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Abstract

Background: Accurate calling of SNPs and genotypes from next-generation sequencing data is an essential
prerequisite for most human genetics studies. A number of computational steps are required or recommended
when translating the raw sequencing data into the final calls. However, whether each step does contribute to the
performance of variant calling and how it affects the accuracy still remain unclear, making it difficult to select and
arrange appropriate steps to derive high quality variants from different sequencing data. In this study, we made a
systematic assessment of the relative contribution of each step to the accuracy of variant calling from Illumina
DNA sequencing data.

Results: We found that the read preprocessing step did not improve the accuracy of variant calling, contrary to
the general expectation. Although trimming off low-quality tails helped align more reads, it introduced lots of false
positives. The ability of markup duplication, local realignment and recalibration, to help eliminate false positive
variants depended on the sequencing depth. Rearranging these steps did not affect the results. The relative
performance of three popular multi-sample SNP callers, SAMtools, GATK, and GlfMultiples, also varied with the
sequencing depth.

Conclusions: Our findings clarify the necessity and effectiveness of computational steps for improving the
accuracy of SNP and genotype calls from Illumina sequencing data and can serve as a general guideline for
choosing SNP calling strategies for data with different coverage.

Background
Next-generation sequencing (NGS) technology is a power-
ful and cost-effective approach for large-scale DNA
sequencing [1]. It has significantly propelled the sequence-
based genetics and genomics research and its downstream
applications which include, but are not limited to, de novo
sequencing [2,3], quantifying expression level s[4-7], pro-
viding a genome-scale look at transcription-factor binding
[8,9], creating a foundation for understanding human dis-
ease [10-12] and systematically investigating of human
variation [13,14]. A number of projects based on NGS
technology are underway. For example, 1000 Genomes

Project http://www.1000genomes.org/ aims to provide
a comprehensive resource of human genetic variation as a
foundation for understanding the relationship between
genotype and phenotype [14]. The NHLBI GO Exome
Sequencing Project (ESP) http://evs.gs.washington.edu/
EVS/ focuses on protein coding regions to discover novel
genes and mechanisms contributing to heart, lung and
blood disorders. TCGA (The Cancer Genome Atlas)
http://cancergenome.nih.gov/ has been sequencing a large
number of tumor/normal pairs to provide insights into the
landscape of somatic mutations and the great genetic het-
erogeneity that defines the unique signature of individual
tumor [15]. The ability to discover a comprehensive list of
human genetic variation and to search for causing varia-
tion or mutation underlying diseases depends crucially on
the accurate calling of SNPs and genotypes [16].
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Translating the raw sequencing data into the final SNP
and genotype calls requires two essential steps: read map-
ping and SNP/genotype inference. First, reads are aligned
onto an available reference genome, then variable sites
are identified and genotypes at those sites are deter-
mined. SNP and genotype calling suffers from high error
rates that are due to the following factors. Poor quality or
low-quality tails prevent reads from being properly
mapped. Each read is aligned independently, causing
many reads that span indels are misaligned [17]. The raw
base-calling quality scores often co-vary with features
like sequence technology, machine cycle and sequence
context and, thus, cannot reflect the true base-calling
error rates [17]. These alignment and base-calling errors
propagate into SNP and genotype inference and lead to
false variant detection. Moreover, low-coverage sequen-
cing always introduces considerable uncertainty into the
results and makes accurate SNP and genotype calling dif-
ficult. To obtain high quality SNP and genotype data,
most contemporary algorithms use a probabilistic frame-
work to quantify the uncertainty and to model errors
introduced in alignment and base calling [17-20]. In addi-
tion, a number of optional steps are recommended. Some
are prior to variant calling, including raw reads prepro-
cessing, duplicate marking, local realignment, and base
quality score recalibration[17]. Others are posterior to
variant calling, including linkage-based genotype refining
[21-23] and SNP filtering [24] or variant quality score
recalibration [17].
Here we focused on those optional steps preceding var-

iant calling. We assessed their relative contributions and
evaluated the effect of their orders on the accuracy of SNP
and genotype calling with data generated on Illumina
sequencing platform, which is currently the most widely
used sequencing technology. Besides, we also compared
the performance of three popular multi-sample SNP call-
ers, SAMtools [20], GATK [17], and GlfMultiples [14], in
terms of dbSNP rate, transition to transversion ratio
(Ti/Tv ratio), and concordance rate with SNP arrays
(Methods section). Our findings can serve as a general
guide for choosing appropriate steps for SNP and geno-
type calling from Illumina sequencing data with different
coverage.

Methods
Sequencing data and SNP calling
Five samples were selected for whole exome sequencing.
All samples were taken from women with very early-onset
(22-32 years old) breast cancer or early-onset (38-41 years
old) plus a first-degree family history of breast cancer [25].
Genomic DNA from buffy coat was extracted using

QIAmp DNA kit (Qiagen, Valencia, CA) following the
manufacture’s protocol. Exonic regions were captured
using Illumina TruSeq Exome Enrichment Kit. It targeted

201,071 regions (62.1 million bases; 49.3% inside exons;
average length 309 bp), covering 96.5% of consensus cod-
ing sequence database (CCDS). An Illumina HiSeq 2000
was used to generate 100-bp paired-end reads (five sam-
ples per lane).
Reads were mapped to the NCBI Build 37 reference gen-

ome with BWA [26], sorted and indexed with SAMtools
[20]. Those reads were classified into three categories by
their mapped locations on the genome, inside target
regions, outside target regions with ≤ 200 bp distance and
outside target regions > 200 bp distance. For these five
samples, there was an average of 43.4% bases (42.7-43.7%)
mapped to target regions, 21.4% (21.3-21.7%) mapped to
outside ≤ 200 bp regions, and 35.2% (34.6-36.2%) mapped
to outside > 200 bp regions(Table 1). As expected, the
depth of coverage was the highest for inside target regions
(~60× coverage per sample on average) and lowest for
outside > 200 bp regions (~4× coverage per sample on
average) (Table 1). 98.8% target regions, 92.1% of outside
≤ 200 bp regions and 58.3% of outside > 200 bp regions
are accessed by sequencing data (Table 1).
Poor-quality tails of reads were dynamically trimmed

off by the BWA parameter (-q 15). Duplicated reads were
marked by Picard. Base quality recalibration and local
realignment were carried out using Genome Analysis
Toolkit (GATK) [17,27]. SNPs were called simulta-
neously on five samples by GATK Unified Genotyper,
SAMtools Mpileup and GlfMultiples using bases with
base quality≥20 and reads with mapping quality ≥20.

Definition of performance metrics
dbSNP rate
The percentage of variants found in dbSNP database [28]
(dbSNP rate) is used to measure an approximate false-
positive rate of SNP calling. Here dbSNP 129 was used,
which contains approximately 11 million SNP entries
[29-31]. It excludes the impact of the 1000 Genomes pro-
ject and is useful for evaluation. Multi-sample SNP call-
ing is able to find more rare variants than single sample
calling, thus the aggregate dbSNP rate is lower. Of ~640
k variants discovered from these five samples, about 77%
were already catalogued in dbSNP 129 (Table 2). It
should be noted that dbSNP rate is not an absolute mea-
surement of which variant calls are better, but the same
number of variants with higher dbSNP rate may reason-
ably suggest lower false-positive rates.
Transition/transversion ratio
The variants are observed either as transitions (between
purines, or between pyrimidines) or transversions
(between purines and pyrimidines). The ratio of the
number of transitions to the number of transversions is
particularly helpful for assessing the quality of SNP calls
[17]. Ti/Tv ratios are often calculated for known and
novel SNPs separately. The expected Ti/Tv ratios in
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whole-genome sequencing are 2.10 and 2.07 for known
and novel variants, respectively, and in the exome target
regions are 3.5 and 3.0, respectively [17]. The higher
Ti/Tv ratio generally indicates higher accuracy. When
detected variants demonstrate a ratio closer to the
expected ratio for random substitutions (e.g. ~0.5), low-
quality variant calling or data is implied.
Genotype concordance
All five samples have been genotyped using the Affyme-
trix SNP 6.0 array in a previous genome-wide associa-
tion study [25]. Detailed genotyping methods and
stringent quality control criteria were described in
Zheng et al., [25]. The original scan included three qual-
ity control samples in each 96-well plate, and the SNP
calls showed a very high concordance rate (mean 99.9%;
median 100%) for the quality control samples.

Genotypes obtained from the sequencing data were
compared with those from the SNP array. The non-refer-
ence discrepancy (NRD) rate was used to measure the
accuracy of genotype calls, which reported the percent of
discordant genotype calls at commonly called on-reference
sites on the SNP array and exome-sequencing. The mathe-
matical definition of NRD can be found in Depristo et al.,
[17]. The lower NRD generally indicates higher accuracy
of genotype calls.

Results
Effects of data preprocessing
Using high-quality reads is expected to identify true var-
iants. Generally, there are two ways to extract high-quality
reads from Illumina sequencing data: removing reads that
fail the Illumina chastity filter (filterY) and trimming off
low-quality ends from reads (trim). The trim step obtained
the largest number of mapped reads, while the filterY pro-
duced the fewest number of mapped reads resulting from
lots of low-quality reads being discarded (Figure 1A).
Although the trim step helped align more reads and iden-
tify slightly more variants (1.6%, ~651 k vs. ~641 k), it
obtained a lower dbSNP rate (77.21%) and a lower novel
transition/transversion ratio (Ti/Tv ratio) (1.58) compared
with those using raw sequencing data (dbSNP: 77.91%,
novel Ti/Tv ratio: 1.65) (Table 2). Trimming low-quality
tails added 11,748 novel variants, representing about 8% of
all novel calls, with a Ti/Tv ratio of 0.98, while it elimi-
nated 4,877 novel variants with a Ti/Tv ratio of 1.49 from
the raw call set (Figure 1B). The novel variants unique to
the trim call set had a much lower Ti/Tv ratio (0.98) com-
pared with the Ti/Tv ratio (1.49) of those unique to the

Table 1 Summary of bases distribution for five samples whole-exome sequencing data

Coverage Sample Total mapped bases (Gb) (%) Mean mapped
depth (×)

Bases accessed(Gb)
(% of genome regions)

High
(Inside target)

1 3.71 (43.7%) 60.53 0.61(98.8%)

2 3.75 (43.7%) 61.11

3 3.88 (43.5%) 63.27

4 3.90 (42.7%) 63.57

5 3.85 (43.4%) 62.71

Medium
(outside≤200 bp)

1 1.84 (21.7%) 30.05 0.74(92.1%)

2 1.85 (21.5%) 30.15

3 1.91 (21.4%) 31.14

4 1.93 (21.1%) 31.40

5 1.89 (21.3%) 30.82

Low
(outside > 200 bp)

1 2.94 (34.6%) 3.99 1.66 (58.3%)

2 2.99 (34.8%) 4.03

3 3.12 (35.1%) 4.18

4 3.30 (36.2%) 4.31

5 3.13 (35.3%) 4.16

Table 2 Effects of data preprocessing on SNP calling
accuracy

Call set
(QUAL > = 50)

Site discovery

No. SNPs Ti/Tv ratio

All Known Novel dbSNP% Known Novel

raw 640946 499377 141569 77.91% 2.19 1.65

filterY 630641 490722 139919 77.81% 2.19 1.65

trim 651391 502951 148440 77.21% 2.18 1.58

filterY&trim 640487 493741 146746 77.08% 2.18 1.58

raw: without any preprocessing steps; filterY: removing those reads that fail
the Illumina chastity filter; trim: trimming off low-quality tails from reads with
the BWA parameter (-q 15); filterY&trim: removing those reads that fail the
Illumina chastity filter and trimming off low quality tails. SNPs were called for
five samples together by GATK using bases with base quality≥20 and reads
with mapping quality ≥20. Only sites with QUAL > = 50 were considered as
potentially variable sites.
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raw call set, which suggested that more false positive var-
iants were introduced by the trim step. Results from apply-
ing both filterY and trim steps (filterY&trim) compared
with those from performing filterY step alone also revealed
that trim step would increase the number of false positives
(Table 2 and Figure 1C).
The filterY step identified fewer variants (~630 k); how-

ever, those variants showed the similar dbSNP rate
(~77.8%) and Ti/Tv ratio (2.19 and 1.65, respectively)
compared with the raw call set. Removing poor-quality
reads from raw data (filterY) added 887 known variants
with a Ti/Tv ratio of 1.72, while it eliminated 9542
known variants with a Ti/Tv ratio of 2.16 from the raw
call set (Figure 1D). That is, filterY step dropped more
than 8,000 known variants, representing about 2% of all
known calls. These results suggested that throwing out
those poor quality reads which failed the chastity filter
might not be necessary for further SNP calling. Compari-
son results from applying both filterY and trim steps (fil-
terY&trim) with those from performing trim step alone
also revealed the useless of filterY step on improving
SNP calling performance (Table 2 and Figure 1E).
A comprehensive comparison using variable quality

thresholds for high-coverage data (inside target regions,
~60× coverage per sample on average, Table 1), medium-
coverage data (outside regions with ≤ 200 bp distance,
~30× coverage per sample on average, Table 1) and low-
coverage data (outside regions with > 200 bp distance,
~4× coverage per sample on average, Table 1) came to the

same conclusion, that these two preprocessing step, filterY
and trim, could not improve the performance of SNP call-
ing, a conclusion contrary to the usual expectation. Appli-
cation of the trim step might even introduce false
positives, especially for high-coverage data. Compared
with low coverage data, the problem of introducing false
positives caused by the trim step is more serious for high
coverage data (Additional file 1).

Effects of duplicate marking, realignment and
recalibration
Among the three optional steps, local realignment, mark-
ing duplication and base quality recalibration, local rea-
lignment obtained the highest dbSNP rate (75.45%) and
novel Ti/Tv ratio (1.84) for high-coverage data (inside
target regions, ~60× coverage per sample on average)
(Table 3). Local realignment eliminated 1759 novel var-
iants from the initial call set, representing more than 7%
of all novel calls, with a Ti/Tv ratio of 0.77, which indi-
cated that about 90% of these novel calls were false-posi-
tives (Figure 2A). In contrast, base quality recalibration
eliminated only 446 novel variants with a Ti/Tv ratio of
0.56 but added 306 novel variants with a Ti/Tv ratio of
0.86 from the initial call set (Figure 2B). Marking duplica-
tion removed 244 novel variants with a Ti/Tv ratio of
0.97 but it added 107 novel variants with a Ti/Tv ratio of
0.78 from the initial call set (Figure 2C). These results
suggested that local realignment was efficient in reducing
the false-positive rate, while the effect of recalibration

Figure 1 Effects of read preprocessing steps on SNP calling. Number of mapped reads using different preprocessing steps for five samples
(A). Venn diagrams comparing identified novel variants between the raw call set and the call set with the trim step. Number of unique novel
SNPs, the Ti/Tv ratio and number of common novel SNPs were listed(B). Venn diagrams comparing identified novel variants between the call set
with the filterY step and the call set with both filterY and trim steps. Number of unique novel SNPs, the Ti/Tv ratio and number of common
novel SNPs were listed (C). Venn diagrams comparing identified known variants between the raw call set and the call set with the filterY step.
Number of unique known SNPs, the Ti/Tv ratio and number of common known SNPs were listed (D). Venn diagrams comparing identified
known variants between the call set with the trim step and the call set with both filterY and trim steps. Number of unique known SNPs, the Ti/
Tv ratio and number of common known SNPs were listed (E).
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and marking duplications was limited for deep-sequen-
cing data.
For low-coverage sequencing (outside regions with

> 200 bp distance, ~4× coverage per sample on average),

however, the ability of these three steps to eliminate
false-positive variants changed. Marking duplication
obtained the highest performance with 79.09% dbSNP
rate and a novel Ti/Tv ratio of 1.53 (Table 3). Marking
duplication removed 19472 novel variants from the
initial call set, representing more than 10% of all novel
calls, with a Ti/Tv ratio of 0.67 (Figure 2F). In contrast,
local realignment only eliminated 4139 novel variants
with a Ti/Tv ratio of 0.77 (Figure 2D) and recalibration
only removed 3526 novel variants with a Ti/Tv ratio of
0.93 (Figure 2E). These results suggested that marking
duplication was more efficient in reducing false-positive
rates than other two optional steps for low-coverage
sequencing data.
A comprehensive comparison using variable quality

thresholds also suggested that realignment was more
efficient in removing false positives than base call recali-
bration and marking duplication for high-coverage data,
whereas marking duplication was more efficient than
the other two for low-coverage data (Additional file 2).
The effect of orders of the optional steps on SNP call-

ing was also evaluated. We obtained the same accuracy
of SNP and genotype calling using different order
arrangements, suggesting that the order of steps had no
effect on the calling performance (Additional file 3).

Table 3 Effects of duplicate marking, realignment &
recalibration on SNP calling accuracy

Call set Site discovery

No. SNPs Ti/Tv ratio

All Known Novel dbSNP% Known Novel

Deep coverage with QUAL > 50

initial 96472 71534 24938 74.15% 2.50 1.73

realignment 94595 71374 23221 75.45% 2.50 1.84

recalibration 96316 71518 24798 74.25% 2.50 1.75

mark duplicate 96303 71502 24801 74.24% 2.50 1.73

Shallow coverage with QUAL > 20

initial 780490 607178 173312 77.79% 2.13 1.39

realignment 776560 606806 169754 78.14% 2.13 1.41

recalibration 783387 609601 173786 77.81% 2.13 1.40

mark duplicate 738198 583829 154369 79.09% 2.13 1.53

SNPs were called for 5 samples together by GATK using bases with base
quality≥20 and reads with mapping quality ≥20. Only sites with QUAL > 50
for deep-coverage or QUAL > 20 for shallow coverage were considered as
potentially variable sites.

Figure 2 Effects of realignment, recalibration and marking duplication on SNP calling from high and low coverage data. Venn diagrams
comparing identified novel variants between two call sets using different steps. Number of novel SNPs, the Ti/Tv ratio and number of common
novel SNPs were listed in the comparisons between the initial call set and the call set with realignment step for high (A) and low (D) coverage
data, between the initial call set and the call set with recalibration step for high (B) and low (E) coverage data, between the initial call set and
the call set with marking duplication step for high (C) and low (F) coverage data.
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Comparing the performance of GATK, SAMtools and
GlfMultiples
SAMtools and GATK obtained higher known and novel
Ti/Tv ratios than GlfMultiples for deep-sequencing data
(inside target regions), while they produced a lower
dbSNP rate and known and novel Ti/Tv ratios than
GlfMultiples for low-sequencing data (outside regions
>200 bp) when the same number of SNPs were identified
(Figure 3). For those data with medium-coverage, these
three multi-sample calling tools produced similar dbSNP
rate, known and novel Ti/Tv ratios (outside regions

≤ 200 bp). All of these three tools produced a similar gen-
otype concordance with SNP chip data for all regions
(Figure 3). These results suggested that SAMtools and
GATK had better performance than GlfMultiples for
high-coverage data, while GlfMultiples were superior to
SAMtools and GATK for low-coverage data.

Discussion
Intriguingly, we found that the read preprocessing steps
before mapping were not necessary. Trimming off low-
quality tails from reads even worsen the power of variant

Figure 3 Comparison of the calling performance of SAMtools, GATK and GlfMultiples in terms of dbSNP rate, Ti/Tv ratio, novel Ti/Tv
ratio and NRD (non-reference discrepancy) from all regions, inside target regions, outside target regions with ≤ 200 bp distance and
outside target regions > 200 bp distances from Illumina whole-exome sequencing data.
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calling, although it helps align more reads with high error
rate in the tail. A possible explanation is that although the
quality of tails is not good enough, they are still helpful for
reads mapping. Thus trimming off low-quality tails would
lead to more alignment artifacts than using raw reads and,
in turn, cause false-positive variants discovery. It should be
noted that trimming reads is somehow a question of trial
and error and a balance between the number of mapped
reads and mapping accuracy. If the decrease of the quality
of the 3’ end is acceptable and the loss of coverage is
affordable, trimming is not necessary. In contrast, if there
is a dramatic quality decrease at the tail and poor quality
was observed at very earlier sequencing cycle, trimming
might be helpful by increasing the number of mapped
reads greatly but without reducing the mapping accuracy
much.
For the steps after read mapping, including marking

duplication, realignment and recalibration, the relative
contribution of each step to the accuracy of variant calling
depends on the sequencing depth. When the sequencing
depth is high, read mapping can benefit from finding con-
sistent alignment among all reads and thus reduce the
number of false-positives effectively. When the sequencing
depth is low, however, the lack of sufficient reads mapping
to the locus limits the power of local multiple sequence
alignment and thus it cannot improve the quality of var-
iant calls much. In such circumstances, marking duplica-
tion plays a more important role in reducing false
positives than realignment and recalibration. Moreover,
the performances of three popular multi-sample calling
tools, SAMtools, GATK and GlfMultiples, also depend
on the sequencing depth. They use the same genotype
likelihood model, but GlfMultiples not only takes into
account the maximized likelihood but also an overall prior
for each type of polymorphism. For example, they favor
sites with transition polymorphisms over those with trans-
version [14]. Thus, incorporating such additional informa-
tion helps reduce the uncertainty associated with shallow-
sequencing data. However, the additional information will
disturb the identification of variants when enough evi-
dence is already involved with deep-sequencing data.
The steps posterior to variant calling, including link-

age-based genotype refining and SNP filtering or variant
quality score recalibration, also contribute a lot to the
accurate SNP and genotype calling. The use of LD (link-
age-disequilibrium) patterns can substantially improve
genotype calling when multiple samples have been
sequenced [16]. Because not all information regarding
errors can be fully incorporated into the statistical frame-
work, the proper SNP filtering strategies are recom-
mended to reduce the error rates [24]. Besides, the
consensus of multiple call sets from different methods
provide higher quality than any of individual call sets
[14]. Even with the best pipelines, however, we are still

far from obtaining a complete and accurate picture of
SNPs and genotypes in the human genome. The most
challenging task is to distinguish rare variants from
sequencing errors. SNP and genotype calling for rare var-
iants, which would not be represented in any reference
panel, may not improve much by the use of LD informa-
tion. To identify rare variants, a direct and more powerful
approach is to sequence a large number of individuals
[23,32]. In addition to using the proper sequencing stra-
tegies, developing more accurate SNP detection methods
is needed. More research is also needed in other areas,
including longer read depths, improved protocols for
generate paired ends, advances in sequencing technology
with lower base calling error rates, and more powerful
alignment methods.

Conclusions
Here, we evaluated the effect of a number of computa-
tional steps on the accuracy of SNP and genotype calling
from Illumina sequencing data with different coverage. To
our knowledge, no other study has made a systematic
assessment of whether each step is valuable and how it
affects the quality of variant detection. Our findings can
serves as the general guideline for choosing SNP calling
strategies.

Additional material

Additional file 1: Comparison of effect of different preprocessing
steps. A detailed comparison of calling results with different
preprocessing steps in terms of dbSNP rate, Ti/Tv ratio, novel Ti/Tv ratio
and NRD for all regions, inside target regions, outside ≤ 200 bp regions,
and outside > 200 bp regions from Illumina whole-exome sequencing
data. Raw (blue), filterY (green), trim (black) and filterY&trim (red).

Additional file 2: Comparison of effect of marking duplication,
realignment and recalibration. A detailed comparison of results using
different steps, marking duplication, realignment and recalibration, in
terms of dbSNP rate, Ti/Tv ratio, novel Ti/Tv ratio and NRD for all regions,
inside target regions, outside ≤ 200 bp regions, and outside > 200 bp
regions from Illumina whole-exome sequencing data. Initial alignment
(black), marking duplication (yellow), realignment (violet), recalibration
(blue), marking duplication followed by realignment (red), marking
duplication followed by realignment and recalibration (brown).

Additional file 3: Comparison of effect of different arrangements of
marking duplication, realignment and recalibration. A detailed
comparison of results by arranging three steps, marking duplication,
realignment and recalibration, in different orders in terms of dbSNP rate,
Ti/Tv ratio, novel Ti/Tv ratio and NRD for all regions, inside target regions,
outside ≤ 200 bp regions, and outside > 200 bp regions from Illumina
whole-exome sequencing data. Marking duplication followed by
realignment and recalibration (red), marking duplication followed by
recalibration and realignment (red), realignment followed by recalibration
and marking duplication (gray).
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