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Abstract

Background: Reactive oxygen species (ROS) are involved in the regulation of diverse physiological processes in
plants, including various biotic and abiotic stress responses. Thus, oxidative stress tolerance mechanisms in plants
are complex, and diverse responses at multiple levels need to be characterized in order to understand them. Here
we present system responses to oxidative stress in Populus by integrating data from analyses of the cambial region
of wild-type controls and plants expressing high-isoelectric-point superoxide dismutase (hipI-SOD) transcripts in
antisense orientation showing a higher production of superoxide. The cambium, a thin cell layer, generates cells
that differentiate to form either phloem or xylem and is hypothesized to be a major reason for phenotypic
perturbations in the transgenic plants. Data from multiple platforms including transcriptomics (microarray analysis),
proteomics (UPLC/QTOF-MS), and metabolomics (GC-TOF/MS, UPLC/MS, and UHPLC-LTQ/MS) were integrated using
the most recent development of orthogonal projections to latent structures called OnPLS. OnPLS is a symmetrical
multi-block method that does not depend on the order of analysis when more than two blocks are analysed.
Significantly affected genes, proteins and metabolites were then visualized in painted pathway diagrams.

Results: The main categories that appear to be significantly influenced in the transgenic plants were pathways
related to redox regulation, carbon metabolism and protein degradation, e.g. the glycolysis and pentose phosphate
pathways (PPP). The results provide system-level information on ROS metabolism and responses to oxidative stress,
and indicate that some initial responses to oxidative stress may share common pathways.

Conclusion: The proposed data evaluation strategy shows an efficient way of compiling complex, multi-platform
datasets to obtain significant biological information.
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Background
Comprehensive profiling of transcriptional regulation cou-
pled with proteomic and metabolomic measurements
would greatly facilitate characterization of changes in
levels of important compounds during cellular regulation
as e.g. oxidative stress [1]. However, few attempts have
been made to extensively investigate cellular metabolism
under stress conditions [2,3]. Furthermore, such studies
have previously focused on acquiring and integrating data
at only two omic levels (either transcriptomic and meta-
bolomic, or transcriptomic and proteomic) [2,3]. Since
any systems-level response is a result of complex interplay
between gene regulation, post-translational modifications
and metabolic fluxes, these studies might have missed re-
sponses visible only by investigating all three omics-levels
simultaneously. The multi-omic profiling required for full
analysis would generate a very large, complex dataset, and
biologically meaningful interpretation of such datasets re-
quires use of powerful systems biology techniques for in-
tegrating multidimensional information into networks [4].
Numerous strategies have been proposed for integrating
data from parallel sources [3,5,6], and a multivariate re-
gression method O2PLS, and its extension OnPLS, have
been recently shown to be promising tools for integrating
multi-omic plant data [7-10].
In plants, reactive oxygen species (ROS) are involved

in diverse physiological and developmental processes
[11,12]. However, various abiotic or biotic stressors may
disrupt the cellular redox state, thereby causing levels of
ROS to rise [13] and inducing a range of protective
mechanisms that promote the recovery of redox balance
and recuperation from the toxic effects of excess ROS
[14]. ROS can be viewed as signals produced in real time
for the fine tuning of plant developmental and metabolic
processes; and redox regulation may occur under differ-
ent growth conditions and with diurnal variations [15].
Depending on the inductive conditions, oxidative stress
may also induce programmed cell death (PCD) in plants
[11], but several reports indicate that different concen-
trations of ROS are required for inducing PCD than
those causing non-specific cellular damage [1,16]. Thus,
redox metabolism and responses are complex, and
known to be controlled by an intricate regulatory net-
work of which many aspects are poorly understood [1].
In order to study oxidative stress responses, we have

used wild-type (WT) controls and transgenic hybrid
aspen plants expressing a high-isoelectric-point super-
oxide dismutase (hipI-SOD) gene in antisense orienta-
tion [17]. HipI-SOD is a Cu/Zn-SOD with a suggested
role in ROS regulation and plant development [18-20].
The transgenic hipI-SOD Populus plants have higher
levels of O2

- than WT counterparts and impaired growth
rates, accompanied by histological and morphological per-
turbations, including compressed and disorganized cell
structures in the cambial region of the stem Srivastava
et al. [17] (Additional file 1: Figure S1). This region is also
one of the sites of both suppression of the hipI-SOD pro-
tein, according to immunolocalization analysis (Srivastava
et al. [18]), and increased O2

- production in the trans-
genics. The cambium generates cells that differentiate to
form either phloem or xylem. Hence the oxidative stress
caused by overproduction of O2

- in the cambial region of
transgenics is hypothesized to be a major reason for their
phenotypic perturbations. Thus, we postulated that the re-
gion would be an ideal model system to study the effects
of oxidative stress on plant development in vivo.
In the presented study we applied a systems biology

approach to analyze effects of oxidative stress in Populus.
We first acquired transcriptomic, proteomic and metabo-
lomic profiles of the cambial region of two different trans-
genic hipI-SOD lines and WT control hybrid aspen plants
and then applied the multivariate analysis method OnPLS
to integrate the three levels of omics data. One OnPLS
model was built from all genes, proteins and metabolites
(i.e. all variables), and one model was built using only
identified compounds (targeted variables). OnPLS model-
ing facilitates the detection of connections in datasets that
are intrinsically linked by flows of information (e.g.
transcript-protein-metabolite flows). This is obtained
through the interpretation of joint scores and loadings,
prediction of the globally joint variation and correlated
biological interpretation of the datasets. OnPLS reduces
the error that might arise in the process of investigating
several model diagnostics and latent variables to see which
different combination such as transcript-protein, transcript-
metabolite, protein-metabolite should be joined first. The
OnPLS approach does not depend on the order in which
the matrices are processed when one have more than two
blocks of data, and thus the model is symmetrical giving
no preference to any matrix [9,10]. Finally, we used the
genes, proteins and metabolites identified as significantly
affecting the transgenic aspens to identify affected path-
ways and examined them according to the measured
abundances of genes, proteins and metabolites in trans-
genic and control plants. Here, the results are summa-
rized, and the biological pathways are interpreted in the
context of existing knowledge to extend understanding of
system-level responses to oxidative stress in plants. The
information acquisition, analysis, visualization and inter-
pretation steps in the study are schematically illustrated in
the flowchart shown in Figure 1.

Methods
Plant materials
Samples of the cambial region were obtained at the same
time of the day from three 12-week-old WT plants, and
from three plants of each of two antisense lines (AS-
SOD9 and AS-SOD24) [17,18]. After peeling away the



Figure 1 Schematic flowchart of the integrated profiling strategy applied in this study. In the first step, transcriptomic, proteomic and
metabolomic data were collected individually from the cambial region of Populus WT and transgenic plants. In the second step, the three omic
datasets acquired were integrated by OnPLS to identify the joint variation in them (initially applying OnPLS modeling to all variables, and
subsequently to targeted variables). Finally, the OnPLS model from the second step was visualized by Mapman and KEGG to explore the
pathways (genes-proteins-metabolites) affected in the transgenics, and deepen the interpretation of their oxidative stress responses.
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bark from each plant, tissue from the cambial region (5–
18 internodes) was scraped from the bark side with a
scalpel frozen in liquid nitrogen as described by Celedon
et al. [21]. All samples were ground in a mixer-mill
(MM 301, Retsch GmbH, Germany) and the resulting
tissue powder was used for analysis or kept at −80°C
until further use.

Experimental design
For microarray experiments, mRNA samples from each
of the nine plants were hybridized against a combined
sample pool of mRNA (with equal contributions from
each of the plants) in a dye-swap design. In total, 18 ar-
rays were hybridized. In both the proteomic and meta-
bolomic experiments, each of the nine samples was
analyzed three times.

Transcriptome analysis
cDNA clones and mRNA samples were prepared, labeled
and hybridized for transcript profiling using POP2.3
cDNA microarrays as previously described by Bylesjö
et al. [8] with a few modification. Briefly, total RNA was
extracted from 30 mg of tissue powder using an Aurum
total RNA mini kit (Bio-Rad) according to the manufac-
turer’s instructions. Approximately 1 μg of total RNA was
used to selectively amplify mRNA using a MessageAmp™
II aRNA Amplification Kit (Ambion, Cat. AM1751). 10 μg
of amplified RNA (a-RNA) was reverse-transcribed into
aminoallyl-labeled cDNA with 3 μg of Random Primer
Nanomer. All slides were scanned four times with prede-
fined laser power (50–100) and phototube multiplier
(PMT; 70–80) settings using a ScanArray 4000 (Perkin-
Elmer Wellesley, MA, USA). The resulting images were
analyzed in GenePix Pro 5.1 (Molecular Devices, CA,
USA), and the extracted data were stored as results files
containing raw data and various statistical measurements.
All original image files and raw data are available online
for download from the UPSC-BASE microarray database
[22] (www.upscbase.db.umu.se) under experiment UMA-
0080. The different scan levels for the slides were merged
with Restricted Linear Scaling (RLS) [23] followed by
step-wise normalization as previously described by Wilson
et al. [24]. Flagged spots were treated as missing values
and normalized intensities below 7 were set to 7 in a cen-
soring procedure as previously described by Ryden et al.
[23] to reduce the influence of non-expressed genes.
Values obtained from each plant’s two dye-swap replicates
were combined into a single gene-expression vector
(ignoring missing values). From the 27,963 probe spots,
14,619 genes were obtained after filtering according to the
procedure of Sterky et al. [25]. Lists of significantly differ-
entially expressed genes and common names of genes
discussed in the manuscript can be found in Additional
file 2: Table S1.2.

Proteome analysis
Proteins were extracted from 20 mg of frozen tissue
powder from each plant as described by Bylesjö et al.

http://www.upscbase.db.umu.se
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[8]. After extraction, proteins were reduced by adding
DTT solution to a final concentration of 15 mM and
incubated at 55°C for 45 min. All samples were then
alkylated by adding iodoacetamide solution (final con-
centration, 80 mM) and incubating them for 30 min at
room temperature (RT) in the dark. The extracted pro-
teins were subsequently placed in pre-wetted Microcon
filter tubes (Ultracel YM-10, Millipore, USA), centri-
fuged at 12 000 g for 15 min at RT and washed three
times with 0.2 M ammonium bicarbonate. Approxi-
mately 0.6 μg of trypsin (Promega/SDS Biosciences) in
0.2 M ammonium bicarbonate was then added to each
sample and they were digested overnight (~16 hrs) at
37°C. The resulting peptides were collected in a new col-
lection tube by three repeated centrifugations with
50 μL of 0.2 M ammonium bicarbonate, dried and redis-
solved in 0.1% formic acid for peptide analysis by
reversed-phase liquid chromatography electrospray ioniza-
tion mass spectrometer (LC-ESI-MS), as described by
Bylesjö et al. [8], using a nanoACQUITY ultra-performance
liquid chromatography (UPLC) system coupled to a Q-
TOF mass spectrometer (Q-TOF Ultima; Waters Corp.).
Each sample was loaded onto a C18 trap column,
(Symmetry 180 μm× 20 mm 5 μm; Waters, Milford, MA)
and washed with 2% acetonitrile, 0.1% formic acid at
15 μL/min for 2 min. The samples were eluted from the
trap column and separated on a C18 analytical column
(75 μm× 100 mm 1.7 μm; Waters, Milford, MA) at
400 nL/min using 0.1% formic acid as solvent A and 0.1%
formic acid in acetonitrile as solvent B, in a gradient.
The following gradients were used: linear from 0 to
40% B in 25 min, linear from 40 to 80% B in 1 min,
isocratic at 80% B in 1 min, linear from 80 to 5% B in
1 min and isocratic at 5% B for 7 min. The eluting
peptides were sprayed into the mass spectrometer with
the capillary voltage set to 2.1 kV and cone voltage to
40 V. MS spectra were collected in the 400–1300 m/z
range (0.8 s scan time, 0.1 s inter delay). Instrument
and offset calibration was performed as described by
Srivastava et al. [18] with a randomized run order of
samples to minimize the influence of systematic time
drift.

Protein identification
Three sample mixtures were created by separately pool-
ing all WT and both transgenic (AS-SOD9 and AS-
SOD24) peptide samples. Each sample mixture was then
analyzed nine times at different predefined mass ranges
(400–500, 500–600, 600–650, 650–700,700-750, 750–
800, 800–900, 900–1000 and 1000–1300 m/z) by using
the same chromatographic gradient as described above.
Peptide fragmentation data were generated by auto-
mated Data Dependent Acquisition (DDA) and submit-
ted for database searches (Populus protein database; 45
555 entries, assembly release version 1.1) using previously
described settings from Bylesjö et al. [8], except that pep-
tide tolerance was set to 100 ppm and fragment tolerance
to 0.1 Da. Proteins were classified as identified if at least
two peptides (where one peptide was sequence unique)
with a Mascot score exceeding the statistically relevant
threshold (p < 0.05) were found, or just one unique pep-
tide with the required Mascot score was found, that
yielded at least four consecutive y- or b-ions with signifi-
cant signal to background ratios. A total of 424 proteins
were identified. A concatenated target-decoy database-
search strategy was used to check the false discovery rate
(FDR), which was found to be less than 1.5%. Data for
unique peptides with an e-value < 0.1 were exported in
xml format for quantification.

Peptide quantification
The MS raw data files were converted to mzXML files
using massWolf (version 4.3.1). The MS mzXML and
MASCOT xml files were parsed and processed with a
program developed in-house. Briefly, each scan was sub-
jected to smoothing using Savitzky-Golay [26] filtering
(second order polynomial, five data points, two itera-
tions) and peak areas were calculated after noise reduc-
tion. Peak mass was set to the average of the three
highest data points for each peak.
Unique peptides identified with MASCOT were matched

to the parsed MS data using the parameters detected m/z,
charge state and retention time, using a retention time
window of ± 1.0 min. Charge states were calculated by
using the first three isotopic peaks of a peptide and the
same mass tolerances for detecting the mono isotopic
peak as in the MASCOT search. In order to minimize the
number of false positive hits, only peaks with at least three
identifiable isotopic peaks showing a correct isotopic pat-
tern were accepted as matches, i.e. for peptides with a
mass less than 1800 Da, when measured as M +H, the
mono isotopic peak had to be the highest and the third
isotopic peak the lowest, with no peak of significant inten-
sity at a m/z below that of the mono isotopic peak within
the m/z range corresponding to the charge state of the
peptide. The chromatographic peak shape was determined
by identifying a peptide in subsequent scans of the MS
channel and the area under the curve was calculated by
summing the intensities for the first three isotopic peaks
for each peptide over its chromatographic peak. A total
458 unique peptides, corresponding to 271 proteins were
quantified and used in the OnPLS analysis for all variables,
out of which 243 were used in the targeted analysis. Sig-
nificantly differently expressed proteins and common
names of proteins discussed in the manuscript are listed
in Additional file 2: Table S2.2. The data are deposited in
the PRIDE database (accession numbers 31652 to 31654;
http://www.ebi.ac.uk/pride/).

http://www.ebi.ac.uk/pride/
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Metabolome analysis
Gas chromatography–mass spectrometry (GC-MS) and
liquid chromatography-mass spectroscopy (LC-MS) were
used for the metabolomic analysis, as follows.

GC-MS analysis
Metabolites were extracted, and their profiles in all sam-
ples were analyzed by GC-MS as described by Bylesjö
et al. [8] with no modifications.

UPLC-MS analysis
Chromatography was performed using a Waters Acquity
UPLC system, equipped with column oven, coupled to a
Micromass LCT Premier time-of-flight (TOF) mass
spectrometer equipped with an electrospray source oper-
ating in negative/positive ion mode in W mode with
lockspray interface for accurate mass measurements.
The source temperature was 120°C with a cone gas flow
of 10 L/hr, a desolvation temperature of 320°C and a
nebulizing gas flow of 600 L/hr. The capillary voltage
was set at 2.5 kV for negative ion mode and at 3.0 kV for
positive ion mode, with a cone voltage of 35 V, a data ac-
quisition rate of 0.15 s, and interscan delay of 0.1 s, with
dynamic range enhancement (DRE) mode activated.
Leucine enkephalin was employed as the lockmass com-
pound, infused straight into the MS at a concentration
of 500 pg/μL (in 50:50 acetonitrile:water) at a flow rate
of 30 μL/min. The normal lockmass in the DRE mode
was the C13 peak of leucine enkephalin at 555.2645 in
negative ion mode and the C13 peak at 557.2800 in posi-
tive ion mode; the extended lockmass peak was the nor-
mal ion peak observed at 554.2615 in negative ion mode
and at 556.2771 in positive ion mode. All mass spectral
data were acquired in the centroid mode, 100–1000 m/z,
with a data threshold value set to 2.
A 2 μL aliquot of extracted sample (4°C) was injected

onto a 2.1 × 100 mm, 1.7 μm BEH C18 UPLC column
(Waters) held at 40°C in a column oven. The gradient
elution buffers were A (H2O, 0.1% formic acid) and B
(acetonitrile, 0.1% formic acid), and the flow-rate was
500 μl min-1. The column was eluted with the following
gradient: 1-20% B over 4 min, 20%-40% B over 2 min,
40%-95% B over 3 min, then 4.5 min isocratic 95% B. The
UPLC-ESI/MS instrumentation was operated by the
MassLynx™ v4.1 software (Waters, UK), and the acquired data
was processed by the QuanLynx™ software (Waters, UK).

Structural identification with UHPLC-LTQ/Orbitrap mass
spectrometry
For structural elucidation of the phenolic compounds,
high mass accuracy MS and tandem mass spectrometry
(MSMS) analysis were performed using an LTQ/Orbitrap
mass spectrometer (Thermo Fisher Scientific, Bremen,
Germany) with an ESI source. Chromatographic separation
was performed with a Thermo Accela LC system, with a
column oven (held at 40°C). The eluents, column and mo-
bile phase gradient were the same as for the UHPLC-ESI-
TOF-MS. Profile mass spectra were collected in the
Orbitrap mass analyzer, operating in negative ionization
mode, with a target mass resolution of 30 000 (full width
at half maximum peak height, defined at m/z 400).
Indicated MS/MS spectra were collected after collision-
induced dissociation (CID) in the LTQ cell, using normal-
ized collision energy of 35%. External mass calibration was
performed according to the manufacturer’s guidelines.
Elemental composition of ions was calculated from the
accurate masses with Xcalibur QualBrowser software
(Thermo Scientific).

Metabolite identification GC-MS and LC-MS
GC-MS detected peaks were identified by comparing their
mass spectra and chromatographic retention indices with
those of entries in Umeå Plant Science Center’s in-house
MS library or the mass spectra library of the Max Planck
Institute in Golm (http://csbdb.mpimp-golm.mpg.de/
csbdb/gmd/gmd.html), using NIST MS-Search version 2.0
(NIST, Gaithersburg, MD). A total of 350 putative metab-
olites (all variables) were detected in the analysis, of which
56 were identified (targeted variables). To identify peaks
detected by LC-MS, their accurate masses, retention times
and MS-MS spectra were solely compared to those of en-
tries in the in-house library. From the LC-MS analysis in
negative mode, a total of 4230 mass features (metabolites)
were detected, of which 36 gave distinct fingerprints (all
variables) and five were positively identified (targeted vari-
ables). Metabolites identified in both the GC-MS and LC-
MS analyses are listed in Additional file 2: Table S3.1. The
datasets for the metabolomics data (GC-MS and LC-MS)
are available at the UPSC database (www.upsc.se/metabo-
lomicsdata) with the experiment number GC20131010.

Experiment workflow and data integration by OnPLS
The OnPLS method can handle noisy, multicollinear
datasets with many more variables than observations
(samples), which is a typical situation in biochemical and
biological applications. Data acquired from all platforms
were initially preprocessed, prior to integration by
OnPLS. The transcript datasets were log2-transformed
and mean-centered per microarray. The transcriptomic,
proteomic and metabolite (extracted chromatographic
peak) data for the transgenics were all normalized, rela-
tive to WT, by scaling each value to unit variance with
the mean and standard deviation of the corresponding
WT data. The WT values were used as internal refer-
ences across the profiling platforms [8].
OnPLS [9,10] is a recently published extension of

O2PLS [27,28] that generalizes to multiblock cases
where several blocks of data are subjected to analysis.

http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html
http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html
http://www.upsc.se/metabolomicsdata
http://www.upsc.se/metabolomicsdata
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The problem that O2PLS aims to solve is described as
follows: Given two data blocks X1 (M ×N) and X2 (M ×K)
we can split the variation in each X block into two parts,
X =XJ +XU + E, where XJ and XU correspond to the joint
and unique variation respectively. E is the residual matrix.
The joint variation is overlapping and shared between the
data blocks and the unique variation is present only in
that data block. O2PLS was developed for two blocks of
data and OnPLS is a recent generalization for more than
two blocks of data providing symmetry in the modeling
and thereby enhancing the interpretation; compared
to O2PLS where models are obtained from an order
dependent analysis.
OnPLS [9,10] models the globally joint variation

(shared between all blocks), the locally joint variation
(variation that is shared between some, but not all
blocks) and the unique variation (variation in one block
not shared with any other block). A graphical overview
of this is presented in Figure 2.
As an example, the first matrix in an OnPLS model

for three blocks obtains the decomposition

X1 ¼ X1∩X2∩X3ð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
globally joint part

þ X1∩X2ð Þ jX3ð Þþ X1∩X3ð Þ jX2ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
locally joints parts

þ X1∩ X2∪X3ð Þ����������� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
unique part part

where ∪ is the set union operator, ∩ is the set intersection
operator, ∖ is the set difference operator and �X is the set
Global
LocalLocal

Local

X

Unique Unique

Unique

1

X2 X3

Figure 2 An illustration of what OnPLS does for three blocks
X1 X2 and X3. It separates each block into the parts that it has in
common with the other blocks. The parts are globally joint (shared
between all blocks), locally joint (shared between some, but not all,
blocks) and unique, shared with no other block.
complement. See Reference [29] for a detailed description
of theory and method of OnPLS.
The variable importance values (VIP) [30] were used

to select the most important variables that were also sig-
nificant according to the Jack-knifed confidence interval
(Zamboni et al. [31], Bylesjö et al. [7,8]). Variables having
VIP values exceeding 0.5 were deemed to be significant.

Pathway analysis
Efficient visualization tools are required for robust sys-
tems biological interpretation of the high-dimensional
data generated from combined profiling (transcriptomic,
proteomic and metabolomic) [32]. For this purpose we
used two freely available software packages: Paintomics
Version 2.0 (www.paintomics.org; Garcia-Alcalde et al.
[33]) to map and visualize the gene, protein and meta-
bolite measurements in KEGG pathways; and MapMan
(http://mapman.gabipd.org; Thimm et al. [34]) to visualize
the transcriptomic and proteomic variables, as well as
transcripts/proteins not described by KEGG. These pack-
ages provide efficient tools for visualizing metabolic dif-
ferences between the transgenic and WT plants, and
characterizing the key affected molecular processes. All
targeted variables in the transcriptomics, proteomics and
metabolomics datasets with their identified pathways are
listed in Additional file 2: Table S1.1, Additional file 2:
Table S1.2, Additional file 2: Table S2.1, Additional file 2:
Table S2.2 and Additional file 2: Table S3.1, Additional
file 2: Table S3.2, respectively. Subcellular localization of
the proteins was derived from the Arabidopsis Informa-
tion Resource (TAIR; http://arabidopsis.org) and listed
in Additional file 2: Table S4.1.

Results and discussion
Contrary to our previous work which was focused on
the whole stem and apical parts of the plants (Srivastava
et al. 2007) [17], the present study focused on the spe-
cific cambium region to explore the role of ROS on plant
development. Similar studies in plants have focused more
on single gene, protein and metabolite responses, selected
pathway or transcript-protein, transcript-metabolite or
protein-metabolite interactions; however this study is fo-
cused on all levels [35-43]. The global approach presented
here is needed in order to effectively target and elucidate
multi-level oxidative response in plants [44,45].

Integrated omics data (transcript, protein and metabolite
levels) by OnPLS
We built two OnPLS models, one based on all variables
(genes, proteins and metabolites) and one based only on
the targeted variables (genes with corresponding proteins,
and identified metabolites). In this way, we used the first
model for exploratory purposes and the second model for
biological interpretation including the investigation of

http://www.paintomics.org
http://mapman.gabipd.org
http://arabidopsis.org
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relationships between gene and protein expression [46].
The first model was built based on 14,619 genes, 271 pro-
teins and 386 metabolites (350 GCMS and 36 LCMS).
This OnPLS model had two globally joint components be-
tween all three blocks capturing 70% of the variation in
transcripts, 96% in proteins and 86% in metabolites. The
second, targeted OnPLS model was built based on 243
transcripts and proteins (proteins were matched to their
corresponding gene names) and 61 identified metabolites.
This OnPLS model had two globally joint components
capturing 89% of the variation in transcripts, 96% in pro-
teins, and 95% in metabolites. The coefficient of variations
for each genotype was 0.1% (WT), 5% (AS-SOD9) and 2%
(AS-SOD24), which shows that the biological variability is
small compared to the variation linked to the mutation
(between groups) as observed visually in the score plot
(Figure 3a). This is expected given the fundamental effect
the transformation had on the metabolism.
Overall the targeted dataset go in the same direction

as the dataset containing all variables, and so we focused
our analysis on the globally joint components of the tar-
geted model. From the targeted model, 65 (Additional
file 2: Table S1.2) out of 243 genes (Additional file 2:
Table S1.1), 85 (Additional file 2: Table S2.2) out of 243
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Figure 3 The genotype effect. (A) Joint genotype effect scores from the t
(C) proteins and (D) metabolites. Many significant compounds are highlighte
“red colored” arrow heads and tails represent increasingly high levels of transc
WT plants, and vice versa, respectively. The variation in the WT is too small to
proteins (Additional file 2: Table S2.1) and 29 (Additional
file 2: Table S3.2) out of 61 identified metabolites
(Additional file 2: Table S3.1) were significantly affected in
the transgenics. The targeted OnPLS model revealed that
the joint covariance captures genotype effects, which dis-
tinctly separate the transgenic plants from WT counter-
parts (Figure 3a). However, a clear difference between the
two transgenic lines was also observed. Figure 3 shows the
results of the integrated analysis. All four plots in Figure 3
are connected through the joint variation. The joint geno-
type effect observed in the transcripts, proteins and me-
tabolites respectively are displayed in separate plots to
facilitate the interpretation. Aldolase, glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), 4-aminobutyrate
(GABA) and other variables highlighted in Figure 3b,c,d
are discussed in the text.
Tables 1 and 2 provide arrows indicating up-regulation

or down-regulation for the significantly differentially
expressed proteins, transcripts and metabolites, respect-
ively. Additional information of these is also found in
Additional file 2: Table S1.2; Additional file 2: Table S2.2;
Additional file 2: Table S3.2. Although several loci encod-
ing for proteins may have the same activity, paralogs of
protein have been shown to have different functions (e.g.
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argeted variable model, and corresponding loadings for: (B) transcripts,
d in their respective plots and discussed in the text. The directions of the
ripts/proteins/metabolites in the transgenic hipI-SOD plants relative to
be visible on this score plot.



Table 1 Overview of protein and transcript that are significantly differentially expressed in the targeted OnPLS model

JGI V2.2 ID MapMan name MapMan symbol AS-SOD9 AS-SOD24

P / T P / T

POPTR_0002s14740 Amino acid metabo. 3-phosphoshikimate 1-carboxyvinyltransferase ↑ / ↑ ↑ / ↑

POPTR_0013s05850 ATCIMS (cobalamin-independent methionine synthase) ↑ / ― ↓ / ―

POPTR_0010s16420 Cell wall RGP3 (reversibly glycosylated polypeptide 3) ↓ / ↓ ↓ / ↑

POPTR_0017s13350 RGP2 (reversibly glycosylated polypeptide 2) ↓ / ↓ ↓ / ↓

POPTR_0017s12760 UDP-glucose 6-dehydrogenase ↑ / ― ↓ / ―

POPTR_0009s13270 Cell.cycle Peptidyl-prolyl cis-trans isomerase/cyclophilin (CYP2)/rotamase ↓ / ― ↓ / ―

POPTR_0003s21080 Cell.organisation TUA5 (tubulin alpha-5) ↓ / ― ↓ / ―

POPTR_0002s09610 ANNAT1 (annexin arabidopsis 1) ↓ / ― ↓ / ―

POPTR_0001s31700 ACT7 (actin 7) ↓ / ― ↓ / ―

POPTR_0001s04180 TUA5 (tubulin alpha-5) ↓ / ― ↓ / ―

POPTR_0001s29670 TUA6 (tubulin alpha-6 chiain) ↓ / ― ↓ / ―

POPTR_0002s11250 TUA6 (tubulin alpha-6 chiain) ↓ / ― ↓ / ―

POPTR_0006s15090 DNA.synthesis 3, NFA3 ↑ / ↓ ↓ / ↓

POPTR_0009s03310 H2B/HTB2 (histone h2b) ↓ / ― ↓ / ―

POPTR_0016s12760 Fermentation Pyruvate decarboxylase ↓ / ↑ ↓ / ↑

POPTR_0001s38560 Gluconeogenesis Malate dehydrogenase (NAD), mitochondrial ↑ / ― ↓ / ―

POPTR_0006s17940 Glycolysis Fructose-bisphosphate aldolase ↑ / ↑ ↓ / ↑

POPTR_0015s14380 LOS2 (low expression of osmotically responsive genes 1) ↑ / ― ↓ / ―

POPTR_0010s06560 GAPDH.3 (glyceraldehyde-3-phosphate dehydrogenase (GAPDH)) ↓ / ― ↓ / ―

POPTR_0012s09570 GAPDH 1.1 ↓ / ― ↓ / ―

POPTR_0006s11400 2,3-biphosphoglycerate-independent phosphoglycerate mutase ↑ / ― ↓ / ―

POPTR_0002s23510 Hormone metabolism ATB2 ↓ / ↑ ↓ / ↑

POPTR_0001s05100 Lipid metabolism. MOD1 (mosaic death 1) ↓ / ― ↓ / ―

POPTR_0007s01850 Major CHO metabolism pfkB-type carbohydrate kinase family protein ↑ / ↑ ↑ / ↑

POPTR_0002s14730 Transketolase ↑ / ― ↑ / ―

POPTR_0001s05690 AAC2 (ADP/ATP carrier 2) ↑ / ― ↓ / ―

POPTR_0002s25950 Misc. Acid phosphatase class B family protein ↓ / ― ↓ / ―

POPTR_0006s18240 GDSL-motif lipase/hydrolase family protein ↑ / ― ↓ / ―

POPTR_0010s15250 Tropinone reductase, putative/tropine dehydrogenase ↓ / ↓ ↓ / ↑

POPTR_0007s07960 N-metabolism ATGSR1 (Arabidopsis thaliana glutamine synthase clone R1) ↑ / ― ↓ / ―

POPTR_0013s05480 GDH1 (glutamate dehydrogenase 1) ↓ / ― ↓ / ―

POPTR_0001s10670 Nucleotide metabolism NDPK1 (nucleoside diphosphate kinase 1) ↑ / ― ↓ / ―

POPTR_0001s32490 Protein.aa activation Methionine–tRNA ligase, putative/methionyl-tRNA synthetase ↑ / ― ↓ / ―

POPTR_0006s24090 Protein.degradation APM1 (aminopeptidase M1) ↓ / ― ↓ / ―

POPTR_0016s12720 ATG2 (G2p-related protein) ↓ / ― ↓ / ―

POPTR_0005s02520 RPT5A (regulatory particle triple-A 5A) ↓ / ― ↓ / ―

POPTR_0018s14290 PBA1 (20S proteasome beta subunit A 1) ↑ / ↑ ↑ / ↑

POPTR_0009s15910 Protein.folding Chaperonin ↓ / ― ↓ / ―

POPTR_0001s35790 Protein.folding Chaperonin ↓ / ― ↓ / ―

POPTR_0001s14040 HSP60 (Heat shock protein 60) ↓ / ― ↓ / ―

POPTR_0008s04230 Protein.synthesis Elongation factor 1-alpha/EF-1-alpha ↑ / ↑ ↓ / ↑

POPTR_0001s23190 Elongation factor 1-beta/EF-1-beta ↑ / ― ↓ / ―

POPTR_0012s09840 Elongation factor 1-beta, putative/EF-1-beta ↓ / ↓ ↓ / ↓

Srivastava et al. BMC Genomics 2013, 14:893 Page 8 of 15
http://www.biomedcentral.com/1471-2164/14/893



Table 1 Overview of protein and transcript that are significantly differentially expressed in the targeted OnPLS model
(Continued)

POPTR_0002s05220 ↑ / ― ↓ / ―

POPTR_0009s12150 40S ribosomal protein S25 (RPS25B) ↑ / ― ↑ / ―

POPTR_0016s05530 40S ribosomal protein S2 (RPS2C) ↓ / ― ↓ / ―

POPTR_0008s04400 40S ribosomal protein S23 (RPS23B) ↓ / ― ↓ / ―

POPTR_0006s21210 ATRPS5B (ribosomal protein 5B) ↓ / ― ↓ / ―

POPTR_0004s09830 40S ribosomal protein S25 (RPS25B) ↑ / ↑ ↑ / ↑

POPTR_0001s26950 40S ribosomal protein S8 (RPS8B) ↑ / ― ↓ / ―

POPTR_0002s24410 60S ribosomal protein L13A (RPL13aC) ↓ / ― ↓ / ―

POPTR_0002s14250 60S ribosomal protein L15 (RPL15A) ↓ / ― ↓ / ―

POPTR_0012s03450 60S ribosomal protein L19 (RPL19B) ↓ / ― ↓ / ―

POPTR_0004s07620 60S ribosomal protein L19 (RPL19B) ↓ / ― ↓ / ―

POPTR_0001s35630 60S ribosomal protein L27 (RPL27C) ↓ / ― ↓ / ―

POPTR_0008s05970 60S ribosomal protein L35a (RPL35aC) ↓ / ― ↓ / ―

POPTR_0018s13700 60S ribosomal protein L7 (RPL7C) ↓ / ― ↓ / ―

POPTR_0002s18010 60s acidic ribosomal protein P1 ↓ / ↑ ↓ / ↑

POPTR_0013s01220 Protein.targeting AT-IMP (Arabidopsis thaliana importin alpha) ↓ / ― ↓ / ―

POPTR_0002s19210 ATARFA1E (ADP-ribosylation factor A1E) ↓ / ↑ ↓ / ↑

POPTR_0008s12550 PS.lightreaction. ATP synthase beta chain 2, mitochondrial ↓ / ↓ ↓ / ↑

POPTR_0006s11570 Redox. ATMDAR1 (monodehydroascorbate reductase 1) ↑ / ― ↓ / ―

POPTR_0006s13440 APX2 (ascorbate peroxidase 2) ↓ / ― ↓ / ―

POPTR_0001s44990 TPX1 (thioredoxin-dependent peroxidase 1) ↑ / ― ↑ / ―

POPTR_0003s11350 ATHIP1 ( HSP70-interacting protein 1) ↓ / ― ↓ / ―

POPTR_0005s25420 ATTRX1 (Arabidopsis thaliana thioredoxin H-type 1) ↑ / ↑ ↑ / ↑

POPTR_0002s19940 ATPDIL2-1/MEE30/UNE5 (PDI-like 2–1) ↑ / ― ↑ / ―

POPTR_0014s15820 ATPDIL2-2 (PDI-like 2–2) ↑ / ― ↓ / ―

POPTR_0018s03000 RNA Chloroplast nucleoid DNA-binding protein ↓ / ― ↓ / ―

POPTR_0004s16260 ATGRP7 (cold, circadian rhythm, and rna binding 2) ↑ / ↑ ↑ / ↑

POPTR_0002s03580 Secondary metabolism Isoflavone reductase ↓ / ― ↓ / ―

POPTR_0002s10000 Signaling GRF2 (general regulatory factor 2) ↓ / ― ↓ / ―

POPTR_0004s17840 Stress.abiotic.cold ATGRP2B (glycine-rich protein 2B) ↑ / ↓ ↓ / ↓

POPTR_0001s18040 HSP91 (heat shock protein 91) ↓ / ― ↓ / ―

POPTR_0009s08320 mtHSC70-2 (heat shock protein 70) ↑ / ― ↑ / ―

POPTR_0004s04450 Pollen Ole e 1 allergen and extensin family protein ↓ / ― ↓ / ―

POPTR_0008s16670 TCA Malate dehydrogenase, cytosolic ↓ / ― ↓ / ―

POPTR_0004s07320 TCA Isocitrate dehydrogenase ↑ / ― ↓ / ―

POPTR_0013s11070 Transport.misc SEC14 cytosolic factor family protein ↓ / ↓ ↓ / ↓

POPTR_0001s36710 Not assigned 2-oxoacid dehydrogenase family protein ↑ / ↑ ↓ / ↑

POPTR_0010s16050 Stable protein 1-related ↓ / ↑ ↓ / ↑

POPTR_0602s00200 VEP1 (vein patterning 1) ↓ / ― ↓ / ―

POPTR_0017s10720 Unknown protein ↓ / ― ↓ / ―

POPTR_0017s13710 Unknown protein ↑ / ― ↑ / ―

POPTR_0005s26930 Unknown protein ↑ / ― ↑ / ―

Columns indicate Populus trichocarpa gene ID; Mapman name with similar classes grouped in rows; Mapman symbol; and AS-SOD9, AS-SOD24 protein (P) and
transcript (T) expression levels, respectively. Symbols indicate: ↑, upregulated (relative to WT); ↓, downregulated; - not significantly differentiated expression. Data
shown in Additional file 2: Table S2.2, Additional file 2: Table S1.2.
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Table 2 Overview of metabolites (GC-MS and LC-MS) that
are significantly differentially expressed in the targeted
OnPLS model

Class Metabolite AS-SOD9 AS-SOD24

Phenolic
glycoside

Cinnamoyl-hexose ↑ / ↑

Coumaroyl-hexose ↑ / ↑

Ferulate-glycoside ↑ / ↑

Amino Acid 3-Cyanoalanine ↑ / ↑

Amine alcohol Ethanolamine ↓ / ↓

Amino acid Glutamic acid ↑ / ↑

Ornithine ↑ / ↑

Arginine ↑ / ↑

GABA
(4-aminobutyric acid)

↓ / ↓

Aspartic acid ↑ / ↑

Cycloleucine ↑ / ↑

Pyroglutamic acid ↑ / ↑

Phenylalanine ↑ / ↓

Valine ↑ / ↑

Glycine ↑ / ↑

Dicarboxylic
acid

Glutaric acid ↑ / ↑

Disaccharide Disaccharide ↑ / ↑

Sucrose ↑ / ↓

Flavonoid Flavonoid ↑ / ↑

Glucopyranoside Salicylic
acid-Glucopyranoside

↓ / ↓

Hexose
phosphate

Fructose-6-Phosphate ↑ / ↑

Glucose-6-Phosphate ↑ / ↑

Hydroxy acid Shikimic acid ↑ / ↑

Nucleoside Uridine ↓ / ↓

Organic acid Threonic acid ↑ / ↑

Oxalic acid ↑ / ↑

Phosphate Inositol phosphate-like ↓ / ↑

Trisaccharide Raffinose ↑ / ↓

Xylose ↓ / ↓

Columns indicate: metabolites with similar classes grouped in rows; metabolite
name; and abundance in AS-SOD9 and AS-SOD24 (relative to WT). Symbols
indicate: ↑, upregulated; ↓, downregulated. Data shown in Additional file 2:
Table S3.2.
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due to duplication of the genome as in poplar) [47], there-
fore quantitative data on protein level and their corre-
sponding transcript have been selected for comparison in
this targeted approach (Table 1). As the data of the two
transgenic lines are normalized with respect to WT, only
two sources of variation exist in the data; how the trans-
genic lines differ from WT and how they differ between
themselves. In the following sections we will only focus on
how the transgenic lines differ from WT using the tar-
geted OnPLS model.
The majority of the significant regulated transcripts

and metabolites from the OnPLS targeted analysis
showed an up-regulation in the transgenic lines (Tables 1
and 2, Additional file 2: Table S1.2; S3.2). However, the
proteins showed an opposite tendency, where most of
the proteins were down-regulated (Table 1). The direc-
tion (up or down-regulation) of the response to the
stress between the transgenic lines, AS-SOD9 and AS-
SOD24, was relatively similar for the significant tran-
scripts, proteins and metabolites (approximately 80% of
the variance, Tables 1 and 2, Additional file 2: Table S1.2;
Additional file 2: S2.2; Additional file 2: S3.2). When com-
paring the coregulation between the protein and the
corresponding transcript, extracted from Table 1, it was
found to be low (13%).
Steady state levels of the proteome depend on tran-

scription, the levels of the transcripts, translation and
protein degradation. Here we find diverse examples of
regulation when we compare protein and transcript
levels during perturbation by superoxide in the cambial
region of Populus. Several studies have found a poor link
between changes in transcript and protein levels in
response to perturbation [48-50]. The regulation of
changes in mRNA level is predominately regulated at
the level of transcription while mRNA degradation is
generally constant in mammalian cells [51]. For proteins
levels it has been found that protein synthesis rates are
the primary drivers of differentiation [52]. However,
these authors conclude that transcriptomes and pro-
teomes correlate very poorly because there is still
substantial variance imparted at the level of protein syn-
thesis and degradation. Another suggested concept was
that if protein expression can be analysed, they could be
used to formulate a more accurate biological predictions
than what mRNA expression changes alone would yield
[53]. The strength in our experiment however is the
integration of transcripts, proteins and metabolites, to
obtain significant biological information.

Biological interpretation
After ‘painting’ KEGG and MapMan pathway maps with
the omics datasets, we found several interesting path-
ways associated with differential transcripts, proteins
and metabolites (Additional file 2: Table S1.2, Additional
file 2: Table S2.2, Additional file 2: Table S3.2). Figure 4
shows sections of the KEGG Glycolysis/Gluconeogenesis
and Pentose Phosphate Pathway maps, some features of
which are discussed below.
In the transgenic trees, high expression levels were

detected for proteins related to ROS detoxification and
maintenance of cells’ redox balance. Cytosolic ascorbate
peroxidase (APX2) protein (POPTR_0006s13440.1) and



Figure 4 KEGG Glycolysis/Gluconeogenesis pathway and Pentose Phosphate Pathways ‘painted’ with transcriptomic, proteomic and
metabolomic data from the targeted OnPLS model. Black-bordered entry boxes indicate significant differences between the transgenic and
WT plants at both transcript and protein levels. The first three sections of each gene box (left to right) indicate WT, AS-SOD9 and AS-SOD24
transcript levels, respectively, and the last two protein levels in AS-SOD9 and AS-SOD24 lines, respectively. The first sections in the metabolite
entry boxes represent WT and the colored boxes levels in the AS-SOD9 and AS-SOD24 lines. Reduced levels in the transgenics are colored blue
and increased levels red.
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transcript (POPTR_0016s08580.1) levels were lower (relative
to WT), and monodehydroascorbate reductase (MDAR1,
POPTR_0006s11570.1) protein levels were higher in AS-
SOD9 and lower in AS-SOD24 plants, which may be indi-
cative of prolonged, severe oxidative stress. Moreover,
there was a pronounced accumulation of threonate, a
breakdown product of ascorbate, in both transgenic lines.
Ascorbate is one of the principal antioxidant molecules in
the cell and the production of ascorbate breakdown prod-
ucts indicates a failure to recycle all of the oxidized
ascorbate via the ascorbate-glutathione cycle [54,55]. The
observed expression levels of APX2 (cytosolic) and
MDAR1 (peroxisomal) might be influenced by their
localization in different compartments and linked to
ascorbate and threonine levels. APXs have been reported
to have declining activity with sensitivity to low ascorbate
concentration [56,57] and induction on mRNA level [58].
A cytosolic thioredoxin (TRX) h-type1 paralog (POPTR_

0005s25420.1) was induced at both protein and transcript
levels in the transgenic lines. In addition, a thioredoxin-
dependent cytosolic peroxidase protein (TPX1, POPTR_
0001s44990.1) was upregulated in the transgenic lines.
TRXs are small, ubiquitous proteins involved in the reduc-
tion of disulfide bridges in a variety of target enzymes that
are present in all sub-cellular compartments and involved
in many biochemical reactions. Thus, they have major
effects on the post-translational modification of proteins
and redox homeostasis, since dithiol-disulfide exchange re-
actions are heavily involved in both of these processes.
These types of proteins play important roles in protecting
organisms against the toxic effects of ROS and regulating
intracellular signal transduction [59,60].
Other proteins that are linked to stress and redox

regulation and were differentially expressed in the trans-
genic lines, relative to WT, were heat shock proteins
(HSPs), protein disulfide isomerase (PDI), glycine-rich
RNA-binding proteins, actin and tubulins [61]. Elevated
levels of the mtHSC70 protein (POPTR_0009s08320),
was found in the transgenic lines. AtDjB1, in association
with mtHSC70, functions as an ATPase and plays a
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crucial role in limiting oxidative damage caused by heat
stress [62]. The protein level of paralogs of PDIL-2 (PDI-
like-2, POPTR_0002s19940 and POPTR_0014s15820) in-
creased in the transgenic lines without a corresponding
increase in transcripts. PDI contains thioredoxin (TRX)
domains and act as a catalyst of disulfide bond formation
in the oxidizing environment of the ER, hence stabilizing
the tertiary and quaternary structures of protein folding
[63]. Interestingly, in Arabidopsis PDI2 was suggested to
have functional roles in the nucleus, interacting with the
nuclear embryo transcription factor MEE8, in addition to
its more studied role in the ER lumen [64]. Another sign
of increased oxidative stress in the transgenic lines is up-
regulated levels of flavonoid, which probably will have
antioxidant capacity, in the transgenic lines [65].
We found that carbon metabolism pathways, such as

the glycolysis/gluconeogenesis and pentose phosphate
pathway (PPP) were strongly affected in the transgenics.
Affected components of the glycolysis/gluconeogenesis
KEGG pathway included pyruvate decarboxylase (POPTR_
0016s12760.1, PDC1.5), which was upregulated at tran-
script level but downregulated at protein level (Figure 4),
and a cytosolic fructokinase (POPTR_0007s01850.1), which
was upregulated at both transcript and protein levels. Fur-
ther indications of shifts in the transgenics’ carbon metab-
olism include the following: Fructose-bisphosphate aldolase
(POPTR_0006s17940.1) and glyceraldehyde-3-phosphate
dehydrogenase (POPTR_0015s10330.2, GAPDH 1.2) was
upregulated at the transcript but downregulated at the
protein level (POPTR_0010s06560.1 GAPDH.3, POPTR_
0012s09570.1 GAPDH 1.1; Additional file 2: Table S1.2,
Additional file 2: Table S2.2; Table 1). Transaldolase
(POPTR_0003s16030.1) and transketolase (POPTR_0002s
14730.1), both of which provide reversible links between
the PPP and glycolysis [66], were upregulated at transcript
and protein levels respectively. PPP and glycolysis have
been suggested to contribute to ROS balance and scaven-
ging [67-69]. The upregulation of the glycolysis participants
fructose-6-phosphate and glucose-6-phosphate, in conjunc-
tion with an observed downregulation of sucrose, xylose
and upregulation of transketolase (key components of the
PPP), is indicative of a shift towards the breakdown of car-
bohydrates with a profound rearrangement of primary car-
bon metabolism in response to an imbalanced redox state
in the transgenics. These findings suggest that there are
strong connections between glycolysis, PPP, carbon metab-
olism and oxidative stress, possibly resulting in enhanced
reducing power in the form of increased levels of NADPH
or NADH, thus raising the capacity for reductive biosyn-
thesis [69,70]. These observations support the hypothesis
that the remodeling of carbon metabolism may be part of
an “emergency strategy” that reroute the metabolic flux
from glycolysis to the PPP as an immediate and protective
response to counteract oxidative stress [70]. This hypothesis
has to be validated in plants since most of the experiments
supporting this have been performed in other systems and
mainly on the transcript level [66,68]. Although several
studies have discussed the glycolysis-PPP complex pathway
relationship in metabolites and transcripts [71,72], there is a
need for future detailed multi-level (transcript-protein-me-
tabolite) study of these two pathways in plants.
One group of proteins that was highly downregulated

in the transgenic plants was the ribosomal proteins
(r-proteins; Additional file 2: Table S1.2, Additional file 2:
Table S2.2; Table 1). However, transcripts encoding the
r-proteins showed an opposite trend. Ribosome biogen-
esis and mRNA translation are highly energy-demanding
processes. Thus, limitations in energy supply restrict
translation capacity (as well as cell growth and differenti-
ation). Low energy levels trigger cells to switch to an
energy preservation mode, in which essential cell func-
tions and viability are maintained, but ribosome biogenesis
is inhibited. The downregulation of r-protein biogenesis in
the transgenic plants discussed here supports the hypo-
thesis that it might be part of a reprogramming of plant’s
energy transformation and utilization machinery under
energy limitations.
The 26S proteasome is highly abundant both in the

nucleus and cytosol, controlling central cellular signaling
processes. Mis-folded and otherwise defective proteins
are eliminated by degradation, frequently by 26S protea-
somes following ubiquitin-tagging [73,74]. In addition,
free 20SP has been shown to be able to use oxidized
proteins as targets in a Ub-independent pathway, i.e. it
does not require a poly-(Ub)-tag for proteasomal degrad-
ation. Here, RPN10 (regulatory particle non-ATPase sub-
unit 10, POPTR_0004s17940.1) and RPT3 (AAA-ATPase
subunit, root phototropism 3, POPTR_0016s02790.1) was
upregulated at the transcript level, but protein levels of
these components were not affected in the transgenic
plants. Furthermore, PBA1 (20S proteasome beta subunit
A1, POPTR_0018s14290.1) was upregulated at both pro-
tein and transcript levels in the transgenic plants.
In the transgenic lines glutamate was highly upregu-

lated and GABA downregulated. These two compounds
participate in the GABA shunt, a metabolic pathway that
bypasses two steps of the TCA cycle [75]. The major role
of GABA in plants has been suggested to be in primary
metabolism, but it may possibly also act as a signal [76].
We observed reduced levels of a salicylic-sugar conju-
gate, salicylic-glucopyranoside, in the transgenic plants,
indicating that changes in salicylic acid metabolism that
promote reductions in ROS levels may be involved in
oxidative stress responses [77].

Conclusion
The objective of the presented study was to obtain infor-
mation about multi-level (transcriptomic, proteomic and
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metabolomics) responses to oxidative stress in a specific
cell tissue, the cambium, in our model Populus system.
Data integration was based on the OnPLS method for its
unique features of handling complex multi-omic data-
sets, extracting global and locally joint variations from
them and, thus, facilitating the acquisition of biological
understanding. OnPLS provided information about func-
tional and pathway responses to oxidative stress in the
examined transgenic plants. Global correlation values
were obtained, confirming the utility of the strategy and
highlighting the need for further development and appli-
cation of OnPLS-based methods in systems biology.
The biological results obtained of the global responses

to oxidative stress indicated the following responses:
First, as the plants were stressed, antioxidant processes
were induced to cope with the oxidative stress, resulting
in misfolding and a subsequent degradation of oxidized
proteins that appeared to take place via an induced, free
20S proteosome. Secondly, the sugars needed for energy
production to keep minimal processes were activated via
glycolysis and PPP, highlighting a somewhat unknown
role of PPP in oxidative stress in Populus model system
and need for further proteomic validation in plants.
Downregulation of protein synthesis was also observed,
which should provide major savings in energy consump-
tion. These responses indicate the induction of matur-
ation and cell death-associated signals in the transgenics,
in addition to defense responses. Thus, our results sug-
gest that premature maturation events (e.g. cell death)
also occur in response to prolonged abiotic stress. Fur-
thermore the results illustrate a divergence in transcript
and protein levels and thus demonstrate the requirement
of combined analysis to make an adequate biological
interpretation.
In summary, we have hypothesized a biological se-

quence of responses that we can envisage from our com-
bined “omics” study. However, we do realize that further
validation have to be performed. All platforms, tran-
scriptomics, proteomics and metabolomics, develop rap-
idly and will help to gain more and better information in
the imminent future. But we strongly believe that one
important approach to gain knowledge in cell biology is
to combine results from different types of analyses, as
done and shown here with the OnPLS method.
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Subcellular localization of proteins in transgenic hipI-SOD plants compared
with WT sorted by location designation.

Competing interests
We declare that we do not have competing interests.

Authors’ contributions
VS, OO, GW Conceived and designed the experiment, VS, OO, JB, TL, PR, RN,
MA, AJ, PJ, EF, JQ, JK, MM, TM, JT, TRH, GW conducted the experiments and
analyzed the data, VS, OO, JB, MA, TM, JT, TRH, GW drafted the manuscript,
TM, JT, TRH, GW supervised the project. All authors have read and approved
the final version of this manuscript.

Acknowledgments
This work was supported by grants to the Swedish University of Agricultural
Sciences from the Swedish Research Council FORMAS/SIDA, the Swedish
Foundation for Strategic Research, the Swedish Foundation for National
Cooperation in Research and Higher Education, the Kempe Foundation, and
the Swedish Governmental Agency for Innovation Systems through the
UPSC Berzelii Centre for Forest Biotechnology. Support from the BIOIMPROVE
“Bioimprove - Improved biomass and bioprocessing properties of wood”
program financed by the Swedish Research Council Formas is also
acknowledged.
The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium (http://proteomecentral.proteomexchange.
org) via the PRIDE partner repository [78] with the dataset identifier
PXD000532 and doi:10.6019/PXD000532.

Author details
1Umeå Plant Science Centre, Department of Forest Genetics and Plant
Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå,
Sweden. 2Umeå Plant Science Centre, Department of Plant Physiology, Umeå
University, SE-90187 Umeå, Sweden. 3Department of Chemistry, Umeå
University, SE-90187 Umeå, Sweden. 4Computational life science cluster
(CLiC), Department of Chemistry, Umeå University, Umeå, Sweden.
5Department of Mathematics and Mathematical Statistics, Umeå University,
SE-90187 Umeå, Sweden. 6Department of Clinical Microbiology, Clinical
Bacteriology, Umeå University, SE-90187 Umeå, Sweden. 7Department of
Molecular Cell Biology, Institute of Plant Genetics and Crop Plant Research,
06466 Gatersleben, Germany. 8Department of Chemistry, Biotechnology and
Food Science, Norwegian, University of Life Sciences, 1432 Ås Norwegian,
Norway. 9Division of Glycoscience, School of Biotechnology, Royal Institute of
Technology, AlbaNova University Centre, S-106 91 Stockholm, Sweden.
10Department of Civil, Environmental and Natural Resources Engineering,
Sustainable Process Engineering, Luleå University of Technology, 971 87
Luleå, Sweden.

Received: 15 July 2013 Accepted: 27 November 2013
Published: 17 December 2013

References
1. Mittler R: Oxidative stress, antioxidants and stress tolerance. Trends Plant

Sci 2002, 7:405–410.
2. Higashi Y, Hirai MY, Fujiwara T, Naito S, Noji M, Saito K: Proteomic and

transcriptomic analysis of Arabidopsis seeds: molecular evidence for
successive processing of seed proteins and its implication in the stress
response to sulfur nutrition. Plant J 2006, 48:557–571.

3. Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita
M, Fujiwara T, Saito K: Integration of transcriptomics and metabolomics
for understanding of global responses to nutritional stresses in
Arabidopsis thaliana. Proc Natl Acad Sci U S A 2004, 101:10205–10210.

4. Yuan JS, Galbraith DW, Dai SY, Griffin P, Stewart CN Jr: Plant systems
biology comes of age. Trends Plant Sci 2008, 13:165–171.

http://www.biomedcentral.com/content/supplementary/1471-2164-14-893-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-893-S2.xlsx
http://proteomecentral.proteomexchange.org
http://proteomecentral.proteomexchange.org


Srivastava et al. BMC Genomics 2013, 14:893 Page 14 of 15
http://www.biomedcentral.com/1471-2164/14/893
5. Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, Kanaya
S, Nakamura Y, Kitayama M, Suzuki H, Sakurai N, Shibata D, Tokuhisa J,
Reichelt M, Gershenzon J, Papenbrock J, Saito K: Elucidation of gene-to-
gene and metabolite-to-gene networks in Arabidopsis by integration of
metabolomics and transcriptomics. J Biol Chem 2005, 280:25590–25595.

6. Carrari F, Baxter C, Usadel B, Urbanczyk-Wochniak E, Zanor MI, Nunes-Nesi A,
Nikiforova V, Centero D, Ratzka A, Pauly M, Sweetlove LJ, Fernie AR:
Integrated analysis of metabolite and transcript levels reveals the metabolic
shifts that underlie tomato fruit development and highlight regulatory
aspects of metabolic network behavior. Plant Physiol 2006, 142:1380–1396.

7. Bylesjö M, Eriksson D, Kusano M, Moritz T, Trygg J: Data integration in
plant biology: the O2PLS method for combined modeling of transcript
and metabolite data. Plant J 2007, 52:1181–1191.

8. Bylesjö M, Nilsson R, Srivastava V, Grönlund A, Johansson AI, Jansson S,
Karlsson J, Moritz T, Wingsle G, Trygg J: Integrated analysis of transcript,
protein and metabolite data to study lignin biosynthesis in hybrid
aspen. J Proteome Res 2009, 8:199–210.

9. Löfstedt T, Trygg J: OnPLS—A novel multiblock method for the
modelling of predictive and orthogonal variation. J Chemometr 2011,
25:441–455.

10. Löfstedt T, Hanafi M, Mazerolles G, Trygg J: OnPLS path modelling.
Chemom Intell Lab Syst 2012, 118:139–149.

11. Apel K, Hirt H: Reactive Oxygen Species: metabolism, oxidative stress,
and signal transduction. Annu Rev Plant Physiol Plant Mol Biol 2004,
55:373–399.

12. Mittler R, Vanderauwera S, Nobuhiro S, Miller G, Tognetti VB, Vandepoele K,
Gollery M, Shulaev V, Breusegem FV: ROS signaling: the new wave?
Trends Plant Sci 2011, 16:300–309.

13. Scandalios JG: Oxidative stress: molecular perception and transduction of
signals triggering antioxidant gene defenses. Braz J Med. Biol. Res 2005,
38:995–1014.

14. Mittler R, Vanderauwera S, Gollery M, Breusegem FV: Reactive oxygen gene
network of plants. Trends Plant Sci 2004, 9:490–498.

15. De Tullio MC, Jiang K, Feldman LJ: Redox regulation of root apical
meristem organization: connecting root development to its
environment. Plant Physiol Biochem 2010, 48:328–336.

16. Lam E, Kato N, Lawton M: Programmed cell death, mitochondria and the
plant hypersensitive response. Nature 2001, 411:848–853.

17. Srivastava V, Schinkel H, Witzell J, Hertzberg M, Torp M, Srivastava MK,
Karpinska B, Melzer M, Wingsle G: Downregulation of high-isoelectric-
point extracellular superoxide dismutase mediates alterations in the
metabolism of reactive oxygen species and developmental disturbances
in hybrid aspen. Plant J 2007, 49:135–148.

18. Srivastava V, Srivastava MK, Chibani K, Nilsson R, Rouhier N, Melzer M,
Wingsle G: Alternative splicing studies of the reactive oxygen species
gene network in Populus reveal two isoforms of high-isoelectric-point
superoxide dismutase. Plant Physiol 2009, 149:1848–1859.

19. Karpinska B, Karlsson M, Schinkel H, Streller S, Suss KH, Melzer M, Wingsle G:
A novel superoxide dismutase with a high isoelectric point in higher
plants: expression, regulation and protein localization. Plant Physiol 2001,
26:1668–1677.

20. Karlsson M, Melzer M, Prokhorenko I, Johansson T, Wingsle G: Hydrogen
peroxide and expression of hipI-superoxide dismutase are associated
with the development of secondary cell walls in Zinnia elegans. J Exp Bot
2005, 56:2085–2093.

21. Celedon PAF, Andrade DA, Meireles KG, Carvalho MCDG, Caldas DG, Moon
DH, Carneiro RT, Franceschini LM, Oda S, Labate CA: Proteomic analysis of
the cambial region in juvenile Eucalyptus grandis at three ages.
Proteomics 2007, 7:2258–2274.

22. Sjödin A, Bylesjö M, Skogström O, Eriksson D, Nilsson P, Ryden P, Jansson S,
Karlsson J: UPSC-BASE-Populus transcriptomics online. Plant J 2006, 48:806–817.

23. Ryden P, Andersson H, Landfors M, Näslund L, Hartmanova B, Noppa L,
Sjöstedt A: Evaluation of microarray data normalization procedures using
spike-in experiments. BMC Bioinforma 2006, 7:300.

24. Wilson DL, Buckley MJ, Helliwell CA, Wilson IW: New normalization
methods for cDNA microarray data. Bioinformatics 2003, 19:1325–1332.

25. Sterky F, Bhalerao RR, Unneberg P, Segerman B, Nilsson P, Brunner AM,
Charbonnel-Campaa L, Lindvall JJ, Tandre K, Strauss SH, Sundberg B,
Gustafsson P, Uhlen M, Bhalerao RP, Nilsson O, Sandberg G, Karlsson J,
Lundeberg J, Jansson S: A Populus EST resource for plant functional
genomics. Proc Natl Acad Sci U S A 2004, 101:13951–13956.
26. Savitzky A, Golay MJE: Smoothing and differentiation of data by
simplified least squares procedures. Anal Chem 1964, 36:1627–1639.

27. Trygg J: O2-PLS for qualitative and quantitative analysis in multivariate
calibration. J. Chemometrics 2002, 16:283–293.

28. Trygg J, Wold S: O2-PLS, a two-block (X-Y) latent variable regression (LVR)
method with an integral OSC filter. J Chemometrics 2003, 17:53–64.

29. Lofstedt T, Hoffman D, Trygg J: Global, local and unique decompositions
in OnPLS for multiblock data analysis. Anal Chim Acta 2013, 791:13–24.

30. Wold S, Johansson E, Cocchi M: PLS, In: Kubinyi, H.; (ed.), 3D-QSAR in Drug
design, theory, methods, and applications. In Escom Science, Ledien. Edited
by Kubinyi H. Ledien: Escom Science; 1993:523–550.

31. Zamboni A, Carli MD, Guzzo F, Stocchero M, Zenoni S, Ferrarini A, Tononi P,
Toffali K, Desiderio A, Lilley KS: Putative stage-specific grapevine berry
biomarkers and omics data integration into networks. J Plant Physiol
2010, 154:1439–1459.

32. Joosen RVL, Ligterink W, Dekkers BJW, Hilhorst HWM: Visualization of
molecular processes associated with seed dormancy and germination
using MapMan. Seed Science Res. 2011, 21:143–152.

33. Garcia-Alcadia F, Garcia-Lopez F, Dopazo J, Conesa A: Paintomics: a Web
based tool for the joint visualization of transcriptomics and metabolomics
data. Bioinformatics 2011, 27:137–139.

34. Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller
LA, Rhee SY, Stitt M: MAPMAN, a user-driven tool to display genomics
data sets onto diagrams of metabolic pathways and other biological
processes. Plant J 2004, 37:914–939.

35. Voo SS, Grimes HD, Lange BM: Assessing the biosynthetic capabilities of
secretory glands in citrus peel. Plant Physiol 2012, 159(1):81–94.

36. Caruso M, Merelo P, Distefano G, Piero ARL, Tadeo FR, Talon M, Gentile A:
Comparative transcriptome analysis of stylar canal cells identifies novel
candidate genes implicated in the self-incompatibility response of Citrus
clementina. BMC Plant Biol 2012, 12:20.

37. Hölscher D, Shroff R, Knop K, Gottschaldt M, Crecelius A, Schneider B, Heckel
DG, Schubert US, Svatos A: Matrix-free UV-laser desorption/ionization
(LDI) mass spectrometric imaging at the single-cell level: distribution of
secondary metabolites of Arabidopsis thaliana and Hypericum species.
Plant J 2009, 60(5):907–918.

38. Datta R, Sinha R, Chattopadhyay S: Changes in leaf proteome profile of
Arabidopsis thaliana in response to salicylic acid. J Biosci 2013,
38(2):317–328.

39. He Y, Dai S, Dufresne CP, Zhu N, Pang Q, Chen S: Integrated proteomics
and metabolomics of arabidopsis acclimation to gene-dosage
dependent perturbation of isopropylmalate dehydrogenases. PLoS One
2013, 8(3):e57118.

40. Bykova NV, Rampitsch C: Modulating protein function through reversible
oxidation: Redox-mediated processes in plants revealed through
proteomics. Proteomics 2013, 13(3–4):579–596.

41. Urbanczyk-Wochniak E, Luedemann A, Kopka J, Selbig J, Roessner-Tunali U,
Willmitzer L, Fernie AR: Parallel analysis of transcript and metabolic profiles:
a new approach in systems biology. EMBO Rep 2003, 4(10):989–993.

42. Ma NL, Rahmat Z, Lam SS: A review of the “omics” approach to
biomarkers of oxidative stress in oryza sativa. Int J Mol Sci 2013,
14(4):7515–7541.

43. Yizhak K, Benyamini T, Liebermeister W, Ruppin E, Shlomi T: Integrating
quantitative proteomics and metabolomics with a genome-scale
metabolic network model. Bioinformatics 2010, 26:i255–i260.

44. Jacques S, Ghesquière B, Van Breusegem F, Gevaert K: Plant proteins under
oxidative attack. Proteomics 2013, 13(6):932–940.

45. Kosová K, Vítámvás P, Prášil IT, Renaut J: Plant proteome changes under
abiotic stress-contribution of proteomics studies to understanding plant
stress response. J Proteomics 2011, 74(8):1301–1322.

46. Lu P, Vogel C, Wang R, Yao X, Marcotte EM: Absolute protein expression
profiling estimates the relative contributions of transcriptional and
translational regulation. Nat Biotechnol 2007, 25:117–124.

47. Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJ, Nilsson
O: An antagonistic pair of FT homologs mediates the control of flowering
time in sugar beet. Science 2010, 330(6009):1397–1400.

48. De Godoy LMF, Olsen JV, Cox J, Nielsen ML, Hubner NC, Fröhlich F, Walther TC,
Mann M: Comprehensive mass-spectrometry based proteome quantification
of haploid versus diploid yeast. Nature 2008, 455:1251–1254.

49. Fournier ML, Paulson A, Pavelka N, Mosley AL, Gaudenz K, Bradford WD,
Glynn E, Li H, Sardiu ME, Fleharty B, Seidel C, Florens L, Washburn MP:



Srivastava et al. BMC Genomics 2013, 14:893 Page 15 of 15
http://www.biomedcentral.com/1471-2164/14/893
Delayed correlation of mRNA and protein expression in rapamycin-
treated cells and a role for Ggc1 in cellular sensitivity to rapamycin.
Mol Cell Proteomics 2010, 9:271–284.

50. Lee MV, Topper SE, Hubler SL, Hose J, Wenger CD, Coon JJ, Gasch AP: A
dynamic model of proteome changes reveals new roles for transcript
alteration in yeast. Mol Syst Biol 2011, 7:514.

51. Rabani M, Levin JZ, Fan L, Adiconis X, Raychowdhury R, Garber M, Gnirke A,
Nusbaum C, Hacohen N, Friedman N, Amit I, Regev A: Metabolic labeling
of RNA uncovers principles of RNA production and degradation
dynamics in mammalian cells. Nat Biotechnol 2011, 29:436–442.

52. Kristensen AR, Gsponer J, Foster LJ: A high-throughput approach for measuring
temporal changes in the interactome. Nat Methods 2012, 9:907–909.

53. Kristensen AR, Gsponer J, Foster LJ: Protein synthesis rate is the
predominant regulator of protein expression during differentiation.
Mol Syst Biol 2013, 9:689.

54. Horemans N, Foyer CH, Potters G, Asard H: Ascorbate function and
associated transport systems in plants. Plant Physiol Biochem 2000,
38:531–540.

55. Baxter CJ, Redestig H, Schauer N, Repsilber D, Patil KR, Nielsen J, Selbig J, Liu
J, Fernie AR, Sweetlove LJ: The metabolic response of heterotrophic
Arabidopsis cells to oxidative stress. Plant Physiol 2007, 143:312–325.

56. Dabrowska G, Katai A, Goc A, Szechynska-Hebda M, Skrzypek E: Characteristics
of the plant ascorbate peroxidase family. Acta Biol Cracov Ser Bot 2007,
49(1):7–17.

57. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y,
Yoshimura K: Regulation and function of ascorbate peroxidase
isoenzymes. J Exp Bot 2002, 53(372):1305–1319.

58. Chang CC, Ball L, Fryer MJ, Baker NR, Karpinski S, Mullineaux PM: Induction
of ASCORBATE PEROXIDASE 2 expression in wounded Arabidopsis leaves
does not involve known wound-signalling pathways but is associated
with changes in photosynthesis. Plant J 2004, 38(3):499–511.

59. Yu F, Kang M, Meng F, Guo X, Xu B: Molecular cloning and
characterization of a thioredoxin peroxidase gene from Apis cerana
cerana. Insect Mol Biol 2011, 20:367–378.

60. Foyer CH, Noctor G: Ascorbate and glutathione: the heart of the redox
hub. Plant Physiol 2011, 155:2–18.

61. Wang H, Wang S, Lu Y, Alvarez S, Hicks LM, Ge X, Xia Y: Proteomic analysis
of early-responsive redox-sensitive proteins in Arabidopsis. J Proteome Res
2012, 11:412–424.

62. Zhou W, Zhou T, Li MX, Zhao CL, Jia N, Wang XX, Sun YZ, Li GL, Xu M, Zhou
RG, Li B: The Arabidopsis J-protein AtDjB1 facilitates thermotolerance by
protecting cells against heat-induced oxidative damage. New Phytol 2012,
194:364–378.

63. Gupta D, Tuteja N: Chaperones and foldases in endoplasmic reticulum
stress signaling in plants. Plant Signal Behav 2011, 6:232–236.

64. Cho EJ, Yuen CY, Kang BH, Ondzighi CA, Staehelin LA, Christopher DA:
Protein Disulfide Isomerase-2 of Arabidopsis mediates Protein folding
and localizes to both the secretory pathway and nucleus, where it
interacts with maternal effect embryo arrest factor. Mol Cells 2011,
32:459–475.

65. Bueno JM, Ramos-Escudero F, Saez-Plaza P, Munoz AM, Navas MJ, Asuero
AG: Analysis and antioxidant capacity of anthocyanin pigments. Part I:
general considerations concerning polyphenols and flavonoids. Crit Rev
Anal Chem. 2012, 42:102–125.

66. Matsushika A, Goshima T, Fujii T, Inoue H, Sawayama S, Yano S:
Characterization of non-oxidative transaldolase and transketolase
enzymes in the pentose phosphate pathway with regard to xylose
utilization by recombinant Saccharomyces cerevisiae. Enzyme Microb
Technol 2012, 51:16–25.

67. Casado-Vela J, Sellés S, Bru Martínez R: Proteomic approach to
blossom-end rot in tomato fruits (Lycopersicon esculentum M.):
Antioxidant enzymes and the pentose phosphate pathway. Proteomics
2005, 5:2488–2496.

68. García-Leiro A, Cerdán ME, González-Siso MI: Proteomic analysis of
oxidative stress response to Kluyveromyces lactise and effect of
glutathione reductase depletion. J Prot Res 2010, 9:2358–2376.

69. Krüger A, Grüning NM, Wamelink MM, Kerick M, Kirpy A, Parkhomchuk D,
Bluemlein K, Schweiger MR, Soldatov A, Lehrach H, Jakobs C, Ralser M: The
pentose phosphate pathway is a metabolic redox sensor and regulates
transcription during the antioxidant response. Antioxid Redox Signal 2011,
15:311–324.
70. Ralser M, Wamelink MM, Kowald A, Gerisch B, Heeren G, Struys EA, Klipp E,
Jakobs C, Breitenbach M, Lehrach H, Krobitsch S: Dynamic rerouting of the
carbohydrate flux is key to counteracting oxidative stress. J Biol 2007,
6(4):10.

71. Lehmann M, Laxa M, Sweetlove LJ, Fernie AR, Obata T: Metabolic recovery
of Arabidopsis thaliana roots following cessation of oxidative stress.
Metabolomics 2012, 8(1):143–153.

72. Lehmann M, Schwarzländer M, Obata T, Sirikantaramas S, Burow M, Olsen
CE, Tohge T, Fricker MD, Møller BL, Fernie AR, Sweetlove LJ, Laxa M: The
metabolic response of Arabidopsis roots to oxidative stress is distinct
from that of heterotrophic cells in culture and highlights a complex
relationship between the levels of transcripts, metabolites, and flux.
Mol Plant 2009, 2(3):390–406.

73. Yamasaki S, Anderson P: Reprogramming mRNA translation during stress.
Curr Opin Cell Biol 2008, 20:222–226.

74. Schreiber A, Peter M: Substrate recognition in selective autophagy and
the ubiquitin-proteasome system. Biochim Biophys Acta 2013, 19(13):3–14.

75. Bouché N, Fait A, Bouchez D, Møller SG, Fromm H: Mitochondrial succinic-
semialdehyde dehydrogenase of the aminobutyrate shunt is required to
restrict levels of reactive oxygen intermediates in plants. Proc Natl Acad
Sci U S A 2003, 100:6843–6848.

76. Bouché N, Fromm H: GABA in plants: just a metabolite? Trends Plant Sci
2004, 9:110–115.

77. Takahashi H, Chen Z, Du H, Liu Y, Klessig DF: Development of necrosis and
activation of disease resistance in transgenic tobacco plants with
severely reduced catalase levels. Plant J 1997, 5:993–1005.

78. Vizcaíno JA, Côté RG, Csordas A, Dianes JA, Fabregat A, Foster JM, Griss J,
Alpi E, Birim M, Contell J, O’Kelly G, Schoenegger A, Ovelleiro D, Pérez-Riverol Y,
Reisinger F, Ríos D, Wang R, Hermjakob H: The Proteomics Identifications
(PRIDE) database and associated tools: status in 2013. Nucleic Acids Res 2013,
41:D1063–D1069.

doi:10.1186/1471-2164-14-893
Cite this article as: Srivastava et al.: OnPLS integration of transcriptomic,
proteomic and metabolomic data shows multi-level oxidative stress
responses in the cambium of transgenic hipI- superoxide dismutase
Populus plants. BMC Genomics 2013 14:893.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Plant materials
	Experimental design
	Transcriptome analysis
	Proteome analysis
	Protein identification
	Peptide quantification
	Metabolome analysis
	GC-MS analysis
	UPLC-MS analysis
	Structural identification with UHPLC-LTQ/Orbitrap mass spectrometry
	Metabolite identification GC-MS and LC-MS
	Experiment workflow and data integration by OnPLS
	Pathway analysis

	Results and discussion
	Integrated omics data (transcript, protein and metabolite levels) by OnPLS
	Biological interpretation

	Conclusion
	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

