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Abstract

systems biology profiling.

key miRNA regulators contributed to HCC metastasis.

Background: Hepatocellular carcinoma (HCC) is one of the most fatal cancers in the world, and metastasis is a
significant cause to the high mortality in patients with HCC. However, the molecular mechanism behind HCC
metastasis is not fully understood. Study of regulatory networks may help investigate HCC metastasis in the way of

Methods: By utilizing both sequence information and parallel microRNA(MIRNA) and mRNA expression data on
the same cohort of HBV related HCC patients without or with venous metastasis, we constructed combinatorial
regulatory networks of non-metastatic and metastatic HCC which contain transcription factor(TF) regulation and
miRNA regulation. Differential regulation patterns, classifying marker modules, and key regulatory miRNAs were
analyzed by comparing non-metastatic and metastatic networks.

Results: Globally TFs accounted for the main part of regulation while miRNAs for the minor part of regulation.
However miRNAs displayed a more active role in the metastatic network than in the non-metastatic one.
Seventeen differential regulatory modules discriminative of the metastatic status were identified as cumulative-
module classifier, which could also distinguish survival time. MiR-16, miR-30a, Let-7e and miR-204 were identified as

Conclusion: In this work we demonstrated an integrative approach to conduct differential combinatorial
regulatory network analysis in the specific context venous metastasis of HBV-HCC. Our results proposed possible
transcriptional regulatory patterns underlying the different metastatic subgroups of HCC. The workflow in this study
can be applied in similar context of cancer research and could also be extended to other clinical topics.

Introduction

Hepatocellular carcinoma (HCC) is one of the most hazar-
dous cancers in the world. Metastasis remains a significant
cause to the high mortality in patients with HCC. The
molecular mechanism underlying the metastasis of HCC
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has not been completely unraveled due to the complexity
and heterogeneity of this disease.

With the technology advances in genomics and proteo-
mics, many attempts have been made to predict HCC
metastasis based on molecular profiling from mRNA or
miRNA microarrays and mass spectrometry assays,
sampled from tumor or adjacent non-tumor liver tissues
[1-3]. These studies were mostly conducted by selecting
from a list of genes whose expression level discriminated
well between different sample types. However, the signa-
tures or biomarkers from independent studies shared little
overlap. Moreover, the signatures or biomarkers brought
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us insufficient knowledge about mechanism of HCC
metastasis, despite the conventional gene set enrichment
analysis.

In recent years, systematic approaches have improved
the understanding of complex diseases from multiple per-
spectives. A priori knowledge such as protein interactions,
pathways, clinical factors, or other disease-related informa-
tion from databases, integrated with gene signature analy-
sis have helped marker gene prioritization [4-8]. In
addition, gene relationships among different disease
statuses were investigated through systematic network
analyses [9,10]. The signature/biomarker identification was
also aided by network analysis, which brought advantages
over the previous gene-list approaches in prediction accu-
racy. In 2007, Chuang et.al identified markers for breast
cancer metastasis not as individual genes but as subnet-
works extracted from protein interaction databases [11].
The subnetwork markers were proved to be more repro-
ducible than individual marker genes and achieved higher
accuracy in the classification. In 2010, Li et.al identified
breast cancer prognostic modules extracted from GO-
term-defined gene sets with both high predictability of
metastasis and rational biological senses [12].

In 2009 Martinez N et.al pointed out the importance
about the genome-scale combinatorial regulatory networks
involving microRNAs(miRNAs), transcription factors
(TFs), and genes [13]. They mapped the first genome-scale
TE-miRNA transcription regulatory network in C. elegans
and integrated this network with a computationally pre-
dicted miRNA-TF post-transcriptional network [14]. They
investigated the topology and properties of the network to
understand how TFs and miRNAs interact to regulate
gene expression. After that, significant progress has been
made in studies using gene regulatory network models that
capture physical and regulatory interactions between genes
and their regulators [15]. In 2009, we also published a pre-
liminary research on the microRNA-driven regulatory
mechanisms through the combinatorial regulatory network
analysis [16]. In that work we used miRNA perturbed gene
expression datasets and developed general miRNA-cen-
tered regulatory cascades in human cell lines. Biological
context was not of concern then. In recent years, regula-
tory network analyses were brought into different biologi-
cal contexts to further understand mechanism of complex
diseases such as prostate cancer [9] and schizophrenia [10].

However, so far neither combinatorial regulatory net-
work analysis nor subnetwork/module marker for risk pre-
diction has been applied under the context of HCC. In this
work, to study HCC metastasis, we aim to: 1) investigate
global gene regulation patterns involved in HCC progres-
sion through combinatorial network analysis, 2) identify
key regulatory modules which would not only possess pre-
dictive ability for HCC metastasis, but also provide insight
of metastasis mechanisms. We selected a set of parallel
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mRNA and miRNA profiles of HCC patient cohort from a
region of endemic HBV infection, and patients were
labeled either without or with venous metastasis. The
workflow design is illustrated in Figure 1.

As a result, we constructed and compared the TEF-
miRNA-gene regulatory network in HCC without or with
venous metastasis, and thus revealed some molecular
characteristics of HCC metastasis. The credibility of the
resultant network was estimated by databases and litera-
tures. We identified key regulatory modules that are physi-
cally connective and biologically cohesive. The prediction
performance for metastasis with our classifying modules
was evaluated, which was significantly better than the
counterpart gene-list classifiers using leave-one-out cross-
validation on the same patient cohort. Some novel key
miRNA regulators in HCC metastasis and their mechan-
isms were implied.

Results

Overview of network statistics and validation of the non-
metastatic and metastatic HCC networks

We obtained two HCC-related networks corresponding
to without- or with- metastasis status. The types of nodes
included TF, miRNA, and non-TF-gene; the types of
edges included TF-TF, TF-miRNA, TF-gene, miRNA-TF,
miRNA-gene. The statistics about nodes and edges are
shown in Table 1 in which the regulators included all the
nominal TFs or miRNAs in the network, with targets or
not. From a global view, the metastatic network was lar-
ger and more complex as there are more nodes and
edges. We could also see that overall the amount of TFs
as nodes and TF-involved edges are both larger than that
of miRNAs, no matter in the non-metastatic or meta-
static network, which substantiate the critical role of the
TF in gene regulation.

To verify whether our networks are correlated to HCC,
we performed one-sided Fisher’s exact test respectively
on the genes from the two networks and the collected
HCC-related genes and HCC-metastasis-related genes
resorted from a series of a priori databases and litera-
tures. It turned out that genes from the non-metastatic
network were significantly overlapped with HCC-related
genes (p = 8.35e-8) but not to HCC-metastasis-related
genes (p = 0.094), and that genes from the metastatic net-
work were not only significantly overlapped with HCC-
related genes (p = 3.81e-9) but also with HCC-metasta-
sis-related genes (p = 0.031). Such results gave us confi-
dence that our constructed networks reasonably lie in the
context of HCC and HCC metastasis.

Comparison of global regulatory patterns between non-
metastatic and metastatic HCC networks

In order to explain the difference of the two networks,
we categorized all the nodes and edges into three
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Table 1 Overall statistics about the nodes and edges of
the HCC non-metastatic and metastatic networks

Non-metastatic Metastatic
#Nodes 1225 1755
#TF 135 176
#mMIRNA 20 63
#gene 1070 1516
#Edges 1510 2104
#TF-TF m 124
#TF-miRNA 2 5
#TF-gene 1350 1761
#mMIRNA-TF 4 21
#miRNA-gene 43 193

groups: a) NM-specific nodes or edges that appeared in
the non-metastatic network only, b) common nodes or
edges that existed in both non-metastatic and metastatic
networks, and c¢) M-specific nodes or edges in metastatic
network only. The percentage of each type of nodes and
edges in different groups are shown in Figure 2A, B.
MiRNAs as nodes appear most in the M-specific group
compared with TFs and non-TF genes which appear
nearly equally in different groups. MiRNA-involved
edges, including TF-miRNA, miRNA-TF, miRNA-gene,
also count for an overwhelming proportion in the M-
specific group. When considering the increased rate of
average number of targets of a regulator in the meta-
static network versus the non-metastatic(Figure 2C,
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Figure 2 Comparison of global regulatory patterns between the HCC non-metastatic and metastatic networks. (A)(B). Comparison of
node- and edge- distributions between the HCC metastatic and non-metastatic networks. Nodes or edges were divided into three categories:
only in non-metastatic network(NM-specific), only in metastatic network(M-specific), and common in both networks. (C). Increased rate of
average number of targets of a regulator in the metastatic network versus the non-metastatic. For each TF- or miRNA- relations as a whole,
average number of targets was calculated in each network, and then the increased rate of the average number of targets in the metastatic
network versus the non-metastatic one was represented in barplot. The color of the bar represents the type of targets, TF in green, miRNA in

Additional File 3), on average a TF regulates more miR-
NAs but less TFs, and a miRNA regulates both more
TFs and genes. These discoveries suggest that miRNAs
might participate more actively in tumors with metasta-
sis, which supports the important role of miRNAs in
tumor progression [17].

Identification of key regulatory modules predictive of
HCC metastasis

The basic standards on the defining of our key regulatory
modules from the combinatorial networks are as follows:
i) the selected module should possess clear biological
structure to decipher its regulatory pattern. ii) the selected
module should contain nodes and edges discriminative of
the metastasis status. With such standards, we obtained 71

ranked differential regulatory modules from the two net-
works in total, each including one specific regulator and
all of its first-layer targets, of which 26 were from the non-
metastatic network(NM modules) and 45 from the meta-
static network(M modules). Based on these differential
regulatory modules a series of classification analyses were
performed to further identify predictive modules.

Firstly each single module was tested for classification
efficiency. Each of the top 20 modules (involving 5 NM-
and 15 M- modules) from the ranked differential list was
sequentially taken as the single-module classifier and
tested in the recursive partitioning classification model
[18]. The performance of these single-modules was evalu-
ated by leave-one out cross validation (LOOCYV), the best
of which achieved accuracy (ACC) of about 82%, and
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Matthew Correlation coefficient (MCC)of 64%. And there
was no significant difference between the performance of
modules from the non-metastatic network and the meta-
static one(Additional File 3).

Then cumulative modules were examined for their pre-
dictive ability of metastasis status. The classification proce-
dure was repeated by adding one more candidate module
at a time from the top down the previously prepared
ranked list. Our results showed that when the top 17 mod-
ules were chosen as cumulative-module classifier, the
LOOCYV accuracy overrode 90% and MCC overrode 80%
(Figure 3A, Additional File 3), which was an explicitly
great improvement than the single-module classifiers.
From then on when more modules were added to the clas-
sifier, more genes were brought into, while the perfor-
mance did not improve significantly. So these 17 modules
were considered as the key regulatory modules predictive
of HCC metastasis in our work, which altogether involved
139 unique genes and miRNAs in 5 NM and 12 M mod-
ules. The full list of these modules is displayed in Table 2.

Comparison of predictive ability of the cumulative
modules to gene-list signatures

Some previous reports demonstrated the advantage of
subnetwork classification over single gene-lists, probably
because of functional relevance in the classifier [11]. In
order to check whether our key regulatory modules pos-
sess such advantage, we performed gene-list-based classifi-
cation procedure in a counterpart way to our module-
based classification. Signature genes were the selected
differentially expressed genes in HCC metastatic vs. non-
metastatic samples, with the Student t-test Benjamini-
Hochberg adjusted p value < 0.001, and further ranked by
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the method of minimum redundancy and maximum rele-
vance(MRMR) [19](Additional File 1), which resulted in a
list of 349 ranked candidate genes. Same number of genes
as in the cumulative-module classifier were picked with
priority from the ranked gene list to compose the single-
module classifier or perform metastasis classification and
the performance was evaluated by LOOCV. Our results
showed, there existed no significant difference of ACC or
MCC between the top 20 single-module-classifiers and
counterpart gene-list-classifiers (two sided t test p value >
0.5) (Additional File 3). However, when combining mod-
ules (even just two) the cumulative-module classifier
achieved consistently better performance than the classify-
ing models of corresponding number of signature genes
(Additional Figure 2, Additional File 3).

The functional regulatory landscape of the key

regulatory modules for HCC metastasis

According to the approach of identifying key regulatory
modules predictive of metastasis sub-statuses, these mod-
ules possess regulatory patterns which were disturbed in
tumors with metastasis(either disappeared or appeared).
To investigate the disturbed pathways of these NM and M
modules, we conducted enrichment analysis on genes
from each of the key regulatory modules with all non-
metabolic KEGG resource containing gene regulatory and
signaling pathways. It turned out that only 6 modules
(headed by 6 regulators) out of the 17 were significantly
enriched in 28 non-metabolic pathways (Table 3). NM key
modules(FOXO3_NM, TP53_NM) were enriched mostly
in various cancer pathways and several cancer related pro-
cesses such as cell cycle and apoptosis; M key modules
(hsa_miR_16_M, has_let_7e_M, has_miR_30a_M,
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Matthew correlation coefficient(MCC). Performance of classifiers whose number of “genes” within 300 are showed. One dot on a line represents
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Table 2 Full list of 17 regulatory modules predictive of HCC metastasis.

Module name Regulator Targets
hsa_miR_326_M hsa-miR-326 ARHGDIA, CEP250, MYOS6, TYR, PWP2, RCBTB2, POLR3F
hsa_miR_323_3p_M  hsa-miR-323-3p BCLAF1, SUMO1, TMBIM6, FAM168B
hsa_miR_16_M hsa-miR-16 NFATC3, ETNK1, BMX, NCOR2, POLR3F
hsa_let_7e_M hsa-let-7e CLP1, NGF
FOXO3_M FOXO03 MICAL1, SAMDS, FUBP3, ATXN10, ADAM11, RAB5C, MRPS24, DPAGT1, GPS1, SNRPC, SUMO1, TWF1, SARTA,
PICALM, TXNDC5, HEXIM2, TRIP12, ZDHHC15, SEMA4G, EFHD2
hsa_miR_22_M hsa-miR-22 SLC6A1, SLC35A4
hsa_miR_326_NM hsa-miR-326 MTERFD2, ARHGDIA, PCSK4, CEP250, PTRF, MYO6, STEGALNACE
hsa_miR_204_M hsa-miR-204 CHDS5, ATF2, POU2F2, TOMM70A, WDR26, SPOP, FAM168B, PLAA, WASF2, SRXN1
POU2F2_M POU2F2 SPIB, C200RF43, SUCNRI1, PTRF
NFYB_M NFYB NTN4, CACNG5, C120RF10, TUBATB, CALB2, RGMA, APOC3, PGD, NDUFV1, CHDH, FBX0O24, TCTN2
hsa_miR_30a_M hsa-miR-30a CREBT, PAWR, NEDD4, RRAS2, VPS26B, TBC1D2B, HTR4, ACAP2, ZFAND5, SPAGY, MICALT, ATG5
hsa_miR_7_M hsa-miR-7 PDCD2, POLR2E, NF2, FAM168B, MEGF9
CUX1_NM CUX1 RUNX1, IFITM2, MARCHS5, GPR21, RPL35, TNFRSF10B, CFP, SDHAF2, NUP62CL, YARS, NAGK, GRAMD1A,
PLXNB2, BCL2L13, METTLT1A, MARK3, ITM2A, HIP1R, BSG
FOXO3_NM FOXO03 MAFF, LEPROT, MICALT1, PSME1, SAMDS, FUBP3, ATXN10
STAT1_NM STAT1 MYBL1, MAFF, POLAT, EXOG, PGM1, ZDHHC4, WDR24, AMFR, RAD52, TMEM208, MRPL34, GCHFR,
ANKRD30A, TRO, LDHAL6A, SERPINGT, RNASE4, ARPC5L, SRSF3, CD248
TP53_NM TP53 ANKRD52, SLC25A20, PGM1, C1QTNF4, PKDCC
STAT1_M STATI1 WDR24, RAD52, GCHFR

NM indicates the existence of the module in non-metastatic HCC gene regulatory network, M indicates the existence of the module in metastatic HCC gene

regulatory network.

STAT1_M) were mostly enriched in signaling pathways
related to tumor progression. In order to illustrate a full
functional regulatory landscape in the context of HCC
metastasis, we merged the topology structure of the 17-
module classifier and the enriched 28 non-metabolic
KEGG pathways (Figure 4A). The graph structure of
KEGG pathways embodied by gene(protein)-gene(protein)
interactions was retrieved by the R/Bioconductor package
KEGGgraph. In this way, individual key regulators and its
module can be zoomed in to see in detail the regulatory
pattern transition between non-metastatic status to meta-
static status.

Key miRNA regulators from the functional landscape of
HCC metastasis

Out of 17 key classifying modules predictive of metastasis,
six were enriched in KEGG non-metabolic pathways:
FOXO3_NM, TP53_NM, STAT1_M, hsa_miR_16_M,
has_let_7e_M, has_miR_30a_M. Based on the hypothesis
that miRNAs might actively participate in the tumor pro-
gression and metastasis process and act as key roles, we
further focused on the regulatory patterns of the three
modules headed by miRNAs, which were zoomed in from
the regulatory landscape constructed above.

MiR-30a. The module led by miR-30a in the metastatic
network shows inextricable links to various cancer-related
pathways and some other important regulators (Figure 4B).
EP300 and CREBBP, regulated by way of miR-30a and
CREBI, are highly related transcriptional co-activators

possessing histone acetyltransferase activity and were
known to be involved in the survival and invasion pathways
of prostate cancer [19]. Functions of TP53 and STAT1
might be modulated through acetylation by CREBBP/
EP300. Meanwhile, NEDD4, another target of miR-30a, by
further targeting EGFR, might interfere with key cellular
signaling pathways. According to a previous report, miR-
30a was reported to inhibit epithelial-to-mesenchymal
transition in non-small cell lung cancer [20]. The exact
role miR-30a might play in HCC metastasis requires more
exploration.

MiR-16. MiR-16 targets human nuclear co-repressor 2
(NCOR?2) in the metastatic network. NCOR?2 is a tran-
scriptional co-repressor linked to Notch (Figure 4C).
According to previous reports, Notch signaling cascade
was regarded as anti-proliferative rather than oncogenic in
hepatocellular carcinoma [21,22], so if miR-16 repressed
Notch it might result in more aggressive HCC that would
lead to metastasis.

Let-7e and miR-204. In tumor with later metastasis, let-
7e targets nerve growth factor (NGF), whose deprivation
was supposed to induce apoptosis [23]. Upstream let-7e is
ATF2 and miR-204 (Figure 4D). Because we only per-
formed the first-step targets enrichment in KEGG path-
ways, miR-204 was not among the six key regulators
whose targets showed pathway enrichment, yet it was one
of the heading regulators of 17 key regulatory modules.
Besides, referring to the topology of our HCC metastatic
network, miR-204 is a bottleneck with the 7th highest
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Table 3 Enriched KEGG non-metabolic pathways of the
17 key regulatory modules.

Module name KEGG pathway P value
FOXO3_NM 03050~Proteasome 0.0342
05213~Endometrial cancer 0.0213
05223~Non-small cell lung cancer 0.0221
TP53_NM 04110~Cell cycle 0.039
04115~p53 signaling pathway 00212
04210~Apoptosis 0.027
04310~Wnt signaling pathway 0.0459
04722~Neurotrophin signaling pathway 0.0384
05014~Amyotrophic lateral sclerosis (ALS)  0.0163
05210~Colorectal cancer 0.0191
05212~Pancreatic cancer 0.0215
05213~Endometrial cancer 0.016
05214~Glioma 0.02
05215~Prostate cancer 0.0273
05216~Thyroid cancer 0.009
05217~Basal cell carcinoma 0.0169
05218~Melanoma 0.0218
05219~Bladder cancer 0.013
05220~Chronic myeloid leukemia 0.0224
05222~Small cell lung cancer 0.0258
05223~Non-small cell lung cancer 0.0166
hsa_miR_16_M 04330~Notch signaling pathway 0.024
04370~VEGF signaling pathway 0.0386
04662~B cell receptor signaling pathway — 0.0381
hsa_let_7e_M 04210~Apoptosis 0.0181
04722~Neurotrophin signaling pathway 0.0258
hsa_miR_30a_M 04140~Regulation of autophagy 0.0425
04144~Endocytosis 0.0264
STAT1T_M 03440~Homologous recombination 0.0086
04062~Chemokine signaling pathway 0.0385
04620~Toll-like receptor signaling pathway  0.0209
04630~Jak-STAT signaling pathway 0.0317
05212~Pancreatic cancer 0.0144

One-sided Fisher's Exact Test was used to test whether the genes in a module
were significantly enriched in any KEGG non-metabolic pathways. Six modules
(FOXO3_NM, TP53_NM, hsa_miR_16_M, hsa_miR_30a_M, hsa_let_7e_M,
STAT1_M) of which the resultant p values less than 0.05 are included in this
table.

betweenness, and two of miR-204-involved edges rank
into the top 10 list of edge betweenness(Additional File 3).
Therefore we may hypothesize that the important role of
let-7e regulation was driven by its upstream regulator
miR-204. MiR-204 represses the expression of its target
ATEF2, blocking its activation to downstream target let-7e.
The lack of let-7e may release NGF deprivation and there-
fore inhibit apoptosis, leading to tumor aggression and
HCC metastasis. Indeed miR-204 was previously reported
to regulate mesenchymal progenitor cell differentiation
[24]and to be related to head and neck tumor metastasis
[25]. Therefore we list both let-7e and its upstream miR-
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204 to be key regulatory miRNAs that might relate to
HCC metastasis.

Prognosis prediction by the HCC metastasis classifying
modules

With the 17 key regulatory modules, all the HCC patients
could be classified into two groups: without or with
venous metastasis. To investigate the survival outcomes of
these two groups, Kaplan-Meier analysis was performed,
and the survival difference between the two groups was
evaluated by log-rank test (p = 0.01) (Figure 3B). It turned
out that the predicted NM group correlated significantly
with a longer overall survival, whereas the M group corre-
lated significantly with a shorter one. The difference of
clinical characteristics between predicted groups of venous
metastasis were also investigated (Table 4). BCLC stage,
AFP level, TNM stage, each showed significant difference
between these two groups. As we know, AFP is a common
critical index in HCC progression, and BCLC and TNM
stages reflect the progression stage of hepatocellular carci-
noma. These results suggested that the predicted HCC
subgroups of venous metastasis might represent distinct
prognosis and clinical stages, which on the other hand
subordinate the rational performance of the identified 17
key regulatory modules.

Next we scanned the association of each module to clin-
ical features using GlobalAncova (Figure 5). Among the
clinical parameters, AFP related with most modules, fol-
lowed by another clinical parameter, ALT, and then BCLC
stage, TNM stage and Child-Pugh class. To be noted, the
three modules led by the key regulatory miRNAs identified
above (miR-16, miR-30a, miR-204/let-7¢) were all closely
associated with AFP and ALT. Moreover, hsa_miR_16 M
was simultaneously related with the most number of clini-
cal characteristics (AFP, ALT, and 5 cancer staging
indexes), which further suggested that miR-16 and its tar-
gets might correlate with invasive tumor cell behavior.

Discussion

By utilizing both sequence information and parallel
miRNA and mRNA expression data on the same cohort of
HBYV related HCC patients, we constructed gene regulatory
networks combining TF and miRNA regulation and speci-
fic for HCC without or with metastasis. Based on our com-
binatorial differential networks, global properties of the
gene regulatory patterns in different metastasis subgroups
were analyzed. TFs accounted for the main part of regula-
tion, miRNAs for the minor part of regulation; miRNAs
played a more active role in the metastatic network. Then
differential regulatory modules discriminative of the meta-
static status were extracted, and module-based classifier for
metastasis prediction was constructed. Module-based clas-
sifier achieved better classification performance than the
differential gene list-based classifiers. Furthermore, a few
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Figure 4 Differential regulatory network and key miRNA regulators of HCC metastasis. (A). Differential regulatory network of the 17
classifying modules and their enriched pathways. The green edges represent edges whose CLR weights are larger in network of non-metastasis,
while the orange ones represent edges whose weights are larger in network of metastasis. The color and shape of the nodes represent the type
of “genes™: TF in green rectangle, miRNA in red triangle, and gene in blue eclipse. Six regulators of which modules were enriched in KEGG non-
metabolic pathways are highlighted in nodes with larger size and yellow border (hsa-miR-16, hsa-miR-30a, hsa-let-7e, STAT1, TP53, FOXO3). The
graph structure of KEGG pathways embodied by gene(protein)-gene(protein) interactions was retrieved by the R package KEGGgraph. (B).
Differential regulatory network of miR-30a. (C). Differential regulatory network of miR-16. (D). Differential regulatory network of let-7e/miR-204.

novel potential metastasis-related key miRNA regulators
were proposed, such as miR-16, miR-30a, and let-7e/miR-
204. Biological implications and differential regulatory pat-
terns of key miRNAs were examined through functional
regulatory landscape. Survival analysis and clinical charac-
teristics association were conducted to support the impor-
tance of the classifying modules and the key regulators.

It is generally conceived that in transcriptional regula-
tion TFs play the controlling roles and miRNAs make aux-
iliary contributions [13]. In our work, we concordantly got

that TFs made up the main part of nodes and edges in
HCC networks without or with metastasis, and miRNAs
participated in fewer regulations than TFs. However, we
also found that miRNAs showed an increased amount of
regulations in the metastatic network. Judged by the basic
topological properties such as degree, betweenness, and
edge betweenness (Additional File 3), most hubs and bot-
tlenecks in both networks were TFs, but one miRNA, hsa-
miR-204, was listed as the 7th bottleneck in the metastasis
network according to its betweenness. All the top 10
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Table 4 Comparison of clinical characteristics between predicted subgroups of venous metastasis
Predicted NM Predicted M P value
Patient cohort (n = 198) n=137 n =6l
Gender(male/female) 121/16 53/8 0.9601
Age(yr, mean + SD) 4999 + 11.22 50.15 £ 954 0.8235
Number of nodule(1/2/3/4) 117/18/2 55/4/1/1 0.2603
Tumor capsule(complete/none) 53/84 24/37 0.9441
Cirrhosis(no/yes) 8/129 5/56 0.7584
AFP(log2-transformed, mean + SD) 6.79 + 3.96 8.08 + 456 0.0395
TB(umol/L, median(25-75%)) 15.4(12.1-20.2) 17.4(11.4-22.1) 0.2954
ALT(w/L, median(25-75%)) 43(31-61) 49(32-66) 0.3929
OKUDA stage(0/1) 119/18 49/12 03325
CLIP stage(0/1/2/3/4) 64/49/22/1/1 28/15/12/4/2 0.0509
BCLC stage(0/A/B/C) 15/103/14/5 7/35/7/12 0.0022
TNM stage(l/11/11) 65/57/15 23/23/15 0.0441
Child-Pugh class(A/B) 132/5 57/4 0.5910

P value: Comparison between clinic pathological indicators of non-metastatic and metastatic groups was conducted using chi-square test for discrete variables

and Wilcoxon test for continuous variables.

edges with the largest edge betweenness involved only TFs
in the non-metastasis network, but 4 out of 10 top edge-
betweenness edges in the metastasis network involved
miRNAs. Besides, TFs in the metastatic network tend to
regulate genes by way of miRNAs (Figure 2C). It might be
implied from our results that the process of tumor pro-
gression and metastasis is complicated and delicate there-
fore it takes up more auxiliary regulatory functions
performed by miRNAs, in order to facilitate broader regu-
lations by TFs.

The 17 key classifying modules identified in this work
were not merely sub-networks, but ‘regulatory’ modules,
each defined as a regulator and its first layer target genes.
All the classifying regulatory modules possessed distinct
regulatory patterns in either non-metastatic or metastatic
subgroup. Since Chuang et.al proposed a pivot method for
network-based classification in 2007 [11], various alterna-
tive methods based on network modules have been
reported [26,27]. The 17 key regulatory modules in this
work could nicely classify patients into different metastasis
sub-groups. Six modules’ regulatory targets could be
enriched in KEGG non-metabolic pathways, allowing an
even clearer elucidation of their functional regulation pat-
terns. It is conceivable that such differential regulatory
modules discriminative of metastasis sub-groups might
better imply the mechanisms of tumor progression and
invasion. The regulatory landscape we drew for these
modules could be zoomed in to check in detail the possi-
ble roles of each interested module or regulator played in
HCC metastasis. We exemplified such analyses by looking
at three microRNA modules whose target gene members
were enriched in KEGG pathways: miR-30a, miR-16 and
let-7e modules. Let-7e module is connected to miR-204,
which is another key regulator in metastatic network.

Metastasis is known to be a sign of higher grade of
malignance and undermine survival time. The fact that
the predicted metastatic group had a significantly worse
prognosis in survival analysis justified the classification
performance of the selected 17 modules. The predicted
metastatic group patients also showed worse BCLC sta-
ging, TNM staging, and higher alpha-fetoprotein(AFP)
values compared to non-metastatic group. Increased AFP
value is a long-established factor of HCC progression.
Furthermore, modules headed by the three key miRNAs
were associated with both AFP and alanine aminotrans-
ferase(ALT), implying that ALT value might also be clo-
sely related to venous metastasis in HCC. Module
hsa_miR_16_M was simultaneously significantly asso-
ciated with five cancer staging systems, which further
supported the key role of miR-16 in HCC metastasis.

Compared with our preliminary work in 2009 [16],
improvements were achieved not only in biological inter-
pretation but also in network inference algorithm. The lin-
ear regression modeling approach we used in 2009 had a
shortcoming in that it attempted to determine the regula-
tion structure for each target gene independently, while it
is well known that genes that share the same expression
pattern are likely to be involved in the same regulatory
process, and therefore share the same (or at least a similar)
set of regulators. In this work, we used mutual information
metric that detects statistical dependence between two
variables with no assumption of linearity of the depen-
dence. Among the various gene network inference algo-
rithms based on mutual information developed by
different groups such as RN [28], ARACNE [29], CLR
[30], MRNET [31], CLR resulted in the highest true posi-
tive rate compared with the others according to a previous
report [32]. Therefore CLR algorithm was selected for
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network inference for our work, as we required all the
edges in our network to be also sequence-matched besides
expression-correlated, reducing the false positive rate of
expression-inferred edges.

The workflow in our study is not restricted in this
study alone. According to the schematic illustration
(Figure 1), researchers may conduct similar analysis
given the data (depicted as rectangle) available for the
context. In practical terms, if parallel miRNA and
mRNA expression profiles are available on the same
cohort of patients with known disease phenotypes, the

workflow in this study can be extended to other biome-
dical problem or cancer context by integrating data
from public databases or literatures. The major pro-
grams in the workflow were either self-written scripts
with little programming complexity or open-source R/
Bioconductor packages which were confirmed to be use-
ful and efficient in this study. As to compute runtime
and complexity, the most time-consuming step in our
workflow was in the network inference, because the
CLR algorithm has a complexity in O(#2p2) since all
pairwise interactions are considered [33]. It computes
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the mutual information(MI) matrix first, transforms the
MI matrix into scores that take into account the empiri-
cal distribution of the MI values, and then applies a
threshold. When the expression values of genes are trea-
ted as continuous random variables and the MI is esti-
mated by kernel methods, computing the pairwise MI
can be computationally expensive. In our study, dimen-
sion reduction was conducted(filtering of untrustworthy
pairs) before the CLR network inference so as to cut
down the computational complexity and complete the
computation within the limits of system memory.

In summary, in this work we demonstrated an integra-
tive approach to conduct differential combinatorial regu-
latory network analysis in the specific context of HCC
metastasis. Through this systematic analysis, we proposed
changes of global regulatory patterns in HCC progres-
sion, and identified some key miRNA regulators contrib-
uted to HCC metastasis whose regulatory patterns and
biological implication were also deduced. Before this,
although multi-perspective data have been integrated
into HCC-related analyses [6-8], no peer works providing
global landscape of combinatorial gene regulatory net-
work or identifying module classifiers for risk prediction
has ever been reported in the specific context of venous
metastasis of HBV-HCC. Our results proposed possible
transcriptional regulatory patterns underlying the differ-
ent metastatic subgroups of HCC. Meanwhile, miR-30a
and miR-16, let-7e/miR-204, which had not been taken
as granted to be related with metastasis, especially in
HCC, stood out from our results, which may merit
further experimental validation. Our results might facili-
tate the understanding of the molecular regulatory
mechanisms and role of miRNAs in HCC metastasis. The
workflow in this study can also be applied in similar con-
text of cancer research or extended to other topics.

Conclusions

In this work we demonstrated an integrative approach to
conduct differential combinatorial regulatory network
analysis in the specific context of HCC metastasis.
Through this systematic analysis, we proposed changes of
global regulatory patterns in HCC progression, and iden-
tified some key miRNA regulators contributed to HCC
metastasis whose regulatory patterns and biological
implication were also deduced. Our results might facili-
tate the understanding of the molecular regulatory
mechanisms and role of miRNAs in HCC metastasis. The
workflow in this study can also be applied in similar con-
text of cancer research or extended to other topics.

Methods

Datasets and patients

mRNA and miRNA expression microarray data on the
same cohort of HBV-infected HCC patients who
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underwent radical resection in Zhongshan Hospital were
used for integration in this study. Both datasets (GSE5975
and GSE6857) were downloaded from the Gene Expres-
sion Omnibus (GEO) database http://www.ncbi.nlm.nih.
gov/geo/. The mRNA signal intensities were retrieved
from GSE5975, which was generated using the NCI/ATC
Hs-OperonV2 array. The miRNA expression levels were
obtained from GSE6857, which was generated using OSU-
CCC MicroRNA Microarray Version 2.0. Status of venous
metastasis of patients were collected from GSE6857.
Other clinical pathologic characteristics and survival time
of patients were provided by Zhongshan Hospital.

Data preprocessing for combined expression

Microarray data preprocessing was conducted on each
dataset separately, and then both mRNA profiles and
miRNA profiles were combined to prepare the combined
expression profiles among the 198 patients, 150 non-
metastatic and 48 metastatic. After quantile normaliza-
tion across arrays on the combined expression profiles,
irrelevant genes and mature-miRs within the 5% smallest
standard deviations of tumor/nontumor profiles between
metastasis and non-metastasis samples were filtered.
Finally, the combined mRNA and miRNA expression
profiles of 198 patients included 12434 genes and 132
mature-miRs altogether. More detailed information for
data processing is available in Additional File 1.

Candidate sequence-matched relationships between TFs,
miRNAs, and genes

In the following data selection, a gene list of 1318 pre-
viously defined TFs [34] from a previous report were
regarded as TFs, while others as non-TF genes.

MiRNA-gene. Candidate miRNA-target relationships
were downloaded from miRBase Target Version 5.0, Tar-
getScanHuman Version 5.1, and miRDB Version 3.0, each
was based on the predicting algorithm miRanda [35],
TargetScan [36], and miRTarget2 [37], respectively. The
predicted miRNA-gene relationships with accordance in at
least two algorithms were retained in our study.

TF-gene. A set of predicted TF-gene relationships were
compiled with methods mainly described in our previous
work [16], where TF-TFBS(TF binding sites) relationships
and TFBS-gene relationships were first calculated, based
on which TF-gene relationships were linked. The differ-
ence between the method in this work and our previous
work was that the promoter region of each gene in our
work was defined as 1k bp up- and down- stream (instead
of 1 kb upstream to 0.5 kb downstream of the transcription
start site (TSS) according to the ENCODE project [38].

TE-miRNA. TFBSs mapped to the regions upstream of
miRNA primary transcript TSSs were downloaded from
miRGen 2.0 [39]. Precursor-miRs were mapped to
mature-miRs according to miRBase database. Then the
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candidate TF-miRNA relationships were generated
based on the above TF-TFBS relationships and TFBS-
miRNA relationships.

The statistics of the final set of 327711 regulatory rela-
tionships based on sequence-matched in human between
TFs, miRNAs, and genes were displayed in Additional
File 3.

Fisher Exact test to compare constructed networks with
HCC-related and HCC-metastasis-related genes
HCC-related genes were collected from HCCdb [40],
EHCO-II [41], and HCCNet [42]. The union set of 5088
genes from these three databases was taken as the HCC-
related genes. HCC-metastasis-related genes were col-
lected using the text-mining tool, SciMiner [43]. (“carci-
noma, hepatocellular’[MeSH Terms] OR hepatocellular
carcinoma[Text Word]) AND (“liver neoplasms”[MeSH
Terms] OR liver cancer[Text Word]) AND ("neoplasm
metastasis"[MeSH Terms] OR metastasis[Text Word])
AND metastatic[Text Word]) was set as the query string
for full text mining. The resultant 322 genes each cited by
at least 2 papers were regarded as the HCC-metastasis-
related genes in this study. All the collected HCC-related
genes and HCC-metastasis-related genes are listed in the
Additional File 4.

One sided Fisher’s Exact Test was performed to examine
whether genes in our constructed HCC non-metastatic
and metastatic networks were significantly overlapped
with the collected HCC- or HCC-metastasis- related genes
from databases and literatures. All the 12434 genes in the
combined expression profiles were used as the set of uni-
verse genes in the test.

Network construction

The combined expression profile was divided into two
sub-profiles by sample labels, namely profile of non-
metastasis and profile of metastasis, so as to construct
gene regulatory network of HCC without and with
metastasis respectively.

We assumed that sequence-matched pairs were more
possible to be real interaction pairs than sequence-
unmatched pairs, and that real interaction pairs were
more possible to be correlated in expression than random
pairs. In order to construct the network as credible as pos-
sible, we filtered out untrustworthy pairs before expres-
sion-based network inference. The candidate 327711
sequence-matched relationships genome-wide were first
reduced to 78310 non-self-looping pairs whose both nodes
were genes and miRNAs with expression in the combined
profiles. Then the absolute spearman correlation of the
expression was calculated between each of these 78310
sequence-matched pairs, and the mean absolute spearman
correlations of the expression were also calculated
between randomly sampled 78310 pairs from the
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combined expression profile for 100 random times. Pairs
with the absolute spearman correlation higher than 95% of
random pairs were retained as candidate pairs, which were
processed to infer the transcriptional interactions.

Based on the two sub-profiles respectively, based on all
nodes from the above remaining pairs, Context Likelihood
of Relatedness (CLR) [30] was then applied as the network
inference algorithm to identify transcriptional interactions
using an R/Bioconductor package minet with default para-
meters. The CLR algorithm returned a non-negative
matrix which was the weighted adjacency matrix of the
network whose values represented the edge weights of the
network. We set the cutoff for edge weights as 1, and
edges whose edge weight below 1 were thus removed,
since edges with little weight were considered as marginal
relationships and might be noise.

CLR uses mutual information as a metric of similarity
between the expression profiles of two genes. Formally,
the mutual information for two discrete random vari-
ables X and Y is defined as:

p(xi, y5)

1(X:Y) = ) plxi, ) log p(xi)p(y;)

ij

1)

where p(x;, ) is the joint probability distribution func-
tion of X and ¥, and p(x;) and p(y,) are the marginal prob-
ability distribution functions of X and Y respectively. In
the case of continuous random variables, the summations
over X and Y are replaced by integrals. For genes, X and Y
represent a transcription factor and its potential target
gene, and x; and y; represent particular expression levels
(Further description in Additional File 1).

Classification of metastasis based on gene regulatory
modules

The composition of our ‘modules’ was defined as one spe-
cific regulator and all of its first-layer targets (more than
one), and was named as Regulator_Status. Regulator was
the name of the regulator, i.e. a TF or a miRNA. Status
represented the source network of the module; it could be
from the non-metastatic or metastatic network. All the
modules in our work included targets only one step down
from the regulator such that the regulatory attributes of
each module was explicit to read.

Differential modules were first selected before identify-
ing predictive classifying modules of metastasis sub-sta-
tuses. As to edges, the non-discriminative edges were
excluded from the networks. For all the edges appearing
in any of the two networks, we calculated the absolute
value of the edge weight difference (The edge weights
were directly carried on from the CLR results. The edge
weight of a non-existing edge was regarded as zero.)
between the two sub-statuses. The edges whose absolute
edge weight difference were within the lowest 25%
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among all the edges were regarded as non-discriminative
ones and were filtered out. As to nodes, GlobalAncova
[44] test was performed on each module to measure the
discriminance of nodes in that module between the
metastasis statuses, which was implemented using R/Bio-
conductor package GlobalAncova (Additional File 1). Sig-
nificant differential modules with Benjamini-Hochberg
adjusted p < 0.001 were taken as candidate predictive
modules, which were sorted by their corresponding p
values from smallest to the largest. Finally, these ranked
differential modules were proceeded to classification.

A multivariate algorithm, recursive partitioning, was
chosen as the classification model [45]. It creates a deci-
sion tree that strives to correctly classify members of the
patients based on several dichotomous dependent vari-
ables, which is simple and intuitive (Further description in
Additional File 1). Recursive partitioning has been success-
fully applied in other cancer biology context to identify
multi-gene biomarkers or signatures [46-48]. In this study,
the classification procedure was performed using R/Bio-
conductor package rpart with default setting of para-
meters. The predicted group and the prediction possibility
for each individual were returned at each performance
using this program. For cumulative modules as one classi-
fier (a list of modules), the final predicted label for each
individual was determined as the label with the larger
overall predicted probability by modules in the classifier;
for single-module as one classifier (a list of genes), the
final predicted label for each individual was determined as
the label with the larger predicted probability. Leave-one-
out cross-validation (LOOCYV) was used to evaluate the
classification performance.

Clinical association and survival analysis

The survival analysis was performed to compare patient
overall survival. Kaplan-Meier estimation was calculated
to plot the survival curve. Log-rank test was used to com-
pare two survival distributions and generate the p value.
Comparison between clinical pathological indicators was
conducted using chi-square test for discrete variable and
Wilcoxon test for continuous variables. The association
between clinical pathologic characteristics and classifying
modules was examined using GlobalAnova test by R/Bio-
conductor package GlobalAncova (Additional File 1).

Additional material

Additional file 3: Supplementary Tables. Additional Table 1 -
Performance of various classifiers. Additional Table 2 - Statistics about
average number of targets regulated by TFs and miRNAs. Additional
Table 3 - Basic topological properties of the HCC non-metastatic and
metastatic networks. Additional Table 4 - Statistics of the total set of
sequence-matched pairs.

Additional file 1: Supplementary Methods.
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Additional file 4: Collection of HCC-related genes and HCC-
metastasis-related genes. Additional Table 5 - HCC-related genes.
Additional Table 6 - HCC-metastasis-related genes.

Additional file 2: Performance comparison between module-based
and gene-list-based classifiers.

Acknowledgements

We thank Qiang Zeng for her suggestions on figures and tables. This work
was funded by Key Infectious Disease Project 20122X10002012-014; National
Key Basic Research Program 2010CB912702 and 2011CB910204; National
High Technology Project 2012AA020201; and National Natural Science
Foundation of China 31070752.

This article has been published as part of BMC Genomics Volume 13
Supplement 8, 2012: Proceedings of The International Conference on
Intelligent Biology and Medicine (ICIBM): Genomics. The full contents of the
supplement are available online at http://www.biomedcentral.com/
bmcgenomics/supplements/13/58

Author details

'School of Life Science and Technology, Tongji University, Shanghai 200092,
PR.China. “Shanghai Center for Bioinformation Technology, Shanghai
200235, P.RChina. *Key Lab of Systems Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R.
China. “Liver Cancer Institute and Zhongshan Hospital, Institutes of
Biomedical Science, Fudan University, Shanghai 200032, P.R.China.

Authors’ contributions

LYZ, YXL and LX conceived and designed the project. LYZ performed major
part of the designed study. JY participated in clinical feature association
analysis. TH participated in network analysis. FH and WLY participated in
selection of HCC metastasis related genes. HLJ, QZD and LXQ provided
clinical follow-up information of the patient cohort. LYZ wrote the
manuscript. LX revised the manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 17 December 2012

References

1. Budhu A, Wang XW: Molecular Signatures of Hepatocellular Carcinoma
Metastasis. In Molecular Genetics of Liver Neoplasia. New York, NY: Springer
New YorkWang XW, Grisham JW, Thorgeirsson SS 2010:241-257.

2. Song P-M, Zhang Y, He Y-F, Bao H-M, Luo J-H, Liu Y-K, Yang P-Y, Chen X:
Bioinformatics analysis of metastasis-related proteins in hepatocellular
carcinoma. World J Gastroenterol 2008, 14:5816-5822.

3. Burchard J, Zhang C, Liu AM, Poon RTP, Lee NPY, Wong K-F, Sham PC,
Lam BY, Ferguson MD, Tokiwa G, Smith R, Leeson B, Beard R, Lamb JR,
Lim L, Mao M, Dai H, Luk JM: microRNA-122 as a regulator of
mitochondrial metabolic gene network in hepatocellular carcinoma. Mol
Syst Biol 2010, 6:402.

4. Shi Z Derow C, Zhang B: Co-expression module analysis reveals biological
processes, genomic gain, and regulatory mechanisms associated with
breast cancer progression. BMC Systems Biology 2010, 4:74.

5 LeeY, Yang X, Huang Y, Fan H, Zhang Q, Wu Y, Li J, Hasina R, Cheng C,
Lingen MW, Gerstein MB, Weichselbaum RR, Xing HR, Lussier YA: Network
Modeling Identifies Molecular Functions Targeted by miR-204 to
Suppress Head and Neck Tumor Metastasis. PLoS Comput Biol 2010, 6:
€1000730.

6. Villanueva A, Hoshida Y, Battiston C, Tovar V, Sia D, Alsinet C, Cornella H,
Liberzon A, Kobayashi M, Kumada H, Thung SN, Bruix J, Newell P, April C,
Fan J-B, Roayaie S, Mazzaferro V, Schwartz ME, Llovet JM: Combining
Clinical, Pathology, and Gene Expression Data to Predict Recurrence of
Hepatocellular Carcinoma. Gastroenterology 2011, 140:1501-1512.e2.

7. Zhang Y, Wang S, Li D, Zhnag J, Gu D, Zhu Y, He F: A Systems Biology-
Based Classifier for Hepatocellular Carcinoma Diagnosis. PLoS ONE 2011,
6:€22426.


http://www.biomedcentral.com/content/supplementary/1471-2164-13-S8-S14-S3.rar
http://www.biomedcentral.com/content/supplementary/1471-2164-13-S8-S14-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-13-S8-S14-S4.rar
http://www.biomedcentral.com/content/supplementary/1471-2164-13-S8-S14-S2.pdf
http://www.biomedcentral.com/bmcgenomics/supplements/13/S8
http://www.biomedcentral.com/bmcgenomics/supplements/13/S8
http://www.ncbi.nlm.nih.gov/pubmed/18855979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18855979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20739924?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20739924?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20507583?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20507583?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20507583?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20369013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20369013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20369013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21320499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21320499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21320499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21829460?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21829460?dopt=Abstract

Zeng et al. BMIC Genomics 2012, 13(Suppl 8):514
http://www.biomedcentral.com/1471-2164/13/5S8/S14

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Zheng S, Tansey WP, Hiebert SW, Zhao Z: Integrative network analysis
identifies key genes and pathways in the progression of hepatitis C
virus induced hepatocellular carcinoma. BMC Med Genomics 2011, 4:62.
Bonnet E, Michoel T, Van de Peer Y: Prediction of a gene regulatory
network linked to prostate cancer from gene expression, microRNA and
clinical data. Bioinformatics 2010, 26:i638-i644.

Guo A-Y, Sun J, Jia P, Zhao Z: A Novel microRNA and transcription factor
mediated regulatory network in schizophrenia. BMC Systems Biology 2010,
4:10.

Chuang H-Y, Lee E, Liu Y-T, Lee D, Ideker T: Network-based classification
of breast cancer metastasis. Mol Syst Biol 2007, 3:140.

Li J, Lenferink AEG, Deng Y, Collins C, Cui Q, Purisima EO, O'Connor-
McCourt MD, Wang E: Identification of high-quality cancer prognostic
markers and metastasis network modules. Nat Commun 2010, 1:34.
Martinez N, Walhout A: The interplay between transcription factors and
microRNAs in genome-scale regulatory networks. Bioessays 2009,
31:435-445.

Martinez NJ, Ow MC, Barrasa MI, Hammell M, Sequerra R, Doucette-
Stamm L, Roth FP, Ambros VR, Walhout AJM: A C. elegans genome-scale
microRNA network contains composite feedback motifs with high flux
capacity. Genes Dev 2008, 22:2535-2549.

Arda HE, Walhout AJM: Gene-centered regulatory networks. Briefings in
Functional Genomics 2010, 9:4-12.

Tu K, Yu H, Hua Y-J, Li Y=Y, Liu L, Xie L, Li Y-X: Combinatorial network of
primary and secondary microRNA-driven regulatory mechanisms. Nucleic
Acids Research 2009, 37:5969-5980.

Ventura A, Jacks T: MicroRNAs and Cancer: Short RNAs Go a Long Way.
Cell 2009, 136:586-591.

Peng H, Long F, Ding C: Feature Selection Based on Mutual Information:
Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE
Transactions on Pattern Analysis and Machine Intelligence 2005, 27:1226-1238.
Santer FR, Hoschele PPS, Oh SJ, Erb HHH, Bouchal J, Cavarretta IT, Parson W,
Meyers DJ, Cole PA, Culig Z: Inhibition of the acetyltransferases p300 and
CBP reveals a targetable function for p300 in the survival and invasion
pathways of prostate cancer cell lines. Mol Cancer Ther 2011,
10:1644-1655.

Kumarswamy R, Mudduluru G, Ceppi P, Muppala S, Kozlowski M, Niklinski J,
Papotti M, Allgayer H: MicroRNA-30a inhibits epithelial-to-mesenchymal
transition by targeting Snai1 and is downregulated in non-small cell
lung cancer. International Journal of Cancer .

Wang Z, Li Y, Kong D, Ahmad A, Banerjee S, Sarkar FH: Cross-talk between
miRNA and Notch signaling pathways in tumor development and
progression. Cancer Letters 2010, 292:141-148.

Wang Z, Li Y, Kong D, Sarkar FH: The Role of Notch Signaling Pathway in
Epithelial-Mesenchymal Transition (EMT) During Development and
Tumor Aggressiveness. Curr Drug Targets 2010, 11:745-751.

Yao R, Cooper GM: Requirement for phosphatidylinositol-3 kinase in the
prevention of apoptosis by nerve growth factor. Science 1995,
267:2003-2006.

Huang J, Zhao L, Xing L, Chen D: MicroRNA-204 Regulates Runx2 Protein
Expression and Mesenchymal Progenitor Cell Differentiation. STEM CELLS
2010, 28:357-364.

Lee Y, Yang X, Huang Y, Fan H, Zhang Q, Wu Y, Li J, Hasina R, Cheng C,
Lingen MW, Gerstein MB, Weichselbaum RR, Xing HR, Lussier YA: Network
Modeling Identifies Molecular Functions Targeted by miR-204 to
Suppress Head and Neck Tumor Metastasis. PLoS Comput Biol 2010, 6:
€1000730.

Lee E, Chuang H-Y, Kim J-W, Ideker T, Lee D: Inferring Pathway Activity
toward Precise Disease Classification. PLoS Comput Biol 2008, 4:¢1000217.
Chowdhury SA, Nibbe RK, Chance MR, Koyutirk M: Subnetwork state
functions define dysregulated subnetworks in cancer. J Comput Biol 2011,
18:263-281.

Butte AJ, Kohane IS: Mutual information relevance networks: functional
genomic clustering using pairwise entropy measurements. Pac Symp
Biocomput 2000, 418-429.

Margolin AA, Nemenman |, Basso K, Wiggins C, Stolovitzky G, Dalla

Favera R, Califano A: ARACNE: an algorithm for the reconstruction of
gene regulatory networks in a mammalian cellular context. BMC
Bioinformatics 2006, 7(Suppl 1):S7.

Faith JJ, Hayete B, Thaden JT, Mogno |, Wierzbowski J, Cottarel G, Kasif S,
Collins JJ, Gardner TS: Large-Scale Mapping and Validation of Escherichia

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Page 14 of 14

coli Transcriptional Regulation from a Compendium of Expression
Profiles. PLoS Biol 2007, 5:¢8.

Meyer PE, Kontos K, Lafitte F, Bontempi G: Information-theoretic inference
of large transcriptional regulatory networks. EURASIP J Bioinform Syst Biol
2007, 79879.

Altay G, Emmert-Streib F: Revealing differences in gene network
inference algorithms on the network level by ensemble methods.
Bioinformatics 2010, 26:1738-1744.

Narendra V, Lytkin NI, Aliferis CF, Statnikov A: A comprehensive
assessment of methods for de-novo reverse-engineering of genome-
scale regulatory networks. Genomics 2011, 97:7-18.

Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM: A census of
human transcription factors: function, expression and evolution. Nat Rev
Genet 2009, 10:252-263.

Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase: tools for
microRNA genomics. Nucleic Acids Research 2007, 36:D154-D158.

Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by
adenosines, indicates that thousands of human genes are microRNA
targets. Cell 2005, 120:15-20.

Wang X: miRDB: A microRNA target prediction and functional annotation
database with a wiki interface. RNA 2008, 14:1012-1017.

Identification and analysis of functional elements in 1% of the human
genome by the ENCODE pilot project. Nature 2007, 447:799-816.

Alexiou P, Vergoulis T, Gleditzsch M, Prekas G, Dalamagas T, Megraw M,
Grosse |, Sellis T, Hatzigeorgiou AG: miRGen 2.0: a database of microRNA
genomic information and regulation. Nucleic Acids Research 2009, 38:
D137-D141.

Su W-H, Chao C-C, Yeh S-H, Chen D-S, Chen P-J, Jou Y-S: OncoDB.HCC: an
integrated oncogenomic database of hepatocellular carcinoma revealed
aberrant cancer target genes and loci. Nucleic Acids Research 2007, 35:
D727-D731.

Hsu C-N, Lai J-M, Liu C-H, Tseng H-H, Lin C-Y, Lin K-T, Yeh H-H, Sung T-Y,
Hsu W-L, Su L-J, Lee S-A, Chen C-H, Lee G-C, Lee D, Shiue Y-L, Yeh C-W,
Chang C-H, Kao C-Y, Huang C-Y: Detection of the inferred interaction
network in hepatocellular carcinoma from EHCO (Encyclopedia of
Hepatocellular Carcinoma genes Online). BMC Bioinformatics 2007, 8:66.
He B, Qiu X, Li P, Wang L, Lv Q, Shi T: HCCNet: an integrated network
database of hepatocellular carcinoma. Cell Res 2010, 20:732-734.

Hur J, Schuyler AD, States DJ, Feldman EL: SciMiner: web-based literature
mining tool for target identification and functional enrichment analysis.
Bioinformatics 2009, 25:838-840.

Hummel M, Meister R, Mansmann U: GlobalANCOVA: exploration and
assessment of gene group effects. Bioinformatics 2008, 24:78-85.

Zhang H, Yu C-Y, Singer B, Xiong M: Recursive Partitioning for Tumor
Classification with Gene Expression Microarray Data. PNAS 2001,
98:6730-6735.

Koziol JA, Zhang J-Y, Casiano CA, Peng X-X, Shi F-D, Feng AC, Chan EKL,
Tan EM: Recursive partitioning as an approach to selection of immune
markers for tumor diagnosis. Clin Cancer Res 2003, 9:5120-5126.

Chen H-Y, Yu S-L, Chen C-H, Chang G-C, Chen C-Y, Yuan A, Cheng C-L,
Wang C-H, Terng H-J, Kao S-F, Chan W-K, Li H-N, Liu C-C, Singh S, Chen WJ,
Chen JJW, Yang P-C: A five-gene signature and clinical outcome in non-
small-cell lung cancer. N Engl J Med 2007, 356:11-20.

Jeong Y, Xie Y, Xiao G, Behrens C, Girard L, Wistuba Il, Minna JD,
Mangelsdorf DJ: Nuclear Receptor Expression Defines a Set of Prognostic
Biomarkers for Lung Cancer. PLoS Med 2010, 7:e1000378.

doi:10.1186/1471-2164-13-S8-S14

Cite this article as: Zeng et al. Differential combinatorial regulatory
network analysis related to venous metastasis of hepatocellular
carcinoma. BMC Genomics 2012 13(Suppl 8):S14.



http://www.ncbi.nlm.nih.gov/pubmed/21824427?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21824427?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21824427?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20823333?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20823333?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20823333?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20156358?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20156358?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17940530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17940530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20975711?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20975711?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19274664?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19274664?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18794350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18794350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18794350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20008400?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19671526?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19671526?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19239879?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16119262?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16119262?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21709130?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21709130?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21709130?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20022691?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20022691?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20022691?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20041844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20041844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20041844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7701324?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7701324?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20039258?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20039258?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20369013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20369013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20369013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18989396?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18989396?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21385033?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21385033?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10902190?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10902190?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17254312?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17254312?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17214507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17214507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17214507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18354736?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18354736?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20501553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20501553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20951196?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20951196?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20951196?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19274049?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19274049?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17991681?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17991681?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15652477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15652477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15652477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18426918?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18426918?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19850714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19850714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17098932?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17098932?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17098932?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17326819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17326819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17326819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20479783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20479783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19188191?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19188191?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18024976?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18024976?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11381113?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11381113?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14613989?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14613989?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17202451?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17202451?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21179495?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21179495?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusion

	Introduction
	Results
	Overview of network statistics and validation of the non-metastatic and metastatic HCC networks
	Comparison of global regulatory patterns between non-metastatic and metastatic HCC networks
	Identification of key regulatory modules predictive of HCC metastasis
	Comparison of predictive ability of the cumulative modules to gene-list signatures
	The functional regulatory landscape of the key regulatory modules for HCC metastasis
	Key miRNA regulators from the functional landscape of HCC metastasis
	Prognosis prediction by the HCC metastasis classifying modules

	Discussion
	Conclusions
	Methods
	Datasets and patients
	Data preprocessing for combined expression
	Candidate sequence-matched relationships between TFs, miRNAs, and genes
	Fisher Exact test to compare constructed networks with HCC-related and HCC-metastasis-related genes
	Network construction
	Classification of metastasis based on gene regulatory modules
	Clinical association and survival analysis

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

