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Abstract

Background: Structural variations in human genomes, such as deletions, play an important role in cancer
development. Next-Generation Sequencing technologies have been central in providing ways to detect such
variations. Methods like paired-end mapping allow to simultaneously analyze data from several samples in order to,
e.g., distinguish tumor from patient specific variations. However, it has been shown that, especially in this setting,
there is a need to explicitly take overlapping deletions into consideration. Existing tools have only minor
capabilities to call overlapping deletions, unable to unravel complex signals to obtain consistent predictions.

Result: We present a first approach specifically designed to cluster short-read paired-end data into possibly
overlapping deletion predictions. The method does not make any assumptions on the composition of the data,
such as the number of samples, heterogeneity, polyploidy, etc. Taking paired ends mapped to a reference genome
as input, it iteratively merges mappings to clusters based on a similarity score that takes both the putative location
and size of a deletion into account.

Conclusion: We demonstrate that agglomerative clustering is suitable to predict deletions. Analyzing real data from
three samples of a cancer patient, we found putatively overlapping deletions and observed that, as a side-effect,
erroneous mappings are mostly identified as singleton clusters. An evaluation on simulated data shows, compared to
other methods which can output overlapping clusters, high accuracy in separating overlapping from single deletions.

Introduction

It is well known that mutations in the human genome are
associated to diseases such as cancer. Besides small scale
mutations like single nucleotide variants, larger events
such as deletions, insertions, inversions, or inter-chromo-
somal rearrangements can have a crucial impact on the
initiation and development of cancer. The detection and
analysis of these structural variations play an important
role in understanding the underlying mechanisms of can-
cer, its diagnosis and treatment [1-4].

Current sequencing technologies allow to obtain high
data volumes at low cost. It has now become affordable
to sequence several samples of the same patient, enabling
comparative analyses of, e.g., tumor cells versus healthy
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blood cells, or samples taken before versus after treat-
ment, to distinguish tumor from patient specific varia-
tions, or to observe structural variations over time [5,6].
In the analysis of such complex data, it is important to
consider heterogeneity of various kinds [7]. Besides the
differences between several tissues or time points, in can-
cer one always has to face heterozygosity (mutations only
affecting one allele), loss of heterozygosity (mutation inac-
tivating the second allele), aneploidy (different copy num-
bers for some chromosomes), copy number alterations
(different copy numbers for parts of chromosomes), differ-
entiation of tumor cell lines developing different varia-
tions, etc. An additional challenge is that a cancer sample
is most likely a mixed sample, i.e., although taken from
tumor tissue, it usually contains also normal cells [2,8,9].
For the detection of single nucleotide variants (SNVs),
there exist several approaches, some of which address
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the above issues. For instance, SomaticSniper [10], Join-
tSNVMix [11] and MutationSeq [12] call somatic SNVs
from pairs of normal and tumor samples, where the first
two methods follow a Bayesian approach to distinguish
tumor from patient specific SNVs, and the latter builds
on clustering by support vector machines. Strelka [13]
explicitly models mixtures of tumor and normal cells
and can also call small indels. Also, several tools exist to
accurately detect SNVs in pooled data [14-17], even
mutations of low abundance. Apart from analyzing sin-
gle SNVs, also haplotype inference and assembly has
been addressed [18-20]. For the analysis of gene expres-
sion data, also Bayesian approaches have been proposed,
even considering subtypes of cancer [21].

In contrast to the analysis of SNVs, for the detection of
somatic deletions and other larger structural variations,
one usually has to process the different samples separately
and to compare the results afterwards, e.g., subtract dele-
tions found in the healthy sample from those found in the
tumor sample. Or one can pool the data and afterwards
only select those calls solely based on tumor data [22].
Only recently, joint analysis of several data sets have been
proposed [5,6].

As shown in a preliminary study [5] to detect deletions
by a combined analysis of samples from tumor and healthy
tissue, there were regions in the tumor genome for which
existing tools predicted more deletions than there could
actually be on a diploid genome. When instead two diploid
sets of chromosomes were assumed, i.e., the tumor sample
is actually a mixture of cancerous and healthy cells, almost
all data could be explained consistently, by explicitly mod-
eling heterozygous deletions on different alleles to be over-
lapping. These observations have been made particularly
in regions where deletions were found in the healthy cells
and additional deletions have been predicted in the tumor
sample - thus in regions where it is especially difficult to
distinguish cancer from patient specific mutations. How-
ever, the scope of the presented method has been to show
that a consistent scenario of overlapping deletions can be
found. It greedily constructs a “possible” solution, without
raising the claim of reporting a “reasonable” result.
Furthermore, the model is restricted to the very specific
case of analyzing a mixture of cancer and normal cells,
including some additional technical, combinatorial
assumptions.

In this paper, we present a method to detect deletions
that is particularly designed to handle overlapping dele-
tions. For the sake of flexibility, no assumption on the
composition of the data is made - whether it is just from
one sample or pooled data, it contains different cell lines,
aneploid cells, etc. Being aware of such heterozygosity and
specially designed for such data, we refrain from predict-
ing a deletion being “heterozygous or homozygous”, or
“tumor or patient specific”. Instead, besides a tabular
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listing of the results, a rich visual output for each set of
overlapping deletions is provided, allowing an easy inspec-
tion of the results.

The method takes as input paired ends that have been
mapped to a reference genome and collects those map-
pings likely originating from the same deletion in clusters.
Agglomerative clustering is utilized to cluster mappings by
similarity. The similarity score is based on a three-dimen-
sional representation of mappings and deletions similar to
the two-dimensional representation introduced by Dew et
al. [23] and used for structural variation detection by Sindi
et al. [22] in the tool GASV. With this representation, we
obtain a score that captures both the putative location and
size of the deletion.

We applied our method to a data set from several sam-
ples taken from an acute lymphoblastic leukemia patient.
Besides examples for predicted overlapping deletions, we
find that single, putatively erroneous mappings not
assigned to another cluster can nicely be identified as
outliers. Since overlapping deletions are rare events and
their verification is difficult, we performed an evaluation
on simulated data showing good accuracy.

After providing the necessary background in the fol-
lowing section, we introduce our approach in Section
“Method”. In Section “Results and discussion”, we pre-
sent a simulation-based evaluation and results on real
data, before we conclude our study.

Background

We will now give a brief overview of existing approaches
to identify structural variations and then introduce the
technique of paired-end mapping, which our method is
based on.

Structural variation detection
Besides different experimental techniques, there are
many computational approaches for structural variation
detection [24]. A straight forward idea to detect muta-
tions would be to fully assemble the genome under con-
sideration, the so-called donor genome, and to align it to
a reference sequence. To save the time and cost intensive
assembly and finishing steps which would be necessary to
determine the full genome sequence, one usually follows
other approaches. Instead of performing a full assembly,
one can restrict the process to only reads from regions
suspect to harbor a variation, as for instance done in
[25]. The tool fermi [26] allows both full assembly and a
pre-filtering for reads unique to one sample. Other recent
methods simultaneously assemble several genomes into a
single graph data structure allowing for variation calling
[27,28].

Another, more common approach is to omit any
assembly of the donor genome and instead utilize the
reads directly to detect differences by mapping them to
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the finished reference sequence. Basically, there are three
classes of methods to identify structural variations from
those mappings. (See [24] or [29] for reviews.) (1) Signifi-
cant fluctuations of the coverage of the reference by map-
pings can indicate copy number changes. If part of a
chromosome is lost or duplicated, the coverage drops or
increases, respectively. (2) If a read has not been mapped
completely, but in parts, this can indicate different types
of mutations. E.g., if one half of the split read is mapped
with some space to the remaining part, the segment in-
between might be absent in the donor genome. If parts
are mapped to different chromosomes, this can indicate
inter-chromosomal rearrangements. (3) If the donor gen-
ome has been sequenced using a certain technology,
pairs of reads (paired ends) are obtained. The orientation
and the distance of the reads within a pair are known in
the donor, and when the corresponding mappings on the
reference do not agree with this pattern, structural varia-
tions can be called similar to the split read approach.
This paired-end mapping technique, introduced by
Korbel et al. [30], will be explained in detail in the follow-
ing section.

Since all techniques have their advantages and disadvan-
tages, in general, a combination of different techniques is
advisable. Different tools can be applied separately and the
results are combined in a post-processing step. Also tools
exist which combine techniques already during the detec-
tion, e.g. inGAPsv [31], CNVer [32], GASVPro [33],
SVseq2 [34], or the method by Nord et al. [35]. The
method presented here is based on paired-end mapping.
It is particularly designed for regions harboring several
overlapping deletions. Due to the complexity of such
regions, a partial assembly or coverage analysis is hardly
possible. However, integrating a split read approach is
planned for future work.

Deletion detection by paired-end mapping
When genomic material from a sample is sequenced
by short-read sequencing, many overlapping DNA-
fragments are produced and a certain number of bases
are read from both ends of each fragment, resulting in a
pair of reads, so-called paired ends. The reading direction
and the length of the reads are known. Further, since the
fragment size is fixed - in practice distributed around the
desired length - their approximate distance is known as well.
The paired ends from a newly sequenced donor genome
can be mapped to a reference genome which is already
assembled to a complete DNA-sequence. In a region
where the two genomes do not differ, the mapped reads
have the original direction and their distance coincides
with the fragment length. Such a mapping is called concor-
dant. If however a mapping is discordant, i.e., either the
orientation is inconsistent or the distance differs
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significantly from the expected fragment size, this indicates
a structural variation in the donor w.r.t. the reference.

In this paper, we only focus on deletions, i.e., a segment
present in the reference is not present in - we say deleted
from - the donor genome. Hence, paired ends spanning
the deletion breakpoint in the donor genome will be
mapped to the reference with a distance increased by the
size of the deletion but with proper orientation. We call
such a mapping stretched.

Since the fragment length is only known approxi-
mately, the size of a deletion cannot be determined
exactly by paired-end mapping. It cannot even be exactly
decided whether a mapping originates just from a very
long fragment or is really discordant due to a deletion.
One approach is to fix a minimum and maximum
expected mapping distance (D,,,;, and D,,,,,), e.g., mean
distance plus/minus three times the standard deviation.
Then, a mapping with distance d is considered being
stretched if d >D,,,,,, and the size of the putative deletion
is expected to be between d - D,,,,, and d - D,,;,,. Instead
of this discretization, other methods [36,37], such as
ours, keep and make use of the information that the frag-
ment length and thus the mapping distances can usually
be approximated by a normal distribution with some
mean y. (Figure 1 shows a histogram of the fragment
length distribution in the data set discussed in Section
“Real data”.) The expected deletion size is then also mod-
eled to be normally distributed around d - p.

Based on one of the above or a similar model, many
tools, e.g. [5,6,22,33,37,38], assign all given mappings to
clusters, where each cluster corresponds to one deletion
that is supported by all mappings in the cluster. Figure 2
shows an example for such a deletion cluster.

Method

In a region that possibly harbors several deletions, we
obtain paired ends from the different alleles which are
then all mapped to the same reference sequence. Depend-
ing on how similar the deletions are in terms of location
and size, it is difficult to separate the mappings and to
recover the different deletions. Our goal is to partition the
set of mappings into clusters of similar mappings probably
belonging to the same deletion. To this end, we utilize the
technique of agglomerative clustering, which in general
works as follows. At the beginning, each object (in our
case stretched mapping) is a singleton cluster, and a simi-
larity score is computed for all pairs of clusters. Then,
iteratively, a pair of clusters of maximum similarity is
merged, the two original clusters are replaced by this new
cluster, and the similarity between the new cluster and all
others is recomputed. These merging steps are repeated
until either only one cluster is left, or the maximum simi-
larity is below a certain threshold.
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Figure 1 Length distribution of the paired-end sequenced fragments. Distribution from chromosome 21 of the sample “before treatment’,
discussed in Section “Real data”. The length values have been extracted from the mapped paired-ends, where only unambiguously and exactly
aligned pairs have been considered. Strictly speaking, also discordant mappings (those, spanning insertions or deletions) are contained. But due

to their low abundance, they do not affect the distribution Significantly.
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Figure 2 Deletion detection by paired-end mapping. Paired ends obtained from the donor genome (top) are mapped to the reference
genome (bottom). Since the paired ends span a deletion breakpoint in the donor, the mappings are stretched. The deleted part in the
reference genome is shown in gray.
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variation detection by Sindi et al. [22]. Based on the discre-
tized approach explained in “Background” (minimum and
maximum concordant mapping distance D,,,;, and D,,,),
mappings and the implied location and size of the deletion
are represented as a trapezoid in the two-dimensional
space: The right end of the left read defines the left bound-
ary of the start coordinate of the deletion (on the x-axis),
and the left end of the right read the right boundary of the
end coordinate (on y-axis). Between these, the minimum
and maximum expected deletion size d - D,,,, and
d - D,,;, span an area of “allowed” deletion coordinates.
See Figure 3(a) for an example. If the trapezoids of several
mappings overlap, the intersecting area (again a trapezoid)
contains exactly the coordinates of all deletions supported
by the mappings. The tool GASV [22] efficiently computes
all maximal sets of pairwise intersecting trapezoids. Either
all these clusters are output (option “maximal”) or overlap-
ping clusters are combined to single deletion calls (default).
Inversions are detected by GASV in a similar fashion.

For our similarity score, we build on this two-dimen-
sional representation of deletion coordinates, as it nicely
incorporates both the location and the size of a deletion.
Again, we use the x- and y-axis for the deletion start and
end coordinates, respectively. But to model the deletion
size, instead of the sharply bounded interval, we use a
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continuous distribution. As mentioned before, assuming
that the fragment length follows a normal distribution
with mean g and standard deviation o, the expected dele-
tion size implied by a mapping with distance d is nor-
mally distributed around d - 4 with the same standard
deviation o. In the geometric interpretation, for each pos-
sible start coordinate for a deletion on the x-axis, this dis-
tribution describes the expected end coordinate on the
y axis. Since the deletion has to be located in-between
the mappings of the paired ends, these, together with the
main diagonal, define a triangle of “allowed” deletion
coordinates, which is covered in the third dimension by
the normal distribution as shown in Figure 3(b). In this
diagram and all following, the probability will be repre-
sented by shaded gray toning.

In the clustering process, we characterize each map-
ping and also each cluster composed of several mappings
by the above mentioned parameters: The left and right
boundaries / and r for the deletion coordinates, and g«
and o of the normal distribution. We further store the
number # of mappings in a cluster. For a singleton clus-
ter, the parameters are directly defined by the mapping’s
characteristics, as described above. When we merge two
mappings or two clusters C; and C, with parameters [,
rs 4 0; and n;, where i = 1 or 2, respectively, we combine
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Figure 3 Geometric interpretation of stretched mappings. In both figures, the deletion start is represented on the x-axis, and the deletion
end on the y-axis. (@) The coordinates for three possible deletions A, B, and C are shown exemplarily. Assuming that deletion A corresponds to
the left-most and smallest possible deletion, B to the right-most, and C to the left-most and largest possible deletion, these span a trapezoid
(shown in gray) which defines the coordinates of all allowed deletions, as introduced by Sindi et al. [22]. (b) Instead of assuming a smallest and
largest deletion size, a probability for the deletion size and thus for the deletion coordinates is considered, represented by the shaded gray.
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the parameters to obtain a new cluster Cyy, as follows.

Ny =N1 +ny

huz max{ly, [}

Tu2 = min{ry, 12}
nipy + Nafea

MHiu2 =
niu2
2 2 2
2 nio{ +nyo, nlnz(ﬂl - Mz)
o = +
1U2 2
niu2 n]uz

With our choice of [ and r as the maximum and mini-
mum, respectively, we follow an “average link” strategy as
it corresponds to taking the intersection of the triangles.
This is the most intuitive way since the new cluster should
represent the “area” of deletion coordinates to those which
are compatible to both of the original clusters. The equa-
tion for the joint standard deviation is borrowed from
population-based statistics for aggregating non-overlap-
ping sub-populations. If the two clusters agree in the loca-
tion of the deletion, i.e., y; - 4y = 0, the resulting o2 , is
the mean of the two standard deviations. The more the
two clusters disagree, the broader becomes the distribu-
tion. For reasons we will explain later, this way of joining
the deviations turned out to be better suitable for our
similarity score and the resulting performance in cluster-
ing than using the actual joint variance.

Similarity score

For the clustering, we need to define a score function that,
for a given pair of clusters, defines a value - the more simi-
lar the clusters are, the higher this score. Our similarity
score is defined in the range from zero to one. In our case,
the similarity of clusters, i.e. deletion predictions, depends
on two factors: The location and the size of the deletion,
both included in our geometric cluster model. Recall that
each cluster C defines a volume, say V(C), whose base is
given by a triangle with a Gaussian shaped “mountain” on
top. The larger the overlap of two triangles, the more they
agree in the predicted location of the deletion. The closer
the ridge of their mountains, the more they agree in the
deletion size. Based on this observation, we define the
score as the normalized intersection of the two volumes.

V(Ci1)NV(Cy)

sim(Cy, Cy) := max{V(C;), V(C,)}

This score has the following properties.

« The score is zero if and only if the triangles do not
overlap, which means that there is no location for a
deletion compatible with both clusters.

« The score is one if and only if the two clusters are
equal, because, only if all parameters of the two clus-
ters are equal, the intersection volume equals the
maximum.
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« It is more sensitive to differences in the deletion size
than in the location. The reason for this is that a shift
parallel to the ridge of the volume does not affect the
intersection volume to such an extent as a shift per-
pendicular to it. This is a particularly desired behavior
since we expect a deletion breakpoint being covered
by several mappings. In some mappings the break-
point lies more to the left and in others more to the
right, which - even if all mappings are correct - corre-
sponds to staggered triangles. Such triangles, even if
staggered, would have to be clustered and should
thus not be punished too hard by a low score. In con-
trast, a difference in the deletion size indicates a dis-
agreement of the mappings.

We now come back to the issue how to combine the
standard deviations of several mappings. As already
mentioned, we did not choose the more intuitive combi-
nation by computing the standard deviation of the
means, i.e. 07, := az/nluz, where o is the standard
deviation of the fragment length. This results in nar-
rower distributions for clusters containing more map-
pings. On the one hand, this would make sense since
the prediction is more accurate, the more mappings
support it. On the other hand, besides computational
problems due to score values close to zero, this also
yields an artifact: Clusters containing only a few map-
pings have a broader volume and are thus more likely
to be clustered than larger clusters with a narrow
volume. The order in which clusters are aggregated
would be dominated by their cardinality, rather than by
their similarity. To avoid this, we chose our definition of
o}, to be independent of the cardinality of the clusters.

It remains to describe the stopping criterion for the
clustering process. Since the normal distribution is never
exactly zero, any two clusters that overlap in their base
(triangle) have a non-empty intersection volume, no mat-
ter how weak the overlap is. We thus set a minimum
threshold S,,,;, for the similarity score. If no pair of clus-
ters has similarity larger than S,,,;,,, the clustering process
is stopped. To avoid the introduction of a parameter
which is arbitrarily fixed or has to be given by the user,
we examine the data in a preprocessing step to determine
a threshold that separates Significant similarity values
from noise. For each mapping, we determine the smallest
non-zero similarity score to any other (overlapping) map-
ping. Setting S,,,;, to the median of these minima showed
robust accurate behavior in practice, also approved in
our experiment as explained at the end of “Simulation of
overlapping deletions”.

Implementation
In general, the run time complexity of agglomerative
clustering depends on the similarity score. Using priority
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queues to store the scores, O(N2 log N) pairwise score
computations have to be performed to cluster N objects.
Our score can be computed as follows. In each triangle,
the height of the volume is constant on a line parallel to
the main diagonal and thus parallel to the hypotenuse
of the triangle. This allows us to compute the volume
by traversing a triangle (or the intersection of two trian-
gles, which is again a triangle) starting from its hypote-
nuse towards the upper left corner, and summing up
the product of the length of the line and the height of
the volume given by the normal distribution (or the
minimum of two, respectively). Since this takes O (r - 1)
time and the score computation consists of a constant
number of volume computations, the overall run time
complexity of the agglomerative clustering is in O (L N*
log N), where L is the maximum length of a mapping.

In practice, the run time is dominated by reading the
input and thus approximately linear in the number of
mappings.

We implemented the method in JAVA. The input con-
sists of one or several BAM files and a simple tabular
separated file listing the mean segment length and stan-
dard deviation for each file. Additionally, a color can be
specified for each BAM file, which is used to visualize the
mappings in the graphical output. The mappings are read
from the BAM files using SAMtools [39] and applying
several filters. Only mappings of high quality (quality
value at least 20), without gaps, uncapped and without
co-optimal mapping locations are used. Further, the
mappings can be filtered by their length. Here, a mini-
mum length of mean plus three times standard deviation
showed good performance in practice.

Before the actual clustering, we partition the mappings
into so-called regions, maximal subsets such that no map-
ping from one set overlaps with any mapping in another
subset. These regions are then clustered independently.

The output is composed of two parts. (1) A tabular sepa-
rated file is generated, listing all detected clusters includ-
ing, besides other details, the breakpoint regions, the mean
expected deletion size and the standard deviation, and
number of mappings from each BAM file. The latter infor-
mation can for instance be used in a post-processing step
to determine whether a deletion is patient specific: If sev-
eral samples have been analyzed, for instance “healthy”
and “tumor”, a cluster with a high number of mappings
from the tumor set but a small number of mappings from
the healthy set indicates a tumor-specific deletion. Addi-
tional file 1 lists the mappings for each cluster. (2) A gra-
phical output of each region is provided in form of
R-code, which produces PDF graphics as can be seen in
Figure 4. The triangle for each mapping is shown in the
color assigned to the corresponding BAM file, and the
third dimension is indicated by shaded gray tones. Clusters
with a sufficient number of mappings (threshold chosen
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by the user, default 2) are highlighted by a yellow trape-
zoid (spanned by /, , 4-30, and p+30) labeled with the
number of mappings. Smaller clusters are not shown and
their mappings are depicted by dotted lines. The R-code
can easily be modified to produce customized scalable vec-
tor graphics.

The tool, including the source code and example data, is
available from the Bielefeld University Bioinformatics
Server: http://bibiserv.cebitec.uni-bielefeld.de/agglodel/

Results and discussion

Before we present results on real data from three sam-
ples of a cancer patient, we first investigate the accuracy
of the new clustering method in distinguishing overlap-
ping from single deletions in simulated data sets.

Simulation of overlapping deletions
Since, to the best of our knowledge, no other method
exists that aims at identifying overlapping deletions, and
because such instances are difficult to detect or verify in
the wet lab, there is no gold standard available we could
use for an evaluation. Instead, we created a simulated data
set which is based on previously detected single deletions.

We took chromosome one of the human genome
(hgl9, GRCh37) and created two diploid copies of it into
which we introduced deletions. From a list of variations
downloaded from the Database of Genomic Variants
[[40], chrl of indel.hg19.v10.nov.2010.txt], we first
sampled 1,000 non-overlapping deletions. For 500 of
them, we simulated an overlapping deletion, the size of
which was sampled from the afore mentioned list.
Paired-end mapping approaches are not suited to detect
small deletions. Thus, on the one hand, we only sampled
deletions of a certain minimum length. On the other
hand, we could not set this threshold too high to be able
to sample enough non-overlapping deletions in the first
run. A minimum length of 105 turned out to be a good
tradeoff. The length distribution is shown in Figure 5.

From these artificial chromosome copies, we sampled
Illumina paired ends using the tool SimSeq [41]. We
selected a typical read length of 100, and to be comparable
to the data set we analyze in Section “Real data”, we chose
a mean fragment lengths of 300 with standard deviation
35. We performed several runs with different coverage for
the different alleles to simulate the two scenarios shown in
Figure 6: (A) The overlapping deletions are both homozy-
gous, and (B) one deletion is homozygous and the other is
heterozygous. Both settings were simulated using 20x and
60x sequence coverage, the first of which roughly corre-
sponds to the real data set (Section “Real data”). We
mapped the obtained reads back to the original hgl9
sequence with the mapping software BWA [42].

We used our agglomerative clustering approach with
the filtering of mappings as explained in “Method”, and
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Figure 4 Region on chromosome 19 possibly harboring two overlapping deletions. The mappings of the different data sets (before
treatment, after treatment, and relapse) are represented as red, blue and green triangles, respectively, where the third dimension is indicated by
shaded gray tones. The detected deletions are shown as yellow trapezoids. A singleton cluster, which is probably an erroneous mapping, is
depicted with dotted lines.
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Figure 5 Distribution of the deletion size used for sampling deletions in the simulation-based evaluation.
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Figure 6 Two scenarios used for sampling deletions in the simulation-based evaluation. Two diploid chromosomes with 500 non-
overlapping deletions and 500 pairs of overlapping deletions (both homozygous, and homozygous and heterozygous) have been simulated.
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also ran two other tools on the same set of filtered map-
pings. First of all, we included GASV [22] (release 2.01)
into our evaluation, as our similarity score is based on an
extension of the geometric interpretation used there. We
set the minimum cluster cardinality to 2 and used both,
the option to output all maximal sets of overlapping trape-
zoids (see “Method”) which we will refer to as GASV_max,
and the default to output merged clusters, referred to as
GASV. Although a follow-up version GASVPro [33] has
been published recently, the available software does not
yet include all necessary preprocessing tools to process
BAM files. Secondly, we also ran CLEVER [37] as one of
the most recent and accurate variation detection tools.
This method computes a probability for mappings arising
from the same deletion, and builds a graph with the map-
pings as vertices and edges for pairs with Significantly high
probability. Clusters are determined as maximal cliques in
this graph, which in general allows overlapping deletions
in the output. Clusters are determined as maximal cliques
in this graph.

The results are detailed in the table in the appendix.
In Figure 7, we summarize the results in form of ROC
plots showing the accuracy at identifying non-overlap-
ping deletions and pairs of overlapping deletions in
terms of true and false positive rates:

_ #falsely predicted single del’s

TP #correctly predicted single del’s FP;

TPR, = P,' = #simulated single del’s FPR; = N,' #sim. pairs + #no del. detected as del.
#correctly predicted pairs FPR, = P2 _ #falsely predicted pairs

#simulated pairs 1= N, = #sim. single del’s + #no del. det. as del.

TPR, = TI,‘} =

On average, CLEVER detected 92% of all deletions and
made only about 1% wrong predictions. Even though max-
imal cliques output by CLEVER can be overlapping and
the output can thus contain overlapping deletion predic-
tions, this has to be understood as a technical consequence
of the clustering procedure as CLEVER does not aim at
predicting overlapping clusters. Nevertheless, we tried to
distinguish between non-overlapping and overlapping
deletions by simply considering non-overlapping cliques
and pairs of overlapping cliques. The true and false posi-
tive rates were below 0.3 for all scenarios (not shown in
the figure).

In all settings, agglomerative clustering with the pro-
posed similarity score proves to be accurate. GASV per-
forms well, where using the option to output all clusters
before merging turned out to be slightly more effective in
this setting.

As can be seen in the Venn diagram in Figure 8, overall,
625 pairs of overlapping deletions have been correctly
identified by all three approaches, 476 were exclusively
found by our approach, none by GASV, and 190 by
GASV_max. Figure 9(a) shows a typical example in which
agglomerative clustering correctly unraveled two overlap-
ping deletions, whereas GASV (both variants) makes one
prediction that is rather vague. Figure 9(b) exemplifies that
in some instances, the two overlapping deletions were so
similar in location and size that they appear to be indistin-
guishable. The mean distance (all scenarios) of simulated
overlapping deletions falsely detected as one deletion was
about 20% smaller than those correctly detected as two
deletions; the ratio for the deletion sizes was about the
same. Further, the resolution was worse for smaller dele-
tions: Falsely classified deletions were on average 13%
smaller than correctly classified ones.

We also investigated, when two overlapping deletions
have been called correctly, how accurate the mappings ori-
ginating from the two different alleles have been assigned
to the two clusters. Ideally, one clusters should only con-
tain mappings from the first deletion and the other cluster
only those from the second deletion. On those pairs, cor-
rectly identified by all three methods, GASV clusters con-
tained 0.041% mis-assigned mappings, GASV_max
0.019%, and our clusters contained 0.006%. In total, i.e.,
including the more difficult cases GASV did not detect as
pairs at all, we observed 1.3% mis-assignments in our clus-
ters and 4.0% in the GASV_max clusters (averaged over all
four simulation settings).

To analyze the similarity threshold used as a stopping
criterion in our clustering, we performed several runs with
varying thresholds and summarized the performance in a
ROC curve, shown in Figure 10. In this simulation setting,
the threshold that is computed from the data as described
in Section “Method” turns out to be close to optimal in
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Figure 7 Accuracy of different methods in detecting single or overlapping deletions. For different coverages (20x and 60x), and two
different simulated scenarios (see Figure 6), the accuracy in distinguishing single from overlapping deletions has been measured. The empty
symbols represent the true and false positive rate for detecting single deletions (TPR;, FPR;). The solid symbols represent the true and false
positive rate for detecting pairs of overlapping deletions (TPR,, FPR,).

terms of accurately detecting non-overlapping deletions
and even optimal for pairs of overlapping deletions.

Real data

The Department of Paediatric Oncology, Haematology
and Immunology at the Diisseldorf University Hospital,
Germany, provided sequencing data of an acute lympho-
blastic leukemia patient. Three samples (before treatment,
after treatment, and relapse) have been sequenced on an

Hllumina HiSeq 2000 with read length 51, segment length
around 300, and sequence coverage of 6x, 8x and 8x,
respectively. At the Institute of Medical Informatics at
University of Miinster, Germany, the reads have been
mapped to hg19 with BWA [42] (version 0.5.9, at most 3
mismatches and standard parameters otherwise) and
Picard [43] has been used to remove duplicates. Figure 1
exemplarily shows the fragment length distribution for
chromosome 21 from one of the data sets estimated from
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Figure 8 Identification of overlapping deletions. This Venn diagram shows how many pairs of overlapping deletions have been correctly
identified by the different tools an all four simulation settings. Note that the areas are not scaled exactly proportional.
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Figure 9 Two instances of the evaluation. The green and red triangles (shown partially) represent the mappings of the two alleles, and the
third dimension is represented in shaded gray tones. The true deletion coordinates are indicated by white crosses, deletions obtained by
agglomerative clustering are depicted in yellow, and the blue line shows the breakpoint region predicted by GASV.




Wittler BMC Genomics 2013, 14(Suppl 1):512
http://www.biomedcentral.com/1471-2164/14/51/S12

Page 12 of 14

e _
—
O&) o
Q _
o /
*» O
o e
© | i © /
o
o pid
o
— %
< © non-overl.
o :
® pairs
+ 1070
N
= * 0.002
X 0.1
S _
o
I I I I | I
Figure 10 Accuracy depending on the similarity score used as threshold in the agglomerative clustering. Thresholds 10% 107, .., 107,
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the mapping distances. It approves that the assumption of
a normal distribution is approximately met.

Processing the data on a Sun Fire X4600 M2 with dual-
core AMD processors at 2.6 GHz and 32 GB RAM took
in total about 8:46 CPU hours, from which 7:56 hours
were needed to read and filter the 67 GB of input, and
only 50 minutes were necessary to cluster the filtered
3,249,648 mappings, and generating the output. We con-
sidered all mappings with distance at least three standard
deviations larger than the mean. Those have been filtered
and partitioned into 731,522 regions as described in
“Method”, only 288,552 of which contained at least two
mappings. In total, 101,910 deletions supported by at
least two mappings have been detected, comprising 104
pairs of overlapping deletions. Table 1 gives an overview
of the number of deletions, and the amount of overlaps
found.

Many highly overlapping deletions were found in telo-
meric or centromeric regions, where mappings are not
very reliable. Figure 4 exemplarily shows a region where
we found overlapping clusters. The shown region is also

an example for a general observation we made: Agglom-
erative clustering with our similarity score nicely identifies
outliers among the discordant mappings, as those remain
as singleton clusters. In our approach, such putatively
erroneous mappings do not distort the main deletion pre-
diction, whereas, for instance in GASYV, a single mapping
can drastically affect a cluster if the corresponding trape-
zoid overlaps it, or can result in many maximal sets of
overlapping trapezoids.

An experimental validation of this and further findings
is currently being performed. Here, we wanted to give an
overview of the general performance of the presented
method on a real world instance. In cooperation with the
Diisseldorf University Hospital, further analyses of this
and other data sets are planned.

Conclusions

It is well known that structural variations in the human
genome play an important role in the development of dis-
eases, especially cancer. In particular, the accurate detection
of deletions still remains a challenging task. A preliminary
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Table 1 Number of overlapping deletions.
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Size (# deletions) 0 1 2 3 4 5 6 7 8 9 > 10 Total
# regions 631,769 97,869 1,768 68 25 8 2 2 3 4 4 731,522
# components - 101,615 104 9 4 3 1 2 0 1 0 101,739

If the breakpoint region of a deletion, i.e,, the interval defined by / and r of the cluster, overlaps another breakpoint region, these deletions are assigned to the
same component. That means, non-overlapping deletions build components of size one, pairs of overlapping deletions build components of size two, etc. Note
that deletions found in one region (cf. Section “Method”) do not necessarily build one component. Below, the number of regions and components for different

sizes are given.

study has motivated that detection methods should be cap-
able of handling overlapping deletions to be able to draw a
clearer picture of variations in heterogeneous samples, e.g.,
to distinguish cancer from patient specific mutations.

In the present study, we have demonstrated that
agglomerative clustering is suitable for this task. We have
introduced a similarity score that is based on a geometric
and probabilistic interpretation of paired ends which
have been mapped to a reference sequence. Taking into
account both the location and the length of a deletion,
this scoring allows to effectively cluster mappings into
possibly overlapping clusters. The method has success-
fully been applied on real data, and has proven to be
accurate according to a simulation-based evaluation.

Here, we have investigated the performance of an intui-
tive clustering approach. On the one hand, the simplicity
of agglomerative clustering offered us insight into the clus-
tering process and understanding of its behavior. On the
other hand, computationally more sophisticated clustering
strategies could perform even better, if they are computa-
tionally not too expensive for such large data sets.

We believe that there is still more potential to be
explored in the detection of structural variants, especially
deletions. Besides the combination with other approaches,
such as split read or coverage analysis, the increasing avail-
ability of several samples from one patient offers a dimen-
sion that has to be investigated.

Note added in proof

Another clustering based method to call deletions (and
insertions) from paired-end mapping data from heteroge-
neous samples has been published very recently. The tool
SVM? by Chiara et al. [44] utilizes a support vector
machine incorporating, similar to our tool, mapping loca-
tion and mapping distance, but also coverage information.
Including SVM? into our simulation-based evaluation
could not be finished during revision of the present
manuscript.

Additional material

Additional file 1: Results of the simulation-based evaluation. Results
of the simulation-based evaluation described in Section “Simulation of
overlapping deletions” of the paper. The leftmost column specifies the
number of simulated overlapping deletions (no deletion, single deletion,
or pair of overlapping deletions) and the predictions (no deletion, single

deletion, pair of overlapping deletions, or three or more overlapping
deletions). The remainder of the table shows the corresponding counts
per tool (agglomerative clustering, GASV [22], GASV with option
“maximal’, and CLEVER [37]) for four different settings (coverage 20x and
60x, and scenario A and B, cf. Figure 6).
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