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Abstract

Background: Identifying the location of transcription factor bindings is crucial to understand transcriptional
regulation. Currently, Chromatin Immunoprecipitation followed with high-throughput Sequencing (ChIP-seq) is able
to locate the transcription factor binding sites (TFBSs) accurately in high throughput and it has become the gold-
standard method for TFBS finding experimentally. However, due to its high cost, it is impractical to apply the
method in a very large scale. Considering the large number of transcription factors, numerous cell types and
various conditions, computational methods are still very valuable to accurate TFBS identification.

Results: In this paper, we proposed a novel integrated TFBS prediction system, CTF, based on Conditional
Random Fields (CRFs). Integrating information from different sources, CTF was able to capture patterns of TFBSs
contained in different features (sequence, chromatin and etc) and predicted the TFBS locations with a high
accuracy. We compared CTF with several existing tools as well as the PWM baseline method on a dataset
generated by ChiIP-seq experiments (TFBSs of 13 transcription factors in mouse genome). Results showed that CTF
performed significantly better than existing methods tested.

Conclusions: CTF is a powerful tool to predict TFBSs by integrating high throughput data and different features. It
can be a useful complement to ChIP-seq and other experimental methods for TFBS identification and thus
improve our ability to investigate functional elements in post-genomic era.

Availability: CTF is freely available to academic users at: http://cbb.sjtu.edu.cn/~ccwei/pub/software/CTF/CTF.php

Introduction

Functional elements in genomes play important roles in
many biology processes. For example, enhancers, silencers,
and transcriptional factor binding sites (TFBSs) are
required in transcription. Thus, identifying functional ele-
ments in genomes is one of most important problems in
post-genomic era [1-3], which is essential to elucidate
gene regulation comprehensively. TFBS is one important
type of functional elements. However, it is very challenging
to locate the actual positions of TEBSs because they are
generally very short (10 ~ 20 bp) and highly degenerate.
Besides, only a small fraction of their patterns in a genome
are actually bounded by transcription factors [4-6].
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Recently, the advance of experimental technology greatly
expands our ability to detect the locations of TFBSs. ChIP-
seq (chromatin immunoprecipitation followed by mas-
sively parallel sequencing) [7] technology is utilized to find
out the binding motifs in a high accuracy and a high
throughput. ChIP-seq is becoming the gold-standard
method for TFBS identification. However, it has several
limitations: 1). the quality and source of the antibody
have a big impact on the result and it is hard to obtain
high quality antibodies for all TFs; 2). its resolution (about
300 bps) is too low [8] to locate TFBSs, which are only
about 20 bps; 3). Another major limitation is that ChIP-
seq could detect the binding sites of only one transcription
factor in one experiment and it is expensive. Although
recent study showed that it was possible to identify bind-
ing sites of more than one TFs using a single ChIP-seq
experiment [9], the cost is still prohibitively expensive to
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identify binding sites of many TFs in various cell types and
conditions. Thus, computational methods are required as
complementary means for TFBS identifying.

Efforts have been made to predict TFBSs computation-
ally by searching patterns of TFBSs in genome. Position
weight matrix (PWM) [10], which contains TFBS patterns
in sequence level, is the most widely used model to repre-
sent and identify TFBSs. However, since the motifs are
very short and typically degenerated, PWM alone is not
discriminative enough and will predict a large number of
false positives. Recently, various approaches have been
proposed to reduce false positives by integrating informa-
tion from other sources [11-14]. For example, histone
markers were shown to correlate with transcription factor
binding sites and were able to improve the accuracy signif-
icantly [13,15]. However, the co-occurrence of histone
markers was not considered in all these methods men-
tioned above. The co-occurrence of histone markers was
shown to reflect the state of chromatin and correlated
with the binding events of transcription factors[16].

In this paper, we present CTF (CRF-based TFBS Finding
system), a novel method to identify TFBSs. Figure 1
showed the system diagram of CTF. Conditional Random
Field (CRF) framework [17,18] was employed as the under-
lying model of CTF. CRF was introduced to bioinformatics
area recently, such as gene prediction[19,20], and present
promising results. CRF can capture sophisticated depen-
dency and integrate information from different sources.
Therefore it is an ideal framework for TFBS prediction.

Three types of features, the Position Weight Matrix
(PWM), the distance to Transcription start sites (TSS
proximity), and histone markers (8 distinct histone modifi-
cations), have been integrated into CTF (See Additional file
1 for more details). Test datasets were collected forl3 tran-
scription factors in mouse Embryonic Stem cells (ES cells).
It is shown that by integrating PWM, histone markers and
TSS proximity, CTF is able to predict TFBSs with high
accuracy and it outperforms existing methods, including
Chromia[13] and Cluster-Buster[21] significantly.

Results
Accurately predicting TFBSs by integrating PWM, TSS
proximity and chromatin signature
CTF was evaluated on 13 TFBS datasets. Several features
were assessed. First, traditional position weight matrix
(PWM) model was used. Figure 2 shows the average
PWM score in bins with or without TFBS inside. Those
with TEBSs were with higher PWM scores, especially for
the binding sites of CTCF, KIf4 and Zfx. Still, the PWM
scores of binding sites of Smadl, Sox2 and Nanog failed
to distinct themselves from the background.

CTF also integrated histone markers and transcription
start site (T'SS) data. Histone modifications were observed
across genome and some of them correlated strongly with
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TFBSs[13]. In addition, by studying the combination of
different histone modifications, it was shown that chroma-
tin states were related to activity of genomic regions and
regulation events[11]. Therefore, histone markers and
their combinations were informative for the prediction of
TFEBSs. In our work, 8 distinct histone markers were used:
H3K27me3, H3K36me3, H3K4mel, H3K4me2, H3K4me3,
H3K9me3, H3 and H4K20me3. Another feature included
was the TSS proximity. It was an indicator of whether a
bin was within 2 kb of a TSS, the promoter region defined
in this paper. The discriminative power of each histone
marker could be measured by counting the frequency dif-
ference of a certain feature in bins with TFBSs and in bins
without TFBSs. As Won et al presented that H3K4me2
and H3K4me3 were the most discriminative, while
H3K4mel was less discriminative [13]. It was consistent
with our knowledge that H3K4me1/2/3 were active mar-
kers. In addition, we have observed the enrichment of
binding sites of some TFs such as c-Myc and Zfx in pro-
moter regions (Additional file 3) and the enrichment can
be captured by the TSS-proximity feature.

To evaluate the contribution of each feature, we tested
CTF models that combined different features. In consistent
with previous analysis, CTF with PWM and H3K4mel
(AUC = 0.84) or H3K4me2 (AUC = 0.86) or H3K4me3
(AUC = 0.82) showed superior performance than CTF
with PWM and any other single feature (Figure 3). Also,
integration of TSS proximity was able to improve the accu-
racy (AUC = 0.77) compared with model based solely on
PWM (AUC = 0.75). Though, some other features made
little contribution and related models showed similar per-
formance as the baseline method that solely based on
PWM. In the final combination, all features were included.
We did not select features because the number of motifs in
our dataset was very large which made it possible to
include many features with a low risk of over fitting. Also,
during the training of CTF, unrelated features would be
assigned with weights close to zero. Combining all features,
the final CTF (AUC = 0.91) outperformed all models with
less features by at least 5%. This result demonstrated that
CTF was able to integrate different information effectively
and make better prediction.

Comparison with other methods
To further evaluate CTF, we then compared CTF with a
couple of prevalent existing algorithms. Chromia[13] is an
integrated method based on Hidden Markov Model
(HMM) and it predicts TFBSs based on PWM and chro-
matin signatures. Cluster-Buster[21] is a algorithm to find
motif clusters (or cis-regulatory modules), which is also
based on PWM. Cluster-Buster considers not only the sig-
nal (PWM score) of motifs but also their co-occurrence.
These tools were tested on the 13 TFBS datasets. The
AUC;oy was calculated as the measurement of
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Figure 1 System diagram of CTF. This figure showed the system diagram of CTF. Different features (PWM, chromatin signatures, and any other
features such as the distance to a TSS) were integrated into CTF. Combining these features, CTF called CRF framework to obtain the probability-
like scores of TFBSs across the whole genome. The CRF model of CTF contained two states: transcription factor binding site (TFBS) state and

performance (See Methods for details). Figure 4 present
the accuracy distribution for different TFBS identification
methods on the 13 datasets. Results showed that CTF
achieved significantly better performance (AUC = 0.073)
than all other methods. Also, the results showed CTF
and Chromia outperformed PWM method, which
implied that integration of histone markers was necessary
and could indeed significantly improve the accuracy. Sur-
prisingly, Cluster-Buster showed slightly worse AUC ¢
than PWM. However, the results of Cluster-Buster on
Sox2 and Oct4 were slightly better than PWM. It was
known that Sox2, Oct4 and Nanog were able to form a
complex and their motifs were very close to each other.

From previous results, it turned out that only Chromia
was comparable to CTF in terms of AUC;( on test data-
sets. Then, we compared CTF, Chromia and PWM in
terms of complete AUC as well as the true positive rate
at 1% false positive rate. PWM was used as the baseline
method. ROC curves of all three methods on data of
STATS3 and E2f1 were shown in Figure 5 and results on
all TFs were shown in Additional file 2. Results showed
that CTF had better accuracy than other two methods.
Table 1 listed the results of all 13 TFBS datasets. CTF
performed the best in all datasets. On average, AUC of
CTF was larger than AUC of Chromia by 3%. Next, we
also compared the true positive rate (TPR) of all three
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Figure 2 PWM score comparison for TFBSs and background sequences. This figure showed the average position weight matrix scores in
bins that contain transcription factor binding sites (TFBSs) and bins that do not (background) on the datasets of 13 transcription factors.
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methods at 1% false positive rate (FPR). The results were
shown in Additional file 3. On average, the CTF had the
highest TPR (0.55), which was much better than TPR of
other two methods (TPRchromia = 0.33 and TPRpyy =
0.23). To sum up, CTF outperformed existing methods in
different metrics.

Discussion
CTF, a novel integrative TFBS prediction system, was pro-
posed in this paper. Although CTF achieved a high

accuracy, there are still much room for improvement. For
example, in current version, only the locations of the
peaks of histone modifications were considered in CTF.
Continuous feature functions that score the shape and
intensity could be included in the future versions. In addi-
tion, the CRF framework itself is very flexible and new fea-
tures can be added into CTF in a straightforward manner.
CTF can also be applied to similar problems such as the
prediction of enhancers. We expect that CTF can facilitate
the identification of binding sites of transcription factors
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Figure 3 Accuracy (AUC) for PWM and CTF with different features. The figure showed the average AUCs (area under curve) of different
models on the dataset of 13 TFBSs. Models included PWM and CTF with different combinations of features. The AUCs of CTF models were

computed using 10-fold cross-validation, while the AUC of PWM was measured directly.
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Figure 4 Accuracy (AUC10%) for different TFBS identification methods. This figure showed the average AUC;u, (see Methods for details) of
different TFBS prediction tools on the dataset of 13 TFBSs. The AUC of CTF models was computed using 10-fold cross-validation. The AUCs of
other methods were measured directly from their results.
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Figure 5 ROC for CTF, Chromia and PWM on data of STAT3 and E2f1. This figure showed the ROCs of CTF, Chromia and PWM on the
dataset of E2f1 (left) and STAT3 (right). CTF was the CTF model with all features and its ROC was obtained by using 10-fold cross-validation and
changing the threshold. ROC of Chromia was calculated using the data and model contained in its release. ROC of PWM was got by scoring
directly. The complete list of results for all 13 TFs were shown in Additional file 2.
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Table 1 The AUC of CTF, Chromia and PWM on the
dataset of 13 TFs

CTF Chromia PWM
cMyc 0.98 0.94 0.84
CTCF 0.76 0.69 0.76
E2f1 0.96 0.94 0.75
Esrrb 0.89 0.84 0.77
KIf4 0.96 092 0.83
Nanog 0.83 0.82 0.62
n-Myc 0.97 094 0.86
Oct4 0.92 0.88 061
Smad1 0.92 0.89 0.66
Sox2 0.90 0.87 0.70
STAT3 0.91 0.86 0.72
Tcfep2i 0.88 0.83 0.79
Zfx 0.97 0.96 0.82
Average 0.91 0.88 0.75

as well as other functional elements, and improve our
knowledge about gene regulation.

Conclusions

In this paper, we present and evaluated CTF, a novel inte-
grative method to predict transcription factor binding sties
(TFBSs) by combining various features using conditional
random field as the underlying framework. Our results
showed that CTF successfully integrated position weight
matrix (PWM), distance to transcription start sites (TSSs)
and 8 distinct histone markers, which in total improved
accuracy of TFBS prediction significantly. It outperformed
models with only part of those features. Most importantly,
when compared with some existing representative tools,
CTF showed significant superior performance. CTF is an
effective novel integrative TFBS prediction system, and
has a great potential in other functional element finding.

Methods

CRF-based TFBS finding system

CTF system has been created to predict transcription
factor binding sites (TFBSs) by integrating information
from different sources. The system diagram of CTF was
shown in Figure 1. In CTF, a genome is divided into
200 bp bins first. Then, the conditional probability-like
score of a label sequence (TFBS and non-TFBS) given
an observation sequence was computed as follows.

L K
(Z Z Mefe (ytl Vi1, L, X))
p(ylxiA) = ol

Zexp (i i/\kﬁe Yoyt X))

t=1k=1
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where y is the label sequence or annotation of all bins,
x is the observed genomic sequence f, is the k™ feature
functions and A is the corresponding weight. The fea-
ture function f; can be an arbitrary function on x and y’
is any label sequence. In CTF, the possible values for
label sequence of one bin is 0 (non-TFBS) and 1 (TFBS).

Feature design

In CTF, several types of feature functions have been
designed to capture patterns contained in features. The
first type of feature functions are PWM scoring func-
tions. The second type of feature functions are indicator
functions. Each of these indictor function checks the
occurrence of a feature. For example, a feature function
of this type can be interpreted as an indicator of a bin
in a promoter region if the i-th feature is TSS proximity,
or an indicator of a bin within an H3K4me2 peak if that
i-th feature corresponds to H3K4me2. The third type of
feature functions targets the co-occurrence of two his-
tone markers. This type of feature functions are able to
capture co-occurring features such as a bivalent domain
[22] or a bin that is “not in a promoter region or
H3K4me3”, which is a marker of active enhancer[23]. In
addition, we have defined feature functions to capture
patterns in adjacent bins as a complement for the above
feature functions. With these feature functions, CTF is
able to distinguish TFBSs from the background with
high accuracy.

Different function templates were created for different
types of feature functions in CTF. Let x be a feature
matrix (note, x is not a genomic sequence here. See
Additional file 1 for more details), then x; ; is the ele-
ment in i-th row and j-th column, i.e. the value of i-th
feature in the j-th bin in the genome. The first row cor-
responds to PWM scores. Similarly, y is the label
sequence (or annotation sequence) and y; is the label of
the j-th bin (1 for TFBS and 0 otherwise). {conditions}
is denoted as an indicator function and its value is 1 if
and only if all conditions hold. The first type of feature
function is for PWM. It is defined as below,

f (}’jr Yi-1:Js x) = x11{y; = ul,

where u is 0 or 1 which will be the label of that bin. It
is the only type of real value function in CTF. The sec-
ond kind of feature functions are designed to capture
the occurrence of features. It is defined as

[ ¥ji-1,,X) = {yj—1 = uandy; = vandx;j = 1},

where both # and v are labels. The third type of fea-
ture function targets the co-occurrence of two histone
markers and its definition is
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[ 0 vi-1,J,x) = i{yj—1 = uandy; = vandx;j = Landx;j = 1},

where i and i’ corresponds to two histone markers.
This kind of feature functions are able to capture co-
occurring features such as bivalent domains[22] or “not
in a promoter region or H3K4me3”, which is a marker
of active enhancer[23]. At last, feature functions to cap-
ture patterns in adjacent bins as a complement for
above feature functions are defined as

f (¥ ¥=1.3,X) = {yj—1 = uandy; = vandxyj_y = landx;j = 1},
and
f(j¥j=1,7.%) = {yj—1 = uandy; = vandxyj_y = 1andx;j = 1 andxp ju1 = 1}

where i and i’ corresponds to two features and u and
v are tags.

Training
To estimate the parameter vector A, we use a Regular-
ized Maximum Conditional Log Likelihood method as

AML = arginax (In(p (ylx; 1)) (1)

That is

) L IAl?
ML = arg max Zkkfk —In(2(x)) - 252 )

t=1

I K
where Z(x) = ZEXP (Z Zkkfk (V;/ )/;_px)) is the

y t=1 k=1

partition function and || || is the L-2 norm. In CTF,
liblbfgs (http://www.chokkan.org/software/liblbfgs/), an
open source library for unconstrained minimization, was
used to find the optimal weight vector, A.

Prediction
To predict a label for each bin, we estimated the mar-
ginal probability of j-th bin to be TEBS as

si=p(yj=1x1),

which is assigned as the score of each bin. Thus, we
can set a threshold and bins will be assigned as TEBSs if
their scores exceed the threshold. The rest bins are
assigned as background.

Data

The binding sites of 13 transcription factors (TFs) in the
mouse ES cells were obtained directly from the ChIP-
seq data of Chen et al. [24] The 13 TFs were c-Myc,
CTCEF, E2f1, ESrrb, KIf4, Nanog, n-Myc, Oct4, Smadl,
Sox2, STAT3, Tcfcp2ll and Zfx. The position weight
matrices (PWM) of TFs were obtained from JASPAR
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[28] and PWMs not available in JASPAR were obtained
from Chen et al[24]. The locations of transcription start
sites (Refseq mm8, April 8, 2012) were obtained from
UCSC genome browser[25]. Also, the sequence of
mouse genome (mm8, April 8, 2012) was downloaded
from UCSC Genome Browser. Original ChIP-seq data
on 8 distinct histone modification information was
obtained from [26]. MACS[27] was employed with
default parameters to call peaks from ChIP-seq data.

Generating gold-standard TFBS dataset and feature
matrix

“Peak-centric” [15] method was used to generate gold-
standard dataset on the binned genome. First, mouse gen-
ome was divided into 200bp bins. Then, we assigned bins
overlapped with the centers of TFBSs as positive ones and
other bins as negative ones. Similar strategy was applied to
generate a feature matrix (Additional file 1). The PWM
score assigned to a certain bin was the maximal PWM
score inside the bin. Then, for other features, the value
corresponding to a histone modification of a certain bin
was set to 1 if that bin overlapped with one peak and 0
otherwise. As for transcription start site (TSS) proximity,
we defined the promoter region as a 4,000-bp interval
centred at the TSS and if bins overlapped with that region,
their values of TSS proximity were set to 1; otherwise,
they were 0.

Performance evaluation

In order to evaluate the performance of CTF, 10-fold
cross-validation was employed. In the cross validation,
19 autosomes and chromosome X in mouse genome
were randomly divided into 10 groups. Then, one
group was utilized as test set and the rest as the train-
ing set. To measure the performance, we calculated
Area Under the Curve (AUC) of Receiver Operator
Characteristic (ROC) curve. ROC curve is a curve of
True Positive Rate (TPR) vs. False Positive Rate (FPR)
by changing the threshold of the model. For some
methods, we were unable to get enough prediction to
plot the complete ROC curve. Thus, in the comparison
of all methods, we only computed the area under ROC
curve when FPR was less than 10%, which was denoted
as AUC;(. Another rationale was that in this range,
the number of false positives was moderated and the
model was useful.

We defined True Positives (TPs) as positive bins that
were predicted as TFBSs and False Positives (FPs) as
non-TFBS bins that were predicted as TFBSs. Similarly,
negative bins predicted as non-TFBSs were termed True
Negatives (TNs). Negative bins predicted as positives
were defined as False Negatives (FNs). Then, True Posi-
tive Rate (TPR) was defined as the fraction of TPs called
by a model in all positives. False Positive Rate (FPR) was
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defined as the fraction of FPs called by a model in all
negatives.

In order to evaluate other methods with the same cri-
terion, we put TFBSs predicted by other methods into
bins according to their positions and the scores of those
bins became the scores of corresponding TFBSs. If there
were several TFBSs in one bin, the maximal score was
chosen as the score of the bin. In this manner, we could
measure the performance of all methods with the same
criterion.

Running other methods

We compared CTF with two existing methods and the
baseline PWM method. The two existing methods
were Chromia[13] and Cluster-Buster[21]. Chromia
was downloaded from its website (http://tabit.ucsd.
edu/download/Chromia2.tar.gz). Since the current
release of Chromia contained the prediction result files
generated from the same data set used in this paper,
the results of Chromia was used directly. After this,
predicted TFBSs were merged to bins and the results
were then evaluated. Cluster-buster focused on detect-
ing clustered motifs within a relatively narrow range,
and did not consider epigenetic modification informa-
tion. Cluster-Buster was run with parameters, “-c 1 -m
1 -g 20 -f 27. Position weight matrix (PWM) baseline
method used solely the PWM score of every bin to
identify TFBSs and we used various cut-offs to draw
the ROC curves.

Additional material

Additional File 1: Formulation of TFBSs prediction problem. TFBSs
prediction problem can be formulated as a function to map a feature
matrix (the above matrix in the figure) to an annotation (the below row
vector). In the feature matrix, every row corresponds to one features and
every column corresponds to one 200 bp bin in a genome. Feature
types contain one real value feature (PWM) and multiple binary features
(such as “is the bin within a promoter region” and “is it within the peak
of a histone marker”). Note that “TSS” stands for transcription start site
proximity.

Additional File 2: ROC curves for CTF, Chromia and PWM on the
dataset of 13 transcription factors. This figure, similar to Figure 5,
contained the ROC curves of CTF, Chromia and PWM on all 13
transcription factors. CTF was the CTF model with all features and its
ROC curve was obtained by using a 10-fold cross-validation procedure
and changing the threshold. ROC curve of Chromia was calculated by
using the same data and model contained in its release. ROC curve of
PWM was got by scoring directly.

Additional File 3: Supplement tables.

List of abbreviations

TFBS (transcription factor binding site); ChIP-seq (chromatin
immunoprecipitation followed by massively parallel sequencing); CRF
(conditional random field); CTF (CRF-based TFBS finding system); TP (true
positive); TN (true negative); FP (false positive); FN (false negative);. FPR (false
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positive rate); TPR (true positive rate); PWM (position weight matrix); ROC
(receiver operating characteristic); AUC (area under the curve).
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