to a wide spectrum of high throughput data. In fact, a
similar metric had been applied to select normalization
factor in qRT-PCR experiments [14] and to compare dif-
ferent ChIP-seq datasets [15]. Further investigation on DFI
features may lead to effective methods for integrating
datasets from multiple modalities (e.g., microarray and
RNA-seq).

In summary, we have developed a Differential Feature
Index that allows one to accurately and effectively identify
the genes that change expression in multiple RNA-seq
datasets. This index obviates the need to normalize sam-
ples and can accommodate any number of datasets with
multiple sizes.

Methods
RNA-seq datasets
This article considers 86 mRNA-seq experiments from
5 different projects in NCBI Sequence Read Archive (SRA)
(Table 1): 1) 42 RNA-seq experiments from a study that
evaluates the effect of flowcell and library preparation on
the results of transcriptome sequencing using the Illumina
Genome Analyzer [5]. This study includes 14 experiments
on Ambion’s human brain reference RNA and 28 experi-
ments on Stratagene’s universal human reference (UHR)
RNA which is composed of total RNA isolated from 10
different cell lines including adenocarcinoma of mammary
gland, hepatoblastoma of liver, adenocarcinoma of cervix,
embryonal carcinoma of testis, glioblastoma of brain,

Figure 6 Clustering of 4 liver carcinoma, 9 leukemia and 7 blood RNA-seq experiments from ENCODE project. Heatmap shows
hierarchical clustering of the samples and top one percent of the gene features based on Pearson correlation coefficient (distance function for
hierarchical clustering is 1-correlation). Three samples are clearly separated and functional annotations confirm the accuracy of the selected gene
features.
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melanoma, liposarcoma, histiocytic lymphoma (macro-
phase, histocyte), lymphoblastic leukemia and plasm-
acytoma (myeloma, B lymphocyte) (SRA Project ID:
SRP001847). 2) 12 RNA-seq experiments from a compara-
tive study on sex-specific and lineage-specific alternative
splicing [16]. This study includes 6 experiments on
3 female liver samples and 6 experiments on 3 male liver
samples (SRA Project ID: SRP001558). 3) 20 RNA-seq
experiments from RNA-seq expression profiling study for
ENCODE project common cell lines [17]. This study
includes 9 RNA-seq experiments on K562 cell line pro-
duced from a female patient with chronic myelogenous
leukemia (CML), 4 RNA-seq experiments on Hep2G cell
line produced from a male patient with liver carcinoma,
and 7 RNA-seq experiments on GM12878 cell line pro-
duced from the blood of a female donor with northern
and western European ancestry by EBV transformation
(SRA Project ID: SRP000228). 4) 6 RNA-seq experiments
from an assessment study on technical reproducibility of
RNA-seq and its comparison with gene expression arrays
[1]. This study includes 3 RNA-seq experiments on liver
and 3 RNA-seq experiments on kidney samples of a single
human male (SRA Project ID: SRP000225). 5) 6 RNA-seq
experiments from a study on human tissue alternative spli-
cing complexity [18]. This study includes 1 RNA-seq

experiments on each of the brain, cerebral cortex, heart,
skeletal muscle, lung and liver samples (SRA Project ID:
SRP000626).

Short Read Alignment
Sequence read files were downloaded from NCBI SRA in
FASTQ format. Raw sequence reads were aligned to the
human reference genome (UCSC hg18, NCBI build 36)
using TopHat [19] (Version 1.0.13) that runs on Bowtie
(Version 0.12.7). Only unique alignments to the reference
were considered.

Gene counts
R/Bioconductor package Rsamtools was used to read
sequence alignment results in SAM/BAM format. R/Bio-
conductor package GenomicRanges was used to down-
load NCBI RefSeq gene annotations and to count total
number of sequence reads on each annotated region,
gene counts. A large matrix of gene counts (number of
transcripts by number of experiments, 28,005 by 86) was
constructed and saved as a simple text file.

DFI calculation
Differential Feature Index (DFI) for a specific gene is
defined as the variation of average pair-wise ratios between

Figure 7 Clustering of 86 RNA-seq experiments from 5 different studies with 11 different sample types. Heatmaps show hierarchical
clustering of the samples based on Pearson correlation of the genes with sliding DFI ranges. When top gene features (with DFI value larger
than 3.5) are used, sample type drives the clustering (top-left). As the DFI values get smaller, correlation of the samples get weaker. When genes
with DFI values less than 1.5 are considered all of the samples correlate to each other. Series of these heatmaps confirms the differentiation
power of the DFI ranking in a single step.
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this gene and all the other genes across multiple samples.
Out of n genes in total, for every combination of two
genes j and k and in experiment i, log2-transformed ratios
of gene counts gji and gki are calculated. Array Gjk of
m elements consists of these ratios across m experiments:

Gjk =
{
log2

(
gj1
gk1

)
, log2

(
gj2
gk2

)
, · · · , log2

(
gjm
gkm

)}

=
{
log2

(
gji
gki

)}
i=1→m

(2)

Pair-wise variation is calculated as the standard devia-
tion of the Gjk elements:

Sjk = std
(
Gjk

)
(3)

DFIj for a gene j is calculated as the mean of all pair-
wise variations, Sjk:

DFIj =

∑n
k=1 Sjk
n − 1

(4)

The code for DFI calculation is developed in Matlab. In
order to avoid infinite values in log calculations, genes
with 0 counts are replaced with 1. Runtime for the algo-
rithm is O(n2m) where n is the number of genes and m is
the number of samples.

Other differential expression methods
R/Bioconductor packages EdgeR [9] and DESeq [10], and
R t.test function were used to calculate differentially
expressed genes between 2 samples of MAQC dataset.
Same gene counts table as in DFI calculations were
employed for EdgeR and DEseq methods, while normal-
ized counts (RPKM) were employed for t-test function.
Cuffdiff function of Cufflinks (Version 1.0.3) [12] was used
to identify differentially expressed genes between 2 sam-
ples. Alignment results for 42 experiments of MAQC
dataset were directly given as an input to the Cufflinks
software. FDR adjusted p-values and fold changes reported
by these methods were used in all of the calculations.

qRT-PCR data
The quantitative real-time polymerase chain reaction
(qRT-PCR) data on Ambion’s human brain reference
RNA and Stratagene’s UHR RNA samples were down-
loaded from Gene Expression Omnibus (GEO), GSE5350
Series, 4 Brain and 4 UHR Taqman assays [13]. Out of
997 genes in TaqMan assay, 976 were common to NCBI
RefSeq gene annotations. Then, 41 genes with no expres-
sion in any of the samples were eliminated. Expression of
the remaining 935 genes were considered as gold standard
to evaluate accuracy of DFI ranking for RNA-seq experi-
ments (SRA Project SRP001558) on the same samples.

Additional material

Additional file 1: Selected gene features and IPA functional
annotations for liver and brain samples.

Additional file 2: Selected gene features and IPA functional
annotations for liver carcinoma, blood and leukaemia samples from
ENCODE project.

Additional file 3: Supplementary figures S1 to S4.
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