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Abstract

Background: Gene expression data are noisy due to technical and biological variability. Consequently, analysis of
gene expression data is complex. Different statistical methods produce distinct sets of genes. In addition, selection
of expression p-value (EPv) threshold is somewnhat arbitrary. In this study, we aimed to develop novel literature
based approaches to integrate functional information in analysis of gene expression data.

Methods: Functional relationships between genes were derived by Latent Semantic Indexing (LSI) of Medline
abstracts and used to calculate the function cohesion of gene sets. In this study, literature cohesion was applied in
two ways. First, Literature-Based Functional Significance (LBFS) method was developed to calculate a p-value for
the cohesion of differentially expressed genes (DEGs) in order to objectively evaluate the overall biological
significance of the gene expression experiments. Second, Literature Aided Statistical Significance Threshold (LASST)
was developed to determine the appropriate expression p-value threshold for a given experiment.

Results: We tested our methods on three different publicly available datasets. LBFS analysis demonstrated that
only two experiments were significantly cohesive. For each experiment, we also compared the LBFS values of DEGs
generated by four different statistical methods. We found that some statistical tests produced more functionally
cohesive gene sets than others. However, no statistical test was consistently better for all experiments. This
reemphasizes that a statistical test must be carefully selected for each expression study. Moreover, LASST analysis
demonstrated that the expression p-value thresholds for some experiments were considerably lower (p < 0.02 and
0.01), suggesting that the arbitrary p-values and false discovery rate thresholds that are commonly used in
expression studies may not be biologically sound.

Conclusions: We have developed robust and objective literature-based methods to evaluate the biological support
for gene expression experiments and to determine the appropriate statistical significance threshold. These methods
will assist investigators to more efficiently extract biologically meaningful insights from high throughput gene
expression experiments.

Background increase replicates in the experiments. However this is

Gene expression data are complex, noisy, and subject to
inter- and intra-laboratory variability [1,2]. Moreover,
because tens of thousands of measurements are made in a
typical experiment, the likelihood of false positives (type I
error) is high. One way to address these issues is to
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generally cost prohibitive. Therefore, quality control of
gene expression experiments with limited sample size is
important for identification of true DEGs. Although the
completion of the Microarray Quality Control (MAQC)
project provides a framework to assess microarray tech-
nologies, others have pointed out that it does not suffi-
ciently address inter- and intra-platform comparability
and reproducibility [3-5].
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Even with reliable gene expression data, statistical analy-
sis of microarray experiments remains challenging to
some degree. Jeffery and coworkers found a large discre-
pancy between gene lists generated by 10 different feature
selection methods, including significance analysis of
microarrays (SAM), analysis of variance (ANOVA),
Empirical Bayes, and t-statistics [6]. Several studies have
focused on finding robust methods for identification of
DEGs [7-15]. However, as more methods become avail-
able, it is increasingly difficult to determine which method
is most appropriate for a given experiment. Hence, it is
necessary to objectively compare and evaluate different
gene selection methods [6,16-18], which result in different
number of DEGs and different false discovery rate (FDR)
estimates [19].

FDR is determined by several factors such as proportion
of DEGs, gene expression variability, and sample size [20].
Controlling for FDR can be too stringent, resulting in a
large number of false negatives [21-23]. Therefore, deter-
mination of an appropriate threshold is critical for effec-
tively identifying truly differentially expressed genes, while
minimizing both false positives and false negatives.
A recent study, using a cross validation approach showed
that optimal selection of FDR threshold could provide
good performance on model selection and prediction [24].
Although many researchers have made considerable pro-
gress in improving FDR estimation and control [25-27], as
well as other significance criteria [28-31], the instability
resulted from high level of noise in microarray gene
expression experiments cannot be completely eliminated.
There is therefore a great need to make meaningful statis-
tical significance and FDR thresholds by incorporating bio-
logical function.

Recently, Chuchana et al. integrated gene pathway
information into microarray data to determine the
threshold for identification of DEGs [32]. By comparing a
few biological parameters such as total number of net-
works and common genes among pathways, they deter-
mined the statistical threshold by the amount of
biological information obtained from the DEGs [32]. This
study seems to be the first attempt to objectively deter-
mine the threshold of DEGs based on biological function.
However, there are several limitations of this study. First,
the method relied on Ingenuity pathway analysis which
may be biased toward well studied genes and limited by
human curation. Second, the threshold selection is itera-
tively defined. Finally, the approach is manual, which is
not realistic for large scale genome-wide applications.

A number of groups have developed computational
methods to measure functional similarities among genes
using annotation in Gene Ontology and other curated
databases [33-38]. For example, Chabalier et al., showed
that each gene can be represented as a vector which con-
tains a set of GO terms [34]. Each term was assigned a
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different weight according to the number of genes anno-
tated by this term and the total number of annotated
genes in the collection. Thus, GO-based similarity of
gene pairs was calculated using a vector space model.
Other studies not only focused on using GO annotations
to calculate gene-gene functional similarities but also to
determine the functional coherence of a gene set.
Recently, Richards et al utilized the topological properties
of a GO-based graph to estimate the functional coher-
ence of gene sets [38]. They developed a set of metrics by
considering both the enrichment of GO terms and their
semantic relationships. This method was shown to be
robust in identifying coherent gene sets compared with
random sets obtained from microarray datasets.

Previously, we developed a method which utilizes
Latent Semantic Indexing (LSI), a variant of the vector
space model of information retrieval, to determine the
functional relationships between genes from Medline
abstracts [39]. This method was shown to be robust and
accurate in identifying both explicit and implicit gene
relationships using a hand curated set of genes. More
recently, we applied this approach to determine the func-
tional cohesion of gene sets using the biomedical litera-
ture [40]. We showed that the LSI derived gene set
cohesion was consistent across >6000 GO categories. We
also showed that this literature based method could be
used to compare the cohesion of gene sets obtained from
microarray experiments [40]. Subsequently, we applied
this method to evaluate various microarray normalization
procedures [41]. In the present study, we aimed to
develop and test a robust literature-based method for
evaluating the overall quality, as determined by func-
tional cohesion, of microarray experiments. In addition,
we describe a novel method to use literature derived
functional cohesion to determine the threshold for
expression p-value and FDR cutoffs in microarray
analysis.

Methods

Gene-document collection and similarity matrix
generation

All titles and abstracts of the Medline citations cross-
referenced in the mouse, rat and human Entrez Gene
entries as of 2010 were concatenated to construct gene-
documents and gene-gene similarity scores were calcu-
lated by LSI, as previously described [39,40,42]. Briefly, a
term-by-gene matrix was created for mouse and human
genes where the entries of the matrix were the log-
entropy of terms in the document collection. Then, a
truncated singular value decomposition (SVD) of that
matrix was performed to create a lower dimension
(reduced rank) matrix. Genes were then represented as
vectors in the reduced rank matrix and the similarity
between genes was calculated by the cosine of the vector
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angles. Gene-to-gene similarity was calculated using the
first 300 factors, which has good performance for large
document collections [43].

Calculation of literature-based functional significance
(LBFS)

This study is an extension of our previous work on gene-
set cohesion analysis [40]. Briefly, we showed that LSI
derived gene-gene relationships can be used effectively to
calculate a literature cohesion p-value (LPv). LPv is
derived by using Fisher’s exact test to determine if the
number of literature relationships above a pre-calculated
threshold in a given gene set is significantly different
from that which is expected by chance. In many cases,
the size of the differentially expressed gene set can be
very large. Computationally it is not feasible to calculate
one LPv for a very large gene set. Also, it is difficult to
compare LPvs if the gene sets are vastly different in size.
Therefore, we defined a new metric called literature
cohesion index (LCI) of randomly sampled subsets of 50
genes from the pool of DEGs. LCI is the fraction of the
sampled subsets that have an LPv < 0.05. Then, the over-
all literature-based functional significance (LBFS) of the
entire DEG set is determined by a Fisher’s exact test
comparing the LCI to that expected by chance (i.e,,
under the complete null hypothesis that no differential
expression exists) via a permutation test procedure
(Figure 1). In forming the 2-by-2 table, average counts
from the multiple permutations are rounded to the near-
est integers.

Literature aided statistical significance threshold (LASST)
Now suppose a differential expression p-value (EPv) is
computed for each probe (probeset) by a proper statisti-
cal test. A statistical significance threshold (an EPv cut-
off) can be determined by considering the relationship
between the EPv and the LCI for a given DEG set. First,
a grid of EPv cutoffs is specified such as 0.001, 0003,
0.005, 0.01, ..., 1, to generate a DEG set at each cutoff
value. Next, the LCI is calculated for each DEG set
using the sub-sampling procedure as described above.
Apart from some random fluctuations, the LCI value is
typically a decreasing function of the EPv threshold and
assumes an L shape (Figure 2), implying that the LCI
partitions the EPv thresholds (and the corresponding
DEG sets) into two subpopulations: one with good LCI
(the vertical part of the L shape) and one with poor
LCI. The EPv threshold at the boundary of the two sub-
populations (i.e., at the bend point), can be used as a
statistical significance cutoff for selecting DEGs. The
bend point can be determined by moving a two-piece
linear fit to the L-shaped curve from left to right. The
LASST algorithm is as follows:
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(1) Specify an increasing sequence of EPv statistical
significance thresholds oy, ..., o, and generate DEG sets
at these specified significance levels.

(2) For each DEG set generated in (1), estimate the
LCI using the sub-sampling procedure described above,
to obtain pairs (o, Ly), i=1,2, ..., m.

(3) Choose an integer mg (3 by default) and perform
two-piece linear fits to the curve as follows: For k = m,,
mg+1, ..., m-my, fit a straight line by lease square to the
points (a;, Lj), j = 1, 21 ...,Ak (the left piece) to obtain
intercept and slope g, L. Similarly fit a straight
line to the points (o, Lj), j = k+1, 2, ..y m (the right
piece) to obtain intercept and slope BE, BR. Compute
Vie = (B, — —Bg) + (Bf, — —B)-

(4) Let k* be the first local maxima of Vi (k == my,,
my+1, ..., m-myg), that is, ¥* = min{j : Vj > Vj,,}.

(5) Take the k*y, entry on the a sequence specified in
(1) as the EPv significance cutoff.

Microarray data analysis

To test the performance of our approach, we randomly
chose three publicly available microarray datasets from
Gene Expression Omnibus (GEO): 1) interleukin-2
responsive (IL2) genes [44]; 2) PGC-1beta related (PGC-
1beta) genes [45]; 3) Endothelin-1 responsive (ET1)
genes [46]. To be able to compare across these datasets,
we focused only on experiments using the Affymetrix
Mouse 430-2 platform. All datasets (.cel files) were
imported into GeneSpring GX 11 and processed using
MAS5 summarization and quantile normalization. Probes
with all absent calls were removed from subsequent ana-
lysis. As discussed earlier, the content and literature
cohesion of a DEG set can largely depend on the statisti-
cal test. For this reason, four popular statistical tests
including empirical Bayes approach [47], student t-Test,
Welch t-Test and Mann-Whitney test were performed to
identify DEGs with a statistical significance level 0.05.

Results

Comparison of various statistical tests using LBFS

The goal of our study was to develop a literature based
method to objectively evaluate the biological significance
of differentially expressed genes produced by various sta-
tistical methods applied to gene expression experiments.
Previously, we developed a method and web-tool called
Gene-set Cohesion Analysis Tool (GCAT) which deter-
mines the functional cohesion of gene sets using latent
semantic analysis of Medline abstracts [40]. However,
this method was applicable only to small gene sets and
could not be used to compare gene-sets with varying
sizes. Here, we have extended this functional cohesion
method to determine the biological significance of larger
gene sets, which are typically found in microarray studies.
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Figure 1 Overview of the LBFS algorithm. A statistical test was applied to get differentially expressed genes (DEGs) from the original labeled
(OL) and permutated labeled (PL) samples. Subsets of 50 genes were randomly selected 1000 times from each pool of DEGs. Then literature p-
values (LPvs) were calculated for each 50 gene-set. A Fisher's Exact test was used to determine if the proportion (called LCl) of subsets with LPv
<0.5 in the OL group was significantly different from that obtained from PL group.

To accomplish this, we first calculate the Literature
Cohesion Index (LCI, see methods for details) of DEGs
produced (Figure 1). Literature based functional signifi-
cance (LBFS) is then calculated by comparing the LCI of
the original labeled experiment and a permuted experi-
ment (Figure 1). Importantly, we found that LBFS values

varied greatly between different statistical tests for a
given dataset (Table 1). For example, the Empirical Bayes
method produced the most functionally significant DEGs
for PGC-1beta dataset, but not the other two datasets. In
contrast, the Welch t-test generated the most function-
ally significant DEGs for the IL2 dataset. Both PGC-1beta
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and IL2 experiments showed significant (p<0.05) LBFS
values with multiple statistical tests, whereas none of the
tests on ET1 dataset produced DEGs with significant
LBES (Table 1). These results suggest that the PGC-1beta
and IL2 experiments likely produced biologically relevant
DEGs compared with the ET1 experiments. The lack of
biological significance for ET1 DEGs may be due to poor
data quality or lack of knowledge in the literature that
functionally connects these DEGs. However, the latter
may not be the case as the percentage of genes with
abstracts was 68-84% for all datasets and statistical tests
(Additional file 1).

Determination of EPv threshold using LASST

In the above analysis, DEGs were selected using an arbi-
trary statistical threshold of p<0.05, as is the case for
many published expression studies. However, in reality,
there is no biological reason why this threshold is

Table 1 Literature based functional significance (LBFS) of
gene sets generated by four statistical tests for three
different microarray experiments.

LCl LBFS
Gene list PGC-1beta IL2 ET1 PGC-1beta IL2  ET1
Welch t-Test 0.34 034 017  708E-06 00004 045
Mann-Whitney 0.2 02 013 0.118 00075 1
Student t-Test 038 038 0.1 1.24E-07 0.071 1
Empirical Bayes 04 0.19 0.05 1.36E-08 0.11 1

For comparison the Literature Cohesion Index (LCI) which is used to calculate
LBFS is displayed for each experiment.

selected for experiments. Once the appropriate statistical
test was chosen by application of LBFS above, we tested
if literature cohesion could be applied to determine the
EPv cutoff. We developed another method called Litera-
ture Aided Statistical Significance Threshold (LASST)
which determines the EPv by a two-piece linear fit of the
LCI curves as a function of EPv as described in Methods.
LASST was applied to p-values produced by Empirical
Bayes for PGC-1beta experiment and Welch t-test for the
IL2 and ET1 experiments. DEGs were produced at each
point on a grid of unequally-spaced statistical significance
levels (o0 = 0.001, 0.003, 0.005,...). In computing the LCI,
the LPv level was set to 0.05, and the size of the gene
subsets from the DEG pool was set to 50 in the sub-sam-
pling procedure as described in Methods. The LCI of a
DEG set was plotted against various a levels of the EPv
(Figure 2). Interestingly, application of LASST deter-
mined an EPv significance threshold of 0.01 (correspond-
ing LCI 0.55) for PGC-1beta dataset and 0.02 (LCI 0.315)
for IL2 dataset. None of the DEG sets from the ET1
experiment had appreciable LCI, which remained consis-
tently low across the a levels (Figure 2). Thus, an EPv
threshold could not be determined using the LCI
approach for ET1 dataset. These results are consistent
with what we observed above (Table 1).

While computing LCIs in the above analysis, the LPv
threshold was set at 0.05. We wondered if different LPv
thresholds would affect LASST results. Therefore, we
calculated LCI at different LPv thresholds such as 0.01,
0.03, 0.05, 0.06, 0.08 and 0.1. We found that the shape of
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the LCI curves were similar with respect to EPv values
(Figure 3), indicating that LASST is not sensitive to differ-
ent reasonably conservative LPv thresholds.

We next compared the LASST results with several
popular multiple hypothesis testing correction proce-
dures along with the unadjusted p-value threshold of
0.05 in a student t-test (Table 2). For the IL2 experiment,
Storey’s q-value method at 0.1 identified the highest
number of DEGs. In stark contrast, only 1 gene was
selected by any of the four FDR correction methods for
the PGC-1beta experiment and O genes were selected for
the ET1 experiment. Importantly, application of LASST
selected 3485 genes at a p-value threshold of 0.02 (corre-
sponding to FDR 0.032) and 1175 genes at a p-value
threshold of 0.01 (corresponding to FDR 0.074) for IL2
and PGC-1beta experiments, respectively. These results
suggest that perhaps more biologically relevant DEGs can
be selected with lower FDR values.

Discussion

Although microarray technology has become common
and affordable, analysis and interpretation of microarray
data remains challenging. Experimental design and quality
of the data can severely affect the results and conclusions
drawn from a microarray experiment. Using our approach,
we found that some datasets (e.g., PGC-1beta) produced
more functionally cohesive gene sets than others (e.g.,
ET1). There can be many biological or technological rea-
sons for the lack of cohesion in any microarray dataset.
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For instance, it is possible that the experimental perturba-
tion (or signaling pathway) simply did not alter mRNA
expression levels in that system as hypothesized. It is also
possible that the data are noisy due to technical or biologi-
cal variations, which result in false differential expression.
Although our method will not identify the causes of this
variation, it can help in assessment of the overall quality of
the experiment and provide feedback to the investigators
in order to adjust the experimental procedures. For exam-
ple, after observing a low LBES value, the investigator may
choose to remove outlier samples or add more replicates
into the study design.

It is important to note that a low cohesion value could
be due to a lack of information in the biomedical litera-
ture. In other words, it is possible that the microarray
experiment has uncovered new gene associations which
have not been previously reported in the literature. This
issue would affect any method that relies on human
curated databases or natural language processing of bio-
medical literature. However, our LSI method presents a
unique advantage over other approaches because it
extracts both explicit and implicit gene associations, based
on weighted term usage patterns in the literature. Conse-
quently, gene associations are ranked based on their con-
ceptual relationships and not specific interactions
documented in the literature. Thus, we posit that LSI is
particularly suited for analysis of discovery oriented geno-
mic studies which are geared toward identifying new gene
associations. Further work is necessary to be able to
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Figure 3 Relationship between EPV and LCl at various thresholds. The LCI at various LPv thresholds ranging from 0.01 to 0.1 (y-axis) was
plotted against various EPv thresholds (x-axis) for PGC-1beta dataset. Inset shows magnified view for EPv < 0.10. The shapes of the curves are
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Table 2 Number of significant genes identified by student t-test after correction for multiple hypotheses testing

# of tests # of genes with p <0.05 Storey pFDR ¢<0.1
IL2 20558 5001 5955
PGC-Tbeta 17633 2618 1
ET1 20477 1559 0

BH FDR <0.1 Bonferroni FWER <0.1 Westfall Young Permutation
3827 32 95
1 1 1
0 0 0

determine exactly how (whether explicitly or implicitly) a
subset of functionally cohesive genes are related to one
another in the LSI model.

A major challenge in microarray analysis involves
selection of the appropriate statistical tests, which have
different assumptions about the data distribution and
result in different DEG sets. For instance, parametric
methods are based on the assumption that the observa-
tions adhere to a normal distribution. The assumption of
normality is rarely satisfied in microarray data even after
normalization. Nonparametric methods are distribution
free and do not make any assumptions of the population
from which the samples are drawn. However, nonpara-
metric tests lack statistical power with small samples,
which is often the case in microarray studies. In this
study, we found that although Mann-Whitney nonpara-
metric test identified the largest number of DEGs for
PGC-1beta experiment, the DEGs were not functionally
significant (Table 1). Also, we found that some tests were
selectively better for some experiments. For example, the
Empirical Bayes method produced the best results for the
PGC-1beta experiment, while the Welch t-test produced
the best results for the IL2 experiment. Taken together,
we demonstrate that our method allows an objective and
literature based method to evaluate the appropriateness
of different statistical tests for a given experiment.

Several groups have developed methods to assess func-
tional cohesion or refine feature selection by incorporat-
ing biological information from either the primary
literature or curated databases [38,48-50]. To our knowl-
edge, a literature based approach to evaluate the overall
quality of microarray experiments has not been reported.
Although we did not extensively compare our approach
with these methods, we performed a preliminary compar-
ison with a well known Gene Set Enrichment Analysis
(GSEA) method [49]. GSEA calculates the enrichment
p-value for biological pathways in curated databases for a
given set of DEGs. Presumably, if a microarray experi-
ment is biologically significant, then higher number of
relevant pathways should be enriched. Indeed, we found
that GSEA identified 410, 309 and 283 enriched pathway
gene sets with FDR <0.25 for PGC-1beta, IL2 and ET1ex-
periments, respectively. These results correlated well
with our LBFS findings which showed that DEGs
obtained from PGC-1beta and IL2 were more function-
ally significant than ET1. However, GSEA identified a
substantial number of enriched pathways for ET1. One

issue is that GSEA only focuses on gene subsets and not
the entire DEG list. Thus, it does not evaluate the overall
cohesion or functional significance of the DEG list. In
addition, since GSEA relies on human curated databases
such as GO and KEGG, it is susceptible to curation
biases, which favor well-known genes and pathways and
contain limited information on other genes.

Assuming that microarray experiment is of high quality
and an appropriate statistical test has been selected for a
microarray experiment, selection of the expression p-
value cutoff still remains arbitrary for nearly all published
studies. In our work, we found a positive correlation
between literature cohesion index and EPv (Figure 2).
Based on the distribution of LCI with respect to EPv, we
devised a method (called LASST) which empirically
determined the EPv cutoff value. Not surprisingly, we
found that different EPv cutoffs should be used for the
different microarray experiments that we examined.
Indeed, we found that application of LASST resulted in a
smaller p-value threshold and substantially smaller num-
ber of DEGs for both IL1 and PGC-1beta experiments.
Therefore, LASST enables researchers to narrow their
gene lists and focus on biologically important genes for
further experimentation.

Finally, another major challenge for microarray analysis
is the propensity for high false discovery rate (FDR)
caused by multiple hypothesis testing. Correction of mul-
tiple hypothesis testing including family wise error rate
(FWER) are often too stringent which may lead to a large
number of false negatives. As with EPv cutoff concerns
above, setting the FDR threshold at levels 0.01, 0.05, or
0.1 does not have any biological meaning [29]. For
instance, no false positive error correction method pro-
duced adequate DEGs for PCG-1beta and ET1 experi-
ments. However, our analysis showed that PGC-1beta
dataset was biologically very cohesive (Table 1). This sug-
gests that applying FDR correction to this dataset would
produce a very large number of false negatives. Another
important finding of our study is that the false positive
error correction procedures appear to be sensitive to
DEG size. For instance, using student t-test IL2 dataset
consisted of 5001 DEGs with a p-value <0.05, whereas
the Storey FDR method produced 5955 at q<0.1. How-
ever, our literature based analysis revealed that the IL2
dataset produced less biologically cohesive DEGs than
the PGC-1beta dataset, which showed only 1 gene with
q<0.1. In the future, it will be important to expand these
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preliminary observations to a larger of set of microarray
experiments and to determine the precise relationships
between false positive correction methods and biological
significance.

Conclusions

In this study, we developed a robust methodology to
evaluate the overall quality of microarray experiments, to
compare the appropriateness of different statistical meth-
ods, and to determine the expression p-value thresholds
using functional information in the biomedical literature.
Using our approach, we showed that the quality, as mea-
sured by the biological cohesion of DEGs, can vary greatly
between microarray experiments. In addition, we demon-
strate that the choice of statistical test should be carefully
considered because different tests produce different DEGs
with varying degrees of biological significance. Impor-
tantly, we also demonstrated that procedures that control
false positive rates are often too conservative and favor
larger DEG sets without considering biological signifi-
cance. The methods developed herein can better facilitate
analysis and interpretation of microarray experiments.
Moreover, these methods provide a biological metric to
filter the vast amount of publicly available microarray
experiments for subsequent meta-analysis and systems
biology research.

Additional material

Additional file 1: Number of DE genes (with 0.05 EPv) and
percentage of having abstracts that generated from different tests
for PGC-1beta, IL2 and ET1 datasets.

Abbreviations

ANOVA: analysis of variance; DEGs: differentially expressed genes; EPv:
expression p-value; ET1: Endothelin-1 responsive; FDR: False Discovery Rate;
GCA: gene-set cohesion analysis; GCAT: Gene-set Cohesion Analysis Tool;
GEO: Gene Expression Omnibus; IL2: interleukin-2 responsive; LASST:
Literature aided statistical significance thresholds; LBFS: literature-based
functional significance; LCl: literature cohesion index; LPv: literature cohesion
p-value; LSI: Latent Semantic Indexing; MAQC: Microarray Quality Control;
PGC-1beta: PGC-Tbeta related; SAM: significance analysis of microarrays; SVD:
singular value decomposition;

Acknowledgements

We thank Dr. Kevin Heinrich (Computable Genomix, Memphis, TN) for
providing the gene-gene association data. This work was supported by The
Assisi Foundation of Memphis and The University of Memphis Bioinformatics
Program.

This article has been published as part of BMC Genomics Volume 13
Supplement 8, 2012: Proceedings of The International Conference on
Intelligent Biology and Medicine (ICIBM): Genomics. The full contents of the
supplement are available online at http://www.biomedcentral.com/
bmcgenomics/supplements/13/S8.

Author details
'Bioinformatics Program, Memphis, TN 38152, USA. *Department of
Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA.

Page 8 of 9

*Department of Mathematical Sciences, Memphis, TN 38152, USA.
“Department of Biology, University of Memphis, Memphis, TN 38152, USA.

Authors’ contributions

L. Xu developed the algorithm, carried out the data analyses, performed all
of the evaluation and wrote the manuscript. C. Cheng developed the
literature aided statistical significance thresholds method and wrote part of
the manuscript. EO. George provided statistical supervision of the study. R.
Homayouni conceived, co-developed the methods, supervised the study
and wrote the manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 17 December 2012

References

1. Luo J, Schumacher M, Scherer A, Sanoudou D, Megherbi D, Davison T,

Shi T, Tong W, Shi L, Hong H, Zhao C, Elloumi F, Shi W, Thomas R, Lin S,
Tillinghast G, Liu G, Zhou Y, Herman D, Li Y, Deng Y, Fang H, Bushel P,
Woods M, Zhang J: A comparison of batch effect removal methods for
enhancement of prediction performance using MAQC-Il microarray gene
expression data. Pharmacogenomics J 2010, 10:278-291.

2. Scherer A: Batch Effects and Noise in Microarray Experiments: Sources
and Solutions. Wiley Series Probability Statistics 2009.

3. Chen JJ, Hsueh HM, Delongchamp RR, Lin CJ, Tsai CA: Reproducibility of
microarray data: a further analysis of microarray quality control (MAQC)
data. BMC Bioinformatics 2007, 8:412.

4. Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC, Collins PJ, de
Longueville F, Kawasaki ES, Lee KY, Luo Y, Sun YA, Willey JC, Setterquist RA,
Fischer GM, Tong W, Dragan YP, Dix DJ, Frueh FW, Goodsaid FM,

Herman D, Jensen RV, Johnson CD, Lobenhofer EK, Puri RK, Schrf U, Thierry-
Mieg J, Wang C, Wilson M, Wolber PK; et a: The MicroArray Quality
Control (MAQC) project shows inter-and intraplatform reproducibility of
gene expression measurements. Nat Biotechnol 2006, 24:1151-1161.

5. Shi L, Campbell G, Jones WD, Campagne F, Wen Z, Walker SJ, Su Z,

Chu TM, Goodsaid FM, Pusztai L, Shaughnessy JD, Oberthuer A, Thomas RS,
Paules RS, Fielden M, Barlogie B, Chen W, Du P, Fischer M, Furlanello C,
Gallas BD, Ge X, Megherbi DB, Symmans WF, Wang MD, Zhang J, Bitter H,
Brors B, Bushel PR, Bylesjo M, et al The MicroArray Quality Control
(MAQQ)-II study of common practices for the development and
validation of microarray-based predictive models. Nat Biotechnol 2010,
28:827-838.

6. Jeffery B, Higgins DG, Culhane AC: Comparison and evaluation of
methods for generating differentially expressed gene lists from
microarray data. BMC Bioinformatics 2006, 7:359.

7. Kadota K, Konishi T, Shimizu K: Evaluation of two outlier-detection-based
methods for detecting tissue-selective genes from microarray data. Gene
Regul Syst Bio 2007, 1:9-15.

8. Kadota K, Nakai Y, Shimizu K: Ranking differentially expressed genes from
Affymetrix gene expression data: methods with reproducibility,
sensitivity, and specificity. Algorithms Mol Biol 2009, 4:7.

9. Pearson RD: A comprehensive re-analysis of the Golden Spike data:
towards a benchmark for differential expression methods. BMC
Bioinformatics 2008, 9:164.

10. Jung K, Friede T, Beiszbarth T: Reporting FDR analogous confidence
intervals for the log fold change of differentially expressed genes. BMC
Bioinformatics 2011, 12:288.

11. Hu J, Xu J: Density based pruning for identification of differentially
expressed genes from microarray data. BMC Genomics 2010, 11(Suppl 2):
S3.

12. Wille A, Gruissem W, Buhlmann P, Hennig L: EVE (external variance
estimation) increases statistical power for detecting differentially
expressed genes. Plant J 2007, 52:561-569.

13. Elo LL, Katajamaa M, Lund R, Oresic M, Lahesmaa R, Aittokallio T: Improving
identification of differentially expressed genes by integrative analysis of
Affymetrix and lllumina arrays. Omics 2006, 10:369-380.

14. Lai Y: On the identification of differentially expressed genes: improving
the generalized F-statistics for Affymetrix microarray gene expression
data. Comput Biol Chem 2006, 30:321-326.


http://www.biomedcentral.com/content/supplementary/1471-2164-13-S8-S23-S1.pdf
http://www.biomedcentral.com/bmcgenomics/supplements/13/S8
http://www.biomedcentral.com/bmcgenomics/supplements/13/S8
http://www.ncbi.nlm.nih.gov/pubmed/20676067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20676067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20676067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17961233?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17961233?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17961233?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16964229?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16964229?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16964229?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20676074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20676074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20676074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16872483?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16872483?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16872483?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19936074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19936074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19386098?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19386098?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19386098?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18366762?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18366762?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21756370?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21756370?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21047384?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21047384?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17680783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17680783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17680783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17069514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17069514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17069514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16979381?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16979381?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16979381?dopt=Abstract

Xu et al. BMC Genomics 2012, 13(Suppl 8):523
http://www.biomedcentral.com/1471-2164/13/58/S23

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

Kim RD, Park PJ: Improving identification of differentially expressed
genes in microarray studies using information from public databases.
Genome Biol 2004, 5:R70.

Murie C, Woody O, Lee AY, Nadon R: Comparison of small n statistical
tests of differential expression applied to microarrays. BMC Bioinformatics
2009, 10:45.

Bullard JH, Purdom E, Hansen KD, Dudoit S: Evaluation of statistical
methods for normalization and differential expression in mRNA-Seq
experiments. BMC Bioinformatics 2010, 11:94.

Dozmorov MG, Guthridge JM, Hurst RE, Dozmorov IM: A comprehensive
and universal method for assessing the performance of differential gene
expression analyses. PLoS One 2010, 5.

Slikker W Jr. Of genomics and bioinformatics. Pharmacogenomics J 2010,
10:245-246.

Pawitan Y, Michiels S, Koscielny S, Gusnanto A, Ploner A: False discovery
rate, sensitivity and sample size for microarray studies. Bioinformatics
2005, 21:3017-3024.

Ishwaran H, Rao JS, Kogalur UB: BAMarraytrade mark: Java software for
Bayesian analysis of variance for microarray data. BMC Bioinformatics
2006, 7:59.

Ploner A, Calza S, Gusnanto A, Pawitan Y: Multidimensional local false
discovery rate for microarray studies. Bioinformatics 2006, 22:556-565.
Jiao S, Zhang S: The t-mixture model approach for detecting
differentially expressed genes in microarrays. Funct Integr Genomics 2008,
8:181-186.

Graf AC, Bauer P: Model selection based on FDR-thresholding optimizing
the area under the ROC-curve. Stat Appl Genet Mol Biol 2009, 8, Article31.
Lu X, Perkins DL: Re-sampling strategy to improve the estimation of
number of null hypotheses in FDR control under strong correlation
structures. BMC Bioinformatics 2007, 8:157.

Pounds S, Cheng C: Improving false discovery rate estimation.
Bioinformatics 2004, 20:1737-1745.

Xie Y, Pan W, Khodursky AB: A note on using permutation-based false
discovery rate estimates to compare different analysis methods for
microarray data. Bioinformatics 2005, 21:4280-4288.

Cheng C: An adaptive significance threshold criterion for massive
multiple hypothesis testing. Optimality: The Second Erich L. Lehmann
Symposium, Institute of Mathematical Statistics, Beachwood, OH, USA 2006,
49:51-76.

Cheng C, Pounds SB, Boyett JM, Pei D, Kuo ML, Roussel MF: Statistical
significance threshold criteria for analysis of microarray gene expression
data. Stat Appl Genet Mol Biol 2004, 3, Article36.

Dudoit S, van der Laan MJ, Pollard KS: Multiple testing. Part I. Single-step
procedures for control of general type | error rates. Stat Appl Genet Mol
Biol 2004, 3, Article13.

Genovese CWL: Operating characteristics and extensions of the false
discovery rate procedure. Journal of the Royal Statistical Society, Series B
2002, 64:499-517.

Chuchana P, Holzmuller P, Vezilier F, Berthier D, Chantal |, Severac D,
Lemesre JL, Cuny G, Nirde P, Bucheton B: Intertwining threshold settings,
biological data and database knowledge to optimize the selection of
differentially expressed genes from microarray. PLoS One 2010, 5:¢13518.
Wang JZ, Du Z, Payattakool R, Yu PS, Chen CF: A new method to measure
the semantic similarity of GO terms. Bioinformatics 2007, 23:1274-1281.
Chabalier J, Mosser J, Burgun A: A transversal approach to predict gene
product networks from ontology-based similarity. BMC Bioinformatics
2007, 8:235.

Huang da W, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J,
Stephens R, Baseler MW, Lane HC, Lempicki RA: The DAVID Gene
Functional Classification Tool: a novel biological module-centric
algorithm to functionally analyze large gene lists. Genome Biol 2007, 8:
R183.

Schlicker A, Domingues FS, Rahnenfuhrer J, Lengauer T: A new measure
for functional similarity of gene products based on Gene Ontology. BMC
Bioinformatics 2006, 7:302.

Ruths T, Ruths D, Nakhleh L: GS2: an efficiently computable measure of
GO-based similarity of gene sets. Bioinformatics 2009, 25:1178-1184.
Richards AJ, Muller B, Shotwell M, Cowart LA, Rohrer B, Lu X: Assessing the
functional coherence of gene sets with metrics based on the Gene
Ontology graph. Bioinformatics 2010, 26:i79-87.

39.

40.

42.

43.

44,

45.

46.

47.

48.

49.

50.

Page 9 of 9

Homayouni R, Heinrich K, Wei L, Berry MW: Gene clustering by latent
semantic indexing of MEDLINE abstracts. Bioinformatics 2005, 21:104-115.
Xu L, Furlotte N, Lin Y, Heinrich K, Berry MW, George EO, Homayouni R:
Functional Cohesion of Gene Sets Determined by Latent Semantic
Indexing of PubMed Abstracts. PLoS One 2011, 6:218851.

Furlotte N, Xu L, Williams RW, Homayouni R: Literature-based Evaluation
of Microarray Normalization Procedures. BIBM 2011 2011, 608-612.

Berry MW, Browne M: Understanding Search Engines: Mathematical
Modeling and Text Retrieval. SIAM, Philadelphia 1999.

Landauer TK, Laham D, Derr M: From paragraph to graph: latent semantic
analysis for information visualization. Proc Natl Acad Sci USA 2004,
101(Suppl 1):5214-5219.

Zhang Z, Martino A, Faulon JL: Identification of expression patterns of IL-
2-responsive genes in the murine T cell line CTLL-2. J Interferon Cytokine
Res 2007, 27:991-995.

Vianna CR, Huntgeburth M, Coppari R, Choi CS, Lin J, Krauss S, Barbatelli G,
Tzameli I, Kim YB, Cinti S, Shulman Gl, Spiegelman BM, Lowell BB:
Hypomorphic mutation of PGC-Tbeta causes mitochondrial dysfunction
and liver insulin resistance. Cell Metab 2006, 4:453-464.

Vallender TW, Lahn BT: Localized methylation in the key regulator gene
endothelin-1 is associated with cell type-specific transcriptional
silencing. FEBS Lett 2006, 580:4560-4566.

Smyth GK: Linear models and empirical bayes methods for assessing
differential expression in microarray experiments. Stat Appl Genet Mol Biol
2004, 3, Article3.

Raychaudhuri S, Altman RB: A literature-based method for assessing the
functional coherence of a gene group. Bioinformatics 2003, 19:396-401.
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set
enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci USA 2005,
102:15545-15550.

Tian L, Greenberg SA, Kong SW, Altschuler J, Kohane IS, Park PJ:
Discovering statistically significant pathways in expression profiling
studies. Proc Natl Acad Sci USA 2005, 102:13544-13549.

doi:10.1186/1471-2164-13-58-523

Cite this article as: Xu et al. Literature aided determination of data
quality and statistical significance threshold for gene expression
studies. BMC Genomics 2012 13(Suppl 8):523.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( ) BioMed Central



http://www.ncbi.nlm.nih.gov/pubmed/15345054?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15345054?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19192265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19192265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20167110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20167110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20167110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20844739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20844739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20844739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20676063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15840707?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15840707?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16466568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16466568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16368770?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16368770?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18210172?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18210172?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19572830?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19572830?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17509157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17509157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17509157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14988112?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16188930?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16188930?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16188930?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646791?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646791?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20976008?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20976008?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20976008?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17344234?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17344234?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17605807?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17605807?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17784955?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17784955?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17784955?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16776819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16776819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19289444?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19289444?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20529941?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20529941?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20529941?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15308538?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15308538?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21533142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21533142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15037748?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15037748?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18184039?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18184039?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17141629?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17141629?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16870175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16870175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16870175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12584126?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12584126?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16199517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16174746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16174746?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Gene-document collection and similarity matrix generation
	Calculation of literature-based functional significance (LBFS)
	Literature aided statistical significance threshold (LASST)
	Microarray data analysis

	Results
	Comparison of various statistical tests using LBFS
	Determination of EPv threshold using LASST

	Discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

