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Abstract

Background: Application of Single Nucleotide Polymorphism (SNP) marker technology as a tool in sunflower
breeding programs offers enormous potential to improve sunflower genetics, and facilitate faster release of
sunflower hybrids to the market place. Through a National Sunflower Association (NSA) funded initiative, we report
on the process of SNP discovery through reductive genome sequencing and local assembly of six diverse sunflower
inbred lines that represent oil as well as confection types.

Results: A combination of Restriction site Associated DNA Sequencing (RAD-Seq) protocols and Illumina
paired-end sequencing chemistry generated high quality 89.4 M paired end reads from the six lines which
represent 5.3 GB of the sequencing data. Raw reads from the sunflower line, RHA 464 were assembled de novo
to serve as a framework reference genome. About 15.2 Mb of sunflower genome distributed over 42,267 contigs
were obtained upon assembly of RHA 464 sequencing data, the contig lengths ranged from 200 to 950 bp with
an N50 length of 393 bp. SNP calling was performed by aligning sequencing data from the six sunflower lines to
the assembled reference RHA 464. On average, 1 SNP was located every 143 bp of the sunflower genome
sequence. Based on several filtering criteria, a final set of 16,467 putative sequence variants with characteristics
favorable for Illumina Infinium Genotyping Technology (IGT) were mined from the sequence data generated
across six diverse sunflower lines.

Conclusion: Here we report the molecular and computational methodology involved in SNP development for a
complex genome like sunflower lacking reference assembly, offering an attractive tool for molecular breeding
purposes in sunflower.

Keywords: Single nucleotide polymorphism (SNP), Restriction site associated DNA sequencing (RAD-Seq)
Background
Domestic sunflower (Helianthus annuus L., 2n = 2x = 34,
haploid genome size ~3.5 Gbp) is native to North America
[1] and widely cultivated as oilseed and confection crop
types. Besides being economically important, sunflower
also serves as model in ecological and evolutionary studies
[2-4]. A major focus in both public and private sunflower
breeding programs has been to develop sunflower hybrid
varieties with improved yield, oil content and resistance
to a wide range of diseases. Breeding new hybrids by
conventional practices mostly is slow and uncertain;
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however, application of molecular markers can improve
efficiency of plant selection, saving time and providing
accuracy in a breeding program [5-8]. A wide range of
molecular markers such as RFLP, AFLP, SSR and TRAP
developed in sunflower have successfully enabled con-
struction of high density genetic maps [9-15] and led to
identification of molecular markers linked to disease
resistance genes [16-19]. However, in general, practical
usage of these markers for routine breeding purposes is
limited due to high assay cost, low reproducibility, and
lack of QTL validation studies [20].
In recent years, SNP markers have gained popularity

in crop breeding programs due to their low cost, high
throughput efficiency, and abundance. Particularly in
association mapping studies, SNPs are the preferred
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marker type since they involves scanning whole genomes
with extremely high marker densities to identify closely
linked markers to causal polymorphisms [21,22]. It is
estimated that due to low linkage disequilibrium and high
haplotype diversity, SNPs in the order of several thousand
would be needed to successfully conduct genome wide
association analysis in sunflower [23].
Large-scale discovery of genome-wide distributed SNPs

can be effectively conducted with the aid of massively
parallel, next-generation sequencing (NGS) technologies
[24]. Several studies that involve whole genome sequen-
cing (WGS) efforts have led to the successful discovery
of SNPs in Arabidopsis [25], humans [26], and Medicago
[27]. NGS technologies have also been extended for SNP
discovery in large and complex genomes that lack an
assembled reference genome [28,29]. A common approach
in these situations is the use of a complexity reduction
strategy that is designed to selectively interrogate a small
percentage of the target genome [30,31]. By restricting
sequencing on a smaller fraction of the genome, overall
sequencing costs are reduced compared to WGS strategies,
while still identifying a large amount of genetic variation.
For instance, by using an RNA sequencing approach
(RNA-Seq) on tissues from two diverse maize inbred
lines, more than 4900 SNPs associated with 2,400 genes
were identified and validated [32]. Similarly, previous
work in sunflower produced nearly 10,000 SNPs with
RNA-Seq [29].
In addition, a cadre of methods have been developed

that involve the usage of restriction enzymes on genomic
DNA for complexity reduction. These strategies can be
at the nucleotide level and are viewed as simple and
highly efficient methods in plant and animal genome
sequencing studies. One such method, CRoPS (complexity
reduction of polymorphic sequences) can overcome the
problems associated with highly duplicated regions in
complex genomes that hamper the process of SNP identi-
fication [33]. Restriction site-associated DNA sequencing
(RAD-Seq) is an emerging method for SNP detection in
genomes and is based on identifying polymorphic variants
adjacent to restriction enzyme digestion sites [34,35].
Application of RAD-Seq for identifying genetic variants
has been demonstrated in a variety of species with and
without an available reference genome [36,37]. More
recently paired-end RAD-Seq (RAD-PE) has been used
in a variety of efforts for both genome assembly and
SNP marker development [38,39].
Furthermore, RAD-Seq approach has also been exploited

in wide range of other studies such as association mapping
[40], population genetics inferences [41-44], genetic map-
ping [35,45,46] and in estimation of allele frequencies [47].
RAD-Seq differs from RNA-Seq in that non-transcribed
loci are also sequenced, thus affording us an opportunity
to broaden the known SNPs in sunflower to include those
outside of transcribed regions. Here we demonstrate
the use of paired-end RAD sequencing to enable efficient,
cost-effective, high throughput marker development in H.
annuus, a major oil crop without an assembled genome
sequence. Results on the use of this sequence resource for
detection of sequence variation and design of SNP marker
panels for Illumina Infinium Genotyping Technology
(IIGT) are also discussed.

Results and discussion
Paired-end RAD-Seq and de novo assembly
Unlike randomized short-insert NGS sequencing methods,
RAD genome fragments share a unique architecture: a
sequence anchored by the restriction enzyme cleavage
site and a variable sequence end generated from a shearing
step during library construction (Figure 1). When RAD
is coupled with paired-end sequencing approaches now
available on NGS platforms, the opposite ends of the
RAD fragment are linked in cis and the fragment can
then be interrogated. Mate-pairs with identical single
read sequences can then be readily assembled into
contigs spanning hundreds of base pairs (Figure 1C).
To promote SNP identification in low-copy, gene-rich

regions of the 3.5 Gbp sunflower genome, a species
expected to contain upwards of 80% retrotransposon
content [48], the 5-methylcytosine (5mC) sensitive type
II nuclease PstI (5’CTGCA/G’3) was selected for RAD-Seq
in each of the six lines. Numerous studies have docu-
mented retroelement-dense regions of plant genome are
often subjected to cytosine methylation of CpG, CpNpG
and CpNpN nucleotides [49-51]. Restriction enzymes such
as PstI, which do not cleave 5mC-modified DNA, have
been shown to specifically sample the hypomethylated gen-
omic fraction of plant genomes [52].
Sequencing results for each of the six lines are detailed

in Additional file 1. A total of 44.7 M reads (89.4 M paired-
end) were obtained from all six lines, representing ~5.3
Gb of sequence data. An overall workflow of sequence
analysis performed in this study is encapsulated in Figure 2.
To construct a skeleton sunflower reference, reads from
line RHA 464 [53] were first coalesced into contigs
using the Velvet assembler [54]. Initial de novo assembly
produced ~15.2 Mb of sunflower genome sequence dis-
tributed over 42,267 individual contigs. This quantity of
assembled sequence data is approximately half of the
sequence content developed from a contemporary whole
transcriptome sequencing project [55]. Contig lengths
for the RHA assembly ranged between 200 and 920 bp
with an N50 length of 393 bp for all RHA 464 assemblies
(Figure 3A and Table 1). The contig length distribution
is in line with the fragment size range selected during
RAD-Seq library preparation. After initial assembly,
contigs were aligned against a custom sequence database
to remove sequences with significant plastid homology
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Figure 1 Paired–end RAD Sequencing Overview. A. Genomic DNA is digested with a restriction endonuclease. B. After ligation with a primary
adapter, the fragments are sheared, then ligated with a secondary adapter. C. A composite mixture of variable length fragments is recovered
from each restriction enzyme digestion site. These fragments are size selected, amplified and sequenced on a next-generation DNA sequencing
platform using paired end chemistry. D. Development of the genomic assembly around each digestion site is then completed bioinformatically.
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with 42,113 contigs spanning 15.18 Mbp of the sunflower
genome remaining. Contigs passing these filters were then
evaluated for the presence of repetitive elements using the
RepeatMasker web server with the Arabidopsis Repbase
library. The percentage of the RAD-Seq RHA 464 assembly
9.0 M PE reads
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5.1 M PE reads
BDI Sunflower 01
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Figure 2 Helianthus annuus Sequencing & Analysis Pipeline. The de no
RHA 464. Bowtie alignments of paired end data from the Helianthus popul
suite. A panel of 16,464 variants was ultimately selected for Illumina Infinium
classified as repetitive by RepeatMasker was 1.75%. This is
consistent with a genome assembly principally from low-
copy regions, as the 3.5 gigabasepair sunflower genome is
expected to contain over 80% repetitive nucleotide content.
The major classes of repetitive DNA elements that were
RHA  464 Velvet Assembly
(42113 contigs

15.18 Mbp
N50 393 bp)

Bowtie alignment

SAMtools Variant Calling 
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Illumina Assay Design
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ation were used to identify putative SNPs using the SAMtools software
Genotyping Design.
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Figure 3 RAD-Seq Assembly Results and Repeat Element Contribution. A. The length distribution of RAD-Seq contigs is plotted as a
histogram. B. The contribution of known repetitive elements in the H. annuus RAD sequence assemblies is shown. Results were obtained through
RepeatMasker analysis using the Repbase Arabidopsis database.

Table 1 Paired-end RAD-Seq assembly statistics

Feature Value

Number of RHA 464 contigs assembled 42267

Contigs removed due to plastid homology 154

Number of contigs retained 42113

Total assembly length (bp) 15181868

Minimum contig length (bp) 200

Maximum contig length (bp) 920

GC% 36.1

N50 Contig Length (bp) 393

N90 Contig Length (bp) 254
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identified belonged to low complexity sequences and Ty/
Copia long-terminal repeat (LTR) retroelement families
(Figure 3B and Additional file 2). The GC dinucleotide
content for RHA 464 sunflower assembles was 36.2%
(Table 1), which is consistent with results from paired-end
RAD-Seq studies in other plant genomes [56].
Comparison of RAD-Seq assemblies from RHA 464 to

preexisting sunflower unigenes at the Dana Farber Cancer
Institute (DFCI) confirmed high sequence identity be-
tween RAD assemblies and known sunflower genomic
sequences. A representative alignment is shown in
Additional file 3 illustrating the match of a single
paired-end RAD-Seq contig with tentative consensus
EST TC57527 from the H. annuus DFCI EST database.
The high sequence coverage inherent in paired-end RAD-
Seq minimizes sequencing and assembly errors, as each
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nucleotide in the contig is derived from the consensus of
many overlapping Illumina sequence reads. Experimental
paired-end RAD-Seq studies using the sequenced B73
maize cultivar have placed the single base accuracy for
paired-end RAD-Seq contigs at approximately 99.95% (un-
published data). This accuracy in RAD-Seq contig assem-
bly is a key advantage for applications involving genome
assembly and downstream marker development.
SNP discovery
Alignment of sequence data from all six sunflower in-
bred lines to the RHA 464 reference used the Bowtie/
SAMtools [57,58] variant detection pipeline and revealed
the presence of 105,662 putative sunflower SNPs (Table 2).
The calculated polymorphism rate in this study is ap-
proximately one SNP observed per 143 bp of sunflower
genomic sequence. This rate of nucleotide variation agrees
well with the levels of genetic diversity reported in recent
sunflower studies [29,59,60]. Several additional filtering
steps were implemented to pare down the initial SNP
dataset to a panel of markers suitable for Infinium
genotyping. The full set of 105,662 potential variant loci
was scored over the sunflower population. Although
SNP genotypes could be reliably called for over 79% of
loci (≥ 4x sequence coverage), 11,614 SNPs with missing
genotype calls in three or more sunflower lines were
not considered for further analysis (Table 2). Genotypes
for the remaining 94,048 alleles indicated 89.2% of
genotype calls were homozygous in the target population,
in line with the inbred nature of the selected lines. The
large tracts of sequence landscape generated around
candidate SNPs foster the conversion of variants identified
from RAD-Seq into downstream genotyping platforms
such as the Illumina GoldenGate, Infinium and Sequenom
iPlex systems. Of the 94,048 candidate SNPs, less than
4% had to be removed due to the absence of insufficient
Table 2 Helianthus SNP filtering and statistics

Feature Value

Helianthus samples sequenced: 6

Total number of SNP variants identified: 105662

Total possible SNP genotypes in population: 633972

SNP genotypes with high confidence call: 502837 (79.3%)

SNP genotypes with missing or low quality data: 131135 (20.7%)

SNP loci with < 50% genotype data: 11614

SNPs passing initial filters: 94048

Number of fixed genotype calls: 448289 (89.2%)

Number of heterozygous genotype calls: 54548 (10.8%)

SNP Loci with insufficient flanking sequence for IIGT*: 3445

SNP Loci with nearby polymorphism (< 50 bp): 74136

SNP Loci meeting all defined IIGT assay design criteria: 16467

* Illumina Infinium Genotyping Technology.
flanking genomic sequence (minimum limit of 50 bp
flanking candidate SNP). The vast majority of discarded
SNPs were rejected due to the presence of flanking
polymorphisms within 50 bp that can interfere with
oligo hybridization during genotyping (Table 2). A final
set of 16,467 SNPs was identified and considered for
Infinium genotyping design.
Analysis of the sequence variation identified in RAD-

Seq aligns well with values reported in other plant studies.
First, the observed SNP transition/transversion ratio of
1.72 (Figure 4A) in this study is very similar to the dis-
tributions reported in other studies of sunflower and
eggplant [29,36]. Analysis of the location of variants in
assembled RHA 464 contigs indicated no significant bias
in allele detection: most SNPs were identified between 100
and 300 bp from the start of each contig (Figure 4B).
Finally, approximately 57% of all assembled contigs
(23984 out of 42113) contained at least one detectable
polymorphism, reflecting the high degree of variation
present in sunflower (Figure 4C).

Conclusions
The application of next-generation DNA sequencing to
generate large numbers of genetic markers has revolu-
tionized plant breeding, facilitating both molecular genetic
research and marker-assisted selection efforts. We have
demonstrated paired-end RAD-Seq is an efficient and
cost-effective means of SNP discovery in a species with
a complex, highly repetitive genome. From less than a
flowcell of Illumina paired-end sequence data we se-
quenced six diverse sunflower lines, assembled over 40,000
high-quality sequence contigs with an N50 contig length
of 393 nucleotides, mined more than 100,000 sequence
variations from the sunflower genome and identified
16,467 candidate SNPs suitable for downstream genotyp-
ing. The RAD-Seq method is appropriate for studies where
many thousands of SNPs need to be rapidly identified
at a low cost, in a format suitable for high-throughput
genotyping.

Methods
Plant material and DNA extraction
Sunflower inbred lines (TX16R, CR29, SEEDS2000 B-
Line, HA 467, RHA 468, and RHA 464) were grown
under laboratory greenhouse conditions for four weeks,
all true leaves were harvested and lyophilized prior to
DNA extraction. DNA was extracted from 40 mg of each
inbred line with the DNeasy 96 Plant Kit (Qiagen) using
a modified protocol. Tissue was pulverized with 3 mm
beads in a Harbil shaker. Buffer AP1 with DX and RNaseA
was added to the tissue, 500 μL per sample, and incubated
at 55°C for 60 min. Buffer AP2 was added, 150 μL per
well, and incubated at −20°C for 15 min. AP3/E was com-
bined with supernatant, 600 μL and 400 μL respectively,
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Figure 4 Helianthus SNP Discovery. A. The number and ratio of SNP transitions and transversions observed in the Helianthus population is
graphed. B. The frequency of SNPs by position in each respective contig is plotted. C. The number of sequence variations observed across each
RAD-Seq contig is shown.
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and then added to the binding plates. The rest of the
extraction was carried out according to kit instructions.
DNA was eluted in a final volume of 50 μL.
DNA was quantified using the PicoGreen kit (Molecular

Probes) according to the kit instructions. A standard curve
was made using quantified λ DNA from 100 to 0 ng/μL. A
1/200 dilution of Picogreen reagent in 1x TE (provided in
kit) was mixed with 2 μL of isolated DNA, briefly vortexed,
and incubated in the dark for 5 min. Assays were per-
formed in black 96-well Fluotrac plates and fluorescence
was measured with a Spectramax Gemini XPS (Molecular
Devices) using 485 nm excitation and 538 nm emission.

RAD library preparation protocols
Genomic DNA from six selected sunflower inbred lines
(TX16R, CR29, SEEDS2000 B-Line, HA 467, RHA 468,



Pegadaraju et al. BMC Genomics 2013, 14:556 Page 7 of 9
http://www.biomedcentral.com/1471-2164/14/556
and RHA 464) was digested with the restriction endo-
nuclease PstI and processed into RAD libraries similar
to the method of Baird, et al., 2008. Briefly, ~300 ng of
genomic DNA was digested for 60 min at 37°C in a
50 μL reaction with 20 units (U) of PstI (New England
Biolabs [NEB]). After digestion, samples were heat-
inactivated for 20 min at 65°C followed by addition of
2.0 μL of 100 nM P1 Adapter(s), a modified Solexa©
adapter (Illumina, Inc.). PstI P1 adapters each contained a
unique multiplex sequence index (barcode) which is read
during the first four nucleotides of the Illumina sequence
read. 100 nM P1adaptors were added to each sample
along with 1 μL of 10 mM rATP (Promega), 1 μL 10×
NEB Buffer 4, 1.0 μL (1000 U) T4 DNA Ligase (high
concentration, Enzymatics, Inc), and 5 μL H2O which
was then incubated at room temperature (RT) for 20 min.
Samples were again heat-inactivated for 20 min at 65°C,
pooled and randomly sheared with a Bioruptor (Diagenode)
to an average size of 500 bp. Samples were then run out on
a 1.5% agarose (Sigma), 0.5X TBE gel, and DNA 300 bp
to 800 bp was isolated using a MinElute Gel Extraction
Kit (Qiagen). End blunting enzymes (Enzymatics, Inc)
were then used to polish the ends of the DNA. Samples
were then purified using a MinElute column (Qiagen)
and 15 U of Klenow exo− (Enzymatics) was used to add
adenine (Fermentas) overhangs on the 3′ end of the
DNA at 37°C. After subsequent purification, 1 μL of
10 μM P2 adapter, a divergent modified Solexa© adapter
(Illumina, Inc.), was ligated to the obtained DNA frag-
ments at 18°C. Samples were again purified and eluted in
50 μL. The eluate was quantified using a Qubit fluorimeter
and 20 ng of this product was used in a PCR amplification
with 20 μL Phusion Master Mix (NEB), 5 μL of 10 μM
modified Solexa© Amplification primer mix (Illumina,
Inc.) and up to 100 μL H2O. Phusion PCR settings
followed product guidelines for a total of 18 cycles.
Again, samples were gel purified, excising DNA from
the 300 to 700 bp size range, and diluted to 1 nM.

Illumina sequencing
A set of RAD libraries generated from lines TX16R, CR29,
SEEDS2000 B-Line, HA 467, RHA 468, and RHA 464 was
run on an Illumina Genome Analyzer IIx at the University
of Oregon High Throughput Sequencing Facility in Eugene,
Oregon. Illumina protocols were followed for an asymmet-
ric length paired end sequencing run, with an initial 40 bp
read and second 80 bp read.

Bioinformatics – Sequence processing, paired-end
RAD-Seq assembly and SNP detection
A combination of open source and proprietary bioinfor-
matics tools was used for processing and sequence analysis.
A list of open source programs, versions, and commands
used in sequence analysis can be found in a supplemental
file (Additional file 4). Initially, raw sequence data pro-
duced on two GAIIx sequence lanes were sorted by the
appropriate multiplex index (MID) or “barcode” assigned
to each sunflower line during RAD-Seq library construc-
tion. During de-multiplexing, indexes were trimmed from
reads and the remaining sequence segregated to individual
sample files. Reads from RHA 464 were then processed
to extract low quality sequences. Any sequence with an
average phred-scaled quality score below 20 (Q20) over
the last 5 base pairs of the read was discarded. Remaining
reads were then collapsed into RAD sequence clusters
sharing 100% sequence identity across the single end
Illumina read. To maximize efficient assembly of sequences
we imposed a minimum of 50x and maximum 750x se-
quence coverage at any RAD sequence cluster. These
thresholds were selected for this effort, because single loci
with coverage under 50x would be expected to suffer from
low sequence coverage ((80 bp × 50)/ 400 bp = 10.0x))
resulting in short and fragmented contig assemblies,
while loci with greater than 500 identical SE (Single-end)
reads may be composed of high-copy contaminant DNA
(plastids) or dosage from multiple genomic loci (e.g. retro-
transposon derived sequences). The paired end sequences
for each RAD locus were extracted from these selected
loci and passed to the Velvet sequence assembler (version
1.0.18) for contig assembly [54]. Contigs not reaching a
minimum length of 200 bp were excluded from the
assembly.
Sequence reads from TX16R, CR29, Seeds 2000 B-line,

HA 467, and RHA 468, were aligned to the reference
RHA 464 assembly using the short-read aligner Bowtie
(version 0.12.5) [57]. Alignment thresholds were speci-
fied which allowed up to three base pair mismatches be-
tween the 80 bp Illumina read and the reference (>95%
identity). Reads not uniquely mapping (e.g. aligning to
more than one contig in the RHA 464 reference) were
discarded and not considered in the analysis. Bowtie
alignments were piped to SAM tools (version 0.1.14)
and reformatted into BAM and pileup files for SNP
identification [58]. Sequence variants from pileups were
then condensed into a variant call format (VCF) file
using custom perl scripts. To be considered for genotyp-
ing design, a SNP had to have a minimum sequencing
coverage of 4x in at least three lines, with at least 50 bp
of flanking genomic sequence surrounding the target SNP.
Variants with nearby flanking polymorphisms (within 50 bp
of the candidate marker) were also excluded from further
consideration for Infinium genotyping design.
Additional files

Additional file 1: Illumina Sequencing Results.

Additional file 2: Helianthus RAD-Seq RepeatMasker reports.
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Additional file 3: Alignment of RAD-Seq contig with Sunflower EST
collection at DFCI.

Additional file 4: List of open source programs and commands
used in analysis.
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