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Abstract

Background: Hybridization is a major driver of evolution in plants. In a number of plant species, the process of
hybridization has been revealed to be accompanied by wide-ranging genetic and epigenetic alterations, some of
which have consequences on gene transcripts. The Asteraceae family includes a number of polyploid species, and
wide crossing is seen as a viable means of genetically improving ornamental species such as Chrysanthemum spp.
However, the consequences of hybridization in this taxon have yet to be characterized.

Results: Amplified fragment length polymorphism (AFLP), methylation sensitive amplification polymorphism
(MSAP) and cDNA-AFLP profiling of the two intergeneric hybrids C. nankingense × Tanacetum vulgare and C.
crassum × Crossostephium chinense were employed to characterize, respectively, the genomic, epigenomic and
transcriptomic changes induced by the hybridization event. The hybrids’ AFLP profiles included both the loss of
specific parental fragments and the gain of fragments not present in either parent’s profile. About 10% of the
paternal fragments were not inherited by the hybrid, while the corresponding rate for the maternal parent
fragments was around 4–5%. The novel fragments detected may have arisen either due to heterozygosity in one or
other parent, or as a result of a deletion event following the hybridization. Around one half of the cDNA-AFLP
fragments were common to both parents, about 30% were specific to the female parent, and somewhat under
20% specific to the male parent; the remainder (2.9-4.7%) of the hybrids’ fragments were not present in either
parent’s profile. The MSAP fingerprinting demonstrated that the hybridization event also reduced the amount of
global cytosine methylation, since > 50% of the parental fragments were methylated, while the corresponding
frequencies for the two hybrids were 48.5% and 50.4%.

Conclusions: Combining two different Asteraceae genomes via hybridization clearly induced a range of genomic
and epigenomic alterations, some of which had an effect on the transcriptome. The rapid genomic and
transcriptomic alterations induced by hybridization may accelerate the evolutionary process among progenies.
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Background
Hybridization has contributed substantially to the evolu-
tion of higher plants, both in the context of extending
genetic diversity and in enhancing adaptive speciation
[1-3]. At least 70% of angiosperm species are polyploid,
of which the majorities are allo- rather than autopoly-
ploid [4]. Detailed analysis of the genome of many spe-
cies held to be diploid has revealed that many of these
are in fact cryptic polyploids [5], at various stages of
decay back to the diploid state [6-10].
Although been debated for more than a century, hybri-

dization is considered to be a potent evolutionary force
of genetic variation and functional novelty and occurs
frequently in flower plant [11,12]. The allopolyploid state
often offers several adaptive advantages over the diploid
state. Adaptive advantages include the acquisition of no-
vel gene combinations which can in some cases promote
heterosis [13], the duplication of gene functions which
can provide an element of buffering, and the potential
to evolve novel functionality which were predicted by
McClintock as “genomic shock” [1,14]. Hybridization ap-
pears to often be accompanied by changes to both ge-
nomic sequences, to the epigenome and to the pattern of
gene transcripts [15-22]. Some of the latter have been re-
vealed to have been induced by epigenetic, rather than by
genetic changes, in particular as a consequence of altered
profiles of cytosine methylation which is one of the major
and immediate epigenetic responses of the plant genome
to hybridization and also play an important role in the
regulation of gene transcripts [23-25].
In plant breeding and domestication process, hybridi-

zation is a powerful method to import excellent genes
and exquisite traits into hybrids (either caused by addi-
tive or non-additive effects), which results in the pheno-
typic superiority of a hybrid over its parents with respect
to traits such as greater biomass, speed of development
and yield [26,27]. Compared with interspecific hybri-
dization, intergeneric hybridization is more difficult to
succeed, and the overall results have not resolved the
controversy as to whether intergeneric hybrids have
undergone rapid and directed changes in genome change
in their evolutionary history [28-30]. Furthermore, the
proportion and categories of DNA or cDNA sequences af-
fected by the species differ in various families. Hence, to
promote a better understanding of the success of plants,
further independent wide hybridization events need to be
analyzed in future studies.
Asteraceae is a large group of angiosperms distributed

all over the world includes ploidy states ranging from
diploid (eg. C. nankingense) to decaploid (eg. C. cras-
sum) which is generally considered to be an advanced
subjects and at the forefront of the evolution [31-33].
Despite numerous studies showed valuable information
about rapid genetic and epigenetic changes in many other
plants, as a large species group, little is known about these
changes in Chrysanthemum even in Asteraceae [34,35]. In
the early studies, intergeneric hybrids have been success-
fully created using a wide range of parental materials and
some of these hybrids have proven to make highly vi-
gorous plants [36,37]. Here, DNA-AFLP and MSAP fin-
gerprinting were applied to characterize induced changes
in the genome and epigenome, and cDNA-AFLP were
used to detect changes to the transcriptome in newly
synthesized C. nankingense × Tanacetum vulgare and
C. crassum × Crossostephium chinense hybrids.

Methods
Plant materials
The relevant accessions of C. nankingense, T. vulgare
and their F1 hybrid (Figure 1A), and of C. crassum, Cr.
chinense and their F1 hybrid (Figure 1B) were obtained
from the Chrysanthemum Germplasm Resource Pre-
serving Centre, Nanjing Agricultural University, China
(32°05′N, 118°8′E, 58 m altitude). All plants were pro-
pagated by cuttings; the medium contained a 2:2:1(v/v)
mixture of perlite, vermiculite and leaf mould, respect-
ively. Rooted seedlings were grown in a greenhouse under
conditions held at 22°C during the day and at a minimum
of 15°C during the night. The relative humidity varied
from 70 to 75% (m/m), and no artificial light was given.
The experiment included three biological replications.
Intergeneric cross was performed at 9:00–10:00 am on

a sunny day, the bisexual tubular florets of female were
removed and the inflorescences were enclosed within a
paper bag. After two to three days, fresh pollen of the
male donor was brushed onto the pistil when the stig-
mas first became visible and re-bagged. The F1 hybrids
were obtained via ovule rescue at 10–15 days after po-
llination [36,37].

Nucleic acid extraction and cDNA synthesis
Genomic DNA was extracted from fully expanded third
and the fourth leaves collected from three biological re-
plication per entry using a CTAB-based method [38],
followed by a pectinase and cellulase treatment and the
application of a Nuclei Isolation Kit (Solarbio, China).
Total RNA was isolated from a similar set of leaves
using the TRIzol reagent (Takara, Japan), based on the
manufacturer’s protocol. Prior to its reverse transcrip-
tion, the total RNA preparation was digested for 30 min
at 37°C with RNase-free DNase I (Takara, EC 3.1.4.5) to
remove any contaminating genomic DNA. The first
cDNA strand was synthesized from a 300 ng RNA based
on random priming and SuperScript III Reverse Tran-
scriptase (Takara, EC 2.7.7.49). The second strand was
then synthesized by the addition of 10 U DNA poly-
merase I (Takara, EC 2.7.7.7) and 5 U RNase H (Takara,
EC 3.1.26.4) [39], and purified by extraction in phenol:



Figure 1 The phenotype of materials. The phenotype of (A) C. nankingense (left), T. vulgare (right) and their hybrid (center), (B) C. crassum (left),
Cr. chinense (right) and their hybrid (center). (C) Leaf morphology of C. nankingense (left), T. vulgare (right) and their hybrid (center). Bars: 1 cm.
(E) Leaf morphology of C. crassum (left), Cr. chinense (right) and their hybrid (center). Bars: 1 cm. Values shown are the mean and SE of biomass
growth ratio to MPV of (D) the C. nankingense × T. vulgare hybrid and (F) the C. crassum × Cr. chinense hybrid, measured ten, 20, 30, 40, 50 and
60 days after rooting. n: number of plants. *P < 0.05; **P < 0.01.
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Table 1 Sequences of adaptors and primers used for
pre-amplification and selective amplification in AFLP and
MSAP analysis

Adaptors/primers Sequence (5′–3′)

MseI adaptor-1 GACGATGAGTCCTGAG

MseI adaptor-2 TACTCAGGACTCAT

EcoRI adaptor-1 CTCGTAGACTGCGTACC

EcoRI adaptor-2 AATTGGTACGCAGTCTAC

HpaII/MspI adaptor-1 GATCATGAGTCCTGCT

HpaII/MspI adaptor-2 CGAGCAGGACTCATGA

EcoRI pre-selective primer GACTGCGTACCAATTCA

MseI pre-selective primer GATGAGTCCTGAGTAAC

HpaII/MspI pre-selective primer ATCATGAGTCCTGCTCGG

EcoRI selective primer-2 GACTGCGTACCAATTCAAG

EcoRI selective primer-3 GACTGCGTACCAATTCACA

EcoRI selective primer-4 GACTGCGTACCAATTCACT

EcoRI selective primer-5 GACTGCGTACCAATTCACC

EcoRI selective primer-6 GACTGCGTACCAATTCACG

EcoRI selective primer-7 GACTGCGTACCAATTCAGC

EcoRI selective primer-8 GACTGCGTACCAATTCAGG

MseI selective primer-2 GATGAGTCCTGAGTAACAC

MseI selective primer-3 GATGAGTCCTGAGTAACAG

MseI selective primer-5 GATGAGTCCTGAGTAACTA

MseI selective primer-6 GATGAGTCCTGAGTAACTC

MseI selective primer-7 GATGAGTCCTGAGTAACTG

MseI selective primer-8 GATGAGTCCTGAGTAACTT

HpaII/MspI selective primer-1 ATCATGAGTCCTGCTCGGTAA

HpaII/MspI selective primer-2 ATCATGAGTCCTGCTCGGTCC

HpaII/MspI selective primer-3 ATCATGAGTCCTGCTCGGTTC

HpaII/MspI selective primer-6 ATCATGAGTCCTGCTCGGTAG

HpaII/MspI selective primer-7 ATCATGAGTCCTGCTCGGTTG

HpaII/MspI selective primer-8 ATCATGAGTCCTGCTCGGTCA
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chloroform: isoamyl alcohol (25:24:1, v/v) followed by
ethanol precipitation. The purified products were each
dissolved in 50 μL ddH2O.

DNA/cDNA fingerprinting
The AFLP protocol used to profile the genomic DNA
and cDNA was a minor modification of the one de-
scribed by Vos et al. [40]. The first PCR amplification
performed with the AFLP ligation and pre-selective
amplification module from PE Biosystems. After diluted
in a ratio of 1:30 with ddH2O, the PCR product was
used as templates for the selective amplification with
three selective bases. The selective amplification reac-
tions were based on the nine primer combinations
EcoRI_2/MseI_5 (abbreviated as ‘E2 +M5’), E2 +M6,
E3 +M2, E4 +M3, E4 +M8, E6 +M7, E7 +M3, E8 +M3
and E8 +M7; each primer included three selective bases
(sequences of adaptors and primers given in Table 1),
and the EcoRI primers were labeled with 5-FAM. Each
PCR was replicated once, and two aliquots of each reac-
tion were electrophoresed independently through de-
naturing polyacrylamide gels (5% (v/v) Long Ranger;
36 cm in length) for 2 h at 65 W. Only reproducible
fragments in the size range 100–500 bp of two replica-
tions were recorded as present (1) or absent (0).
Differential methylation of the genomic DNA was an-

alyzed by the AFLP-based MSAP technique, based on
the isoschizomeric pair HpaII (New England Biolabs,
China, EC 3.1.23.24) and MspI (NEB, EC 3.1.23.24), in
combination with EcoRI (NEB, EC 3.1.23.13). Methyla-
tion polymorphisms at 5′-CCGG-3′ tetranucleotide
sites generate differences between the EcoRI-HpaII
(H lanes) and EcoRI-MspI (M lanes) profiles [41,42].
About 500 ng of each cDNA was digested with either
10 U EcoRI and 20 U HpaII or 10 U EcoRI and 10 U
MspIat 37°C for 12 h. The digested fragments were
ligated to 5 pmol EcoRI adaptor and 50 pmol HpaII–
MspI adaptor by incubation with 4 U T4 DNA poly-
merase (NEB, EC 2.7.7.7) at 16°C for 4 h. Amplicons
derived from a pre-selective amplification based on
EcoRI pre-selective primer and HpaII/MspI pre-
selective primer formed the template for a subsequent
selective amplification.Selective amplification reaction
was based on one of nine primer combinations
(E2 + HM6, E4 + HM3, E4 + HM7, E4 + HM8, E6 +
HM6, E6 + HM8, E7 + HM1, E8 + HM2 and E8 + HM8;
adaptor and primer sequences listed in Table 1). Reac-
tion products were electrophoresed in the same way as
were the AFLP products. Electrophoresis profiles were
used to derive a difference between the mid-parental
value and the hybrids, according to the formula,

p ¼ y1þ y2
n1þ n2

; q ¼ 1−p; δp1−p2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pq

1
n1

þ 1
n2

� �s
;

U ¼ p1−p2
δp1−p2

In which n1 represented the total sites of the mid-
parent values, n2 the number of fragments in their
hybrid, y1 the total DNA methylation sites, hemimethy-
lation sites or fully methylation sites of the mid-parent
values, y2 represents the total DNA methylation sites,
hemimethylation sites, or fully methylation sites of a
hybrid, p1 the percentage of total methylation sites,
hemimethylation sites or fully methylation sites for the
mid-parent values and p2 the percentage of total methyla-
tion sites, hemimethylation sites or fully methylation sites
for a hybrid.



Figure 2 Typical AFLP profiles of the hybrids and their parents.

Table 2 Fragments type in two independent DNA-AFLP analyses

Fragments type C. nankingense × T. vulgare C. crassum × Cr. chinense

Number Percentage Number Percentage

Common fragments 184 42.9% 180 40.1%

Female-special fragments 146 34.0% 162 36.1%

Male-special fragments 95 22.1% 103 22.9%

Novel fragments 4 0.9% 4 0.9%

Total fragments 429 100% 449 100%
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Table 3 DNA-AFLP fragments loss type in F1 hybrids and their corresponding parents

Fragments type C. nankingense × T. vulgare C. crassum × Cr. chinense

Number Total number Number Total number

Female Hybrid Male Female Hybrid Male

Female fragments loss 18 355 - - 16 367 - -

Male fragments loss 35 - - 321 33 - - 325

Common loss 7 - - - 9 - - -

Novel fragments 4 - 429 - 4 - 449 -

Figure 3 Typical cDNA-AFLP profiles of the hybrids and their
parents.
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Results and discussion
Alterations in the genome sequence of the newly
synthesized allopolyploids
As all hybrids were obtained from inbred parental lines
and no parental fragment disappearance was not caused
by chromosome elimination in the previously published
studies [36,37], every independently made F1 hybrid had
the same phenotypic and band patterns, one would not
expect to observe much change according to conven-
tional theory. In fact, hybrids fragments were nearly all
inherited from their maternal parent. For example, of
the total of 429 AFLP fragments detected in the C. nan-
kingense × T. vulgare hybrid, all but four (i.e., 99.1% of
all AFLP fragments) were present in one or both of the
parents. The same frequency applied for the C. cras-
sum ×Cr. chinense hybrid (445/449 fragments; Figure 2,
Table 2). In addition, about > 40% common fragments,
subjects heterozygous for genetic polymorphism com-
pared to parents show a significant consequence of hy-
bridization effect, herein refers to > 22% male-special
fragments and > 34% female-special fragments (Figure 2
and Table 2). A relatively high frequency of maternal
fragments are also identified for some RFLP analyses of
Phaseolus hybrids [43,44], suggesting that differential
transmission of gene loci in the present study may be
not a random trait derived from hybridization.
Besides the additives from the contributing parents,

the nascent F1 hybrids often show subtle fragment var-
iations. Two major types of genetic changes are recog-
nized in the F1 hybrid plant: loss of parental fragments
(Figure 2 and Table 3) and gain of novel fragments
(Table 3). Both hybrids failed to inherit a number of
parental fragments; specifically, around 10% of the pater-
nal fragments were not present in the hybrid profiles
(35/321 and 33/325), while the equivalent rate of loss
from the maternal parents was 5.1% (18/355) for one hy-
brid, and 4.4% (16/367) for the other. The rates are all
somewhat higher than what has been reported in newly
synthesized hybrids such as wheat [29]. Although, loss
events may reflect some residual heterozygosity in the
parents, the greatest possible or the most of loss frag-
ment is more likely to represent spontaneous deletions
occurred as a manifestation of genomic shock in the
process of hybridization [1,4,8,11,45]. Interestingly,
compared to loss events, the novel fragments were cal-
culated as only 0.9% (Table 3). The non-parental
AFLP fragments in the DNA-AFLP analysis might be
the result of allelic variation present in one of the
parental species or also a spontaneous deletion that
occurred in the F1 hybrid.



Table 4 Levels of cytosine methylation in F1 hybrids and their corresponding parents

Plant lines Total sites Non-methylated Methylated

Type I Total Type II Type III

C. nankingense 584 274 (46.9%) 310 (53.1%) 178 (30.5%) 132 (22.6%)

T. vulgare 572 275 (48.1%) 297 (51.9%) 164 (28.7%) 133 (23.3%)

Mid-parental value 100% 47.5% 52.5% 29.6% 22.9%

Hybrid 567 292 (51.5%) 275 (48.5%) 148 (26.1%) 127 (22.4%)

C. crassum 585 261 (44.6%) 324 (55.4%) 171 (29.2%) 153 (26.2%)

Cr. chinense 572 268 (46.9%) 304 (53.1%) 162 (28.3%) 142 (24.8%)

Mid-parental value 100% 45.7% 54.3% 28.8% 25.5%

Hybrid 573 284 (49.6%) 289 (50.4%) 149 (26.0%) 140 (24.4%)

Figure 4 The various types of fragment generated by MSAP. Type I fragments are non-methylated, and appeared in both the H and M lanes,
type II are fully-methylated, and were only detected in the M lanes, while type III are hemi-methylated, and were only detected in the H lanes.
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Table 5 Fragments type in two independent cDNA-AFLP
analyses

Fragments type C. nankingense × T.
vulgare

C. crassum × Cr.
chinense

Number Percentage Number Percentage

Common fragments 155 50.5% 166 52.2%

Female-special
fragments

91 29.6% 91 28.6%

Male-special
fragments

52 16.9% 46 14.5%

Novel fragments 9 3.0% 15 4.7%

Total fragments 307 100% 318 100%

Wang et al. BMC Genomics 2013, 14:902 Page 8 of 10
http://www.biomedcentral.com/1471-2164/14/902
A variety of analytical platforms has been exploited to
show that de novo synthesized hybrids undergo massive
genetic (chromosomal rearrangements, DNA sequence
elimination) and epigenetic adjustment [3,17,46]. Rear-
rangements and deletions both have the potential to
generate non-parental AFLP fragments in the hybrid’s
genomic DNA, if rearrangements and deletions affect re-
striction sites targeted by the procedure. Current con-
sensus view is that the process of polyploidization is
accompanied by the elimination of both low copy and/
or non-coding DNA sequence [18,47-50]. In synthetic
wheat hybrids, deletion events have been proposed to be
a major driver of the observed genomic changes [18],
and an essentially similar conclusion was arrived at in
Cucumis [51], Brassica [52] and Tragopogon [19]. Exten-
sive loss of parental AFLP fragments from the hybrid’s
genome was a feature of both the C. nankingense × T.
vulgare and the C. crassum ×Cr. chinense combinations.
The deletion events were likely to have occurred very
early in the process of hybrid zygote formation.

Alterations in the epigenome of the newly synthesized
allopolyploids
Variation in the epigenome was explored via the MSAP
technique, as illustrated in Figure 3. Type I (non-methyla-
ted) fragments were shared by the H and M lanes, type II
(fully methylated) were only detected in M lanes, while
type III (hemi-methylated) appeared only in the H lanes.
The nine primer combinations employed generated 274
Table 6 cDNA-AFLP fragments loss type in F1 hybrids and the

Fragments type C. nankingense × T. vulgare

Number Total number

Female Hybrid

Female fragments loss 8 259 -

Male fragments loss 22 - -

Common loss 5 - -

Novel fragments 9 - 307
type I, 178 type II and 132 type III fragments in C. nan-
kingense, and respectively 275, 164 and 133 in T. vulgare;
the equivalent numbers of fragments in C. crassum were
261, 171 and 153, and in Cr. chinense 268, 162 and 142
(Table 4). Surprisingly, the global DNA methylation con-
centration in the diploids (51.9-53.1%) was not much
lower than that in the decaploid (55.4%), as the expecta-
tion is that higher concentrations of ploidy are generally
associated with more extensive DNA methylation.
Meanwhile, polymorphic fragments were also scored

as methylation changes between hybrids and parents.
The amount of cytosine methylation in the hybrids were
48.5% for C. nankingense (53.1%) × T. vulgare (51.9%;
U = 1.36, U0.05 = 1.96) and 50.4% for C. crassum (55.4%) ×
Cr. chinense (53.1%; U = 1.31, U0.05 = 1.96; Table 4). With
respect to fully methylated sites, the hybrids displayed
lower U values than predicted on the basis of mid-parent
value (C. nankingense ×T. vulgare: U = 1.31, C. crassum ×
Cr. chinense: U = 1.06). With respect to the hemi-
methylated sites, the respective U values were only 0.21
and 0.47.
Present results suggested that the adjustments of DNA

methylation patterns occurred widely at various genomic
sites in each of the hybrid plants (Table 4). Combining
two divergent genomes of distinct parental species in a
new plant must generate the strong “shock”, may dis-
rupt intrinsic regulatory and developmental harmonies,
possibly cause a myriad of incompatibilities at many
layers, which is particularly important in plant evolution
[3,14,27,53]. The occurrence and extent of methylation
variation are dependent on genetic context of the hybrid.
Nonetheless, the relative total frequencies of variation be-
tween the hybrids for a given combination are remarkably
similar according to the present results. Thus, the similar-
ity between the MSAP profiles of independent hybrids
shows that epigenetic events do not occur stochastic-
ally, but rather are pre-determined in some way and
might be a rapid process that occurred as early as in
the F1 hybrid.

Induced differences in the transcriptome
Both hybrids grow larger and faster than the best of
their parents (Figure 1D, F) [36,37]. cDNA-AFLP
ir corresponding parents

C. crassum × Cr. chinense

Number Total number

Male Female Hybrid Male

- 9 271 - -

234 19 - - 236

- 7 - - -

- 15 - 318 -
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profiling defined sets of transcript fragments which were
either: (a) common to both parents and the hybrid
(50.5% of all the fragments in the C. nankingense × T.
vulgare cross and 52.2% in the other cross; (b) fragments
which were specific to the female parent and which were
inherited by the hybrid (29.6% and 28.6%); (c) fragments
which were specific to the male parent and which were
inherited by the hybrid (16.9% and 14.5%), and (d) frag-
ments in the hybrid which were not present in either
parent (3.0% and 4.7%; Figure 4, Table 5). Meanwhile,
there are 8 of C. nankingense, 22 of T. vulgare and 9 of
C. crassum, 19 of Cr. chinense cDNA fragments missed
in cDNA-AFLP detection (Table 6), indicated that tran-
scriptome divergence is reconciled during intergeneric
hybridization but weaker than DNA sequences adjust-
ment. Fragments of this sort may reflect the outcome
of DNA sequence elimination and genome reorgani-
zation, although the possibility of organellar origin
gene (in particular those sited in the chloroplast) ex-
pression or regulation cannot be excluded, since these
cDNA is only transmitted to the hybrid via the fe-
male gamete.
Transcriptomic studies of hybridization in plants have

revealed that patterns of gene transcripts likely have a
profound effect in a hybrid context [15]. In spite of in-
tensive study for approximately a century, the molecular
basis of heterosis remains unclear. Genome-wide tran-
scriptomic alterations correlates with the expression di-
vergence between the parents have been observed in the
hybrid [13,26,54]. Expression profiles in hybrids formed
from very wide crosses have repeatedly been revealed to
be non-additive, which provides a possible molecular
lead in explaining heterosis [27] and phenotypic varia-
tion in the hybrid progeny [24]. An admitted suggestion
holds that epigenetic mechanisms are important for
regulating the relative abundance of gene transcripts
[25,55]. Genomic shock can disrupt a number of re-
gulatory and developmental processes, particularly via
changes to the epigenome given that hypermethylation
is associated with gene silencing, whereas hypomethy-
lation is often associated with gene activity [56]. The
MSAP analysis suggested that DNA methylation was at
a lower degree in the hybrids than in their correspond-
ing parents, a finding which could explain the origin of
at least some of the non-parental cDNA-AFLP frag-
ments present in the hybrids [57,58]. Elucidating the
ways in which altered DNA methylation patterns, either
at the whole genomic level or at specific sites can affect
genome stability during a hybridization event will re-
quire substantial additional investigation [59].

Conclusion
In conclusion, large scale genomic, epigenomic and tran-
scriptomic changes accompanied the process of
hybridization in the crosses C. nankingense × T. vulgare
and C. crassum ×Cr. chinense. The forced union of two
distinct genomes induced many changes to both the ge-
nome and the transcriptome. The former changes were
largely brought about by the elimination of DNA, while
the latter reflected in addition the effect of altered
amount of cytosine methylation. Together, these rapid
changes could drive the evolutionary process of the
freshly formed intergeneric hybrids.
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