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Abstract

Background: Understanding and predicting the effects of mutations on protein structure and phenotype is an
increasingly important area. Genes for many genetically linked diseases are now routinely sequenced in the clinic.
Previously we focused on understanding the structural effects of mutations, creating the SAAPdb resource.

Results: We have updated SAAPdDb to include 41% more SNPs and 36% more PDs. Introducing a hydrophobic
residue on the surface, or a hydrophilic residue in the core, no longer shows significant differences between SNPs
and PDs. We have improved some of the analyses significantly enhancing the analysis of clashes and of mutations
to-proline and from-glycine. A new web interface has been developed allowing users to analyze their own
mutations. Finally we have developed a machine learning method which gives a cross-validated accuracy of 0.846,
considerably out-performing well known methods including SIFT and PolyPhen2 which give accuracies between

0.690 and 0.785.

Conclusions: We have updated SAAPdb and improved its analyses, but with the increasing rate with which
mutation data are generated, we have created a new analysis pipeline and web interface. Results of machine
learning using the structural analysis results to predict pathogenicity considerably outperform other methods.

Background

The explosion in the availability of mutation data,
resulting from the application of SNP chips [1] and
next-generation sequencing [2] has led to a huge
demand to analyze and predict the effects of mutations.
The genes for many genetically linked diseases are now
routinely sequenced in the clinic.

While a mutation is defined as ‘any change in the DNA’,
most work has focused on studying ‘Single Nucleotide
Variations’ (SNVs). Broadly these can be classified into
Single Nucleotide Polymorphisms (SNPs) and pathogenic
deviations (PDs). SNPs which, if strictly defined, occur in
at least 1% of a normal population, are estimated to occur
once every 100-300 bases in the human genome [3], giving
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rise to subtle phenotypic variation without causing major
deleterious phenotypic changes; PDs occur at much lower
frequencies and are causative of disease.

In reality, SNVs form a spectrum from completely
silent SNPs at one end, to 100% penetrance, Mendelianly
inherited PDs at the other end. In between, SNVs show
partial penetrance; that is, only a fraction of individuals
having the mutation show altered phenotype and this can
be influenced by the presence of other mutations and/or
environmental factors.

To date, most effort has gone into understanding the
effects of missense SNVs that lead to changes in protein
sequence. We use the term ‘Single Amino Acid Poly-
morphism’ (SAAP) to refer to such amino acid changes
whatever the frequency and resulting phenotype of the
mutation. More than a dozen groups have devised meth-
ods to analyze the effects a given SAAP will have and in
some cases attempt to predict whether the mutation will
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have a deleterious effect on phenotype [4-15]. However,
the best known methods are SIFT [16] (an evolutionary
method which calculates a sophisticated residue conserva-
tion score from multiple alignment) and PolyPhen-2 [17]
which uses machine learning on a set of eight sequence-
and three structure-based features. A recent addition to
the set of tools is Condel [18], a consensus predictor
which makes use of SIFT, PolyPhen-2 and MutationAsses-
sor [12]. Condel significantly outperforms any of its com-
ponent predictors. Until recently, rather than trying to
predict whether a given SAAP will result in a deleterious
phenotype, our focus has been on trying to understand the
effects that mutations have on protein structure, compar-
ing these effects in SNPs (that is non-pathogenic muta-
tions) and PDs. Our approach has been to map SAAPs
onto protein structure and to perform a rule-based analy-
sis of the likely structural effects of these mutations in
order to ‘explain’ the functional effect (if any) of the muta-
tion. Since we map mutations to structure, we only con-
sider mutations in proteins for which a structure has been
solved. Data resulting from the analysis of SNPs and PDs
have been collected into a relational database and made
available over the web in the resource SAAPdb [19]
(http://www.bioinf.org.uk/saap/db/).

In this paper we describe (i) an update of the data in
SAAPdb, (ii) enhancements to methods used to analyze
the structural impact of SNPs, (iii) a new web interface

Page 2 of 11

allowing the analysis of new mutations and (iv) results of
the application of machine learning to predict the pheno-
typic effects of mutations based on our structural
analyses.

Results and discussion
SAAPdb update
Considerable effort has been made to improve the code
for updating SAAPdb. A summary of the datasets com-
paring the old and new builds of the database is shown in
Table 1, while Figure 1 (which can be compared with the
Hurst et al. paper [19]) shows a comparison of structural
effects seen for SNPs and PDs. Other sources of mutation
data have been considered including HGMD and Swis-
sProt Variants (SwissVar). However HGMD data are only
available to registered users meaning that we have not
been able to reproduce their data in our database and
SwissVar is not terribly reliable in annotation of disease
status. For example, known PDs in G6PD are annotated
as ‘Natural Variants’ of Unclassified disease status. Other
locus specific mutation databases (LSMBDs) can easily be
added [20], but as explained below, we have now imple-
mented SAAPdap, a pipeline version of the system allow-
ing users to analyze novel mutations, which we now
regard as our primary resource.

Since we map mutations to protein structure and
therefore require a structure to be solved of the protein

Table 1 Number of distinct mutations from different sources that have been mapped to protein sequence and

included in SAAPdb

Data source

Previous build Current build

SNPs

dbSNP

PDs

OMIM

ADABase Adenosine DeAminase deficiency

Hamsters The Haemophilia A Mutation, Structure, Test
and Resource

IARC-p53-Germline Tumor Protein 53 gene germline
mutation in familial cancers

IARC-p53-Somatic Tumor Protein 53 gene somatic mu-
tations in sporadic cancers

G6PD Glucose-6-Phosphate Dehydrogenase

OTC Ornithine TransCarbamylase (OTC)

SODdb SuperOxide Dismutase 1

ZAP70Base Zeta-chain-Associated Protein kinase 70
Kinbase Somatic protein kinase driver mutations
Kinbase Somatic protein kinase passenger mutations
LDLR Low Density Lipoprotein Receptor

PAHdb Human Phenylalanine Hydroxylase gene
STAT3 Signal Transducer and Activator of Transcription 3
Total PDs

34342 48452
7249 9339
30 38
530 628
95 138
617 1368
170 170
148 217
96 125

5 5

66 66

66 66
516 515

0 337

0 47
9588 13059
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Figure 1 PQS Residue in a contact with a different protein chain or ligand, according to the PQS server; Bind Residue in a contact with a different
protein chain or ligand, according to PDB data; MMDB Residue in a contact with a ligand, according to the MMDB server; Gly Mutation from glycine,
introducing unfavourable torsion angles; Pro Mutation to proline, introducing unfavourable torsion angles; Cispro Mutation from cisproline,
introducing unfavourable torsion angle; Clash Mutation introducing a steric clash with an existing residue; Void Mutation introducing a destabilizing
void >275A% in the protein core; Hbond Mutation disrupting a hydrogen bond; CorePhilic Introduction of a hydrophilic residue in the protein core;
SurfacePhobic Introduction of a hydrophobic residue on the protein surface; BuriedCharge Mutation causing an unsatisfied charge in the protein
core; SSgeom Mutation disrupting a disulphide bond; HighCons Residue has conserved sequence; EXPLAINED Any of the above categories. In
addition, we look at whether a residue annotated as functionally relevant by UniProtkB/SwissProt; Asterisks indicate a significant result (two where
p < 0.01 and one where p < 0.05) calculated as described in Hurst et al. [19].
A

of interest, we are not able to analyze all mutations. Of
the amino acid mutations in OMIM, we are only able to
map approximately 57% to structure, while only approxi-
mately 22% of ‘valid’ SNPs from dbSNP, which result in
an amino acid change, map to structure. Consequently
the coverage of our analysis is currently somewhat lim-
ited, but clinically relevant proteins tend to be key targets
for structural studies, so we expect this figure to improve.
Where multiple structures have been solved, we analyze
the effects of the mutations in all available structures.

In summary, the number of SNPs in the database has
risen by 41% and the number of PDs by 36% (including
two new sources of mutation data). The comparison of
structural effects between SNPs and PDs shows the same
trends as in the previous analysis, but the ‘surfacephobic’
(introducing a hydrophobic residue onto the surface) and
‘corephilic’ (introducing a hydrophilic residue into the
core) analyses no longer show significant differences
between SNPs and PDs.

Analysis enhancements

In SAAPdD, all assignments of structural effects are
Boolean — that is, any mutation either does, or does not,
have a given effect. While Boolean assignment is appro-
priate in some cases (for example, a residue either is, or
is not, annotated as a feature in UniProtKB/SwissProt), in
other cases, it relies on some cutoff (for example, energy,
void volume, hydrophobicity difference) as described
previously [19,21-23].

We found that assigning a mutation as (not) having a
structural effect is very sensitive to precise structural
details; where multiple structures are available for the
same protein, one structure may indicate that a muta-
tion has a value just below a cutoff while another struc-
ture has a value just above. Wherever appropriate, we
have now implemented real-number scores or pseudo-
energies for each effect. In particular, we have enhanced
the analysis of clashes and torsion angles to provide
energy values.
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Clashes

In analyzing clashes, our previous work defined a dama-
ging clash as any sidechain that has at least 3 van der
Waals overlaps (of any degree) with other atoms [19]. We
now perform a more complete energy calculation incor-
porating Lennard-Jones and torsion energies using
CHARMM [24] parameters:

E = (r?z — TBG> + k(1 + cos(ny +¢)) (1)

This accounts for any clashes between atoms of the side-
chain being replaced with its surroundings, together with
preferences for staggered conformations (see Figure 2).
Testing the new method on 400,000 residues from CATH
O-representatives (domains having no more than 65%
sequence identity) of high resolution (<2.5A) shows that
99% of sidechains have an energy of <13.4 kcal/mol (see
Figure 3).

Using the new energy evaluation we went on to analyze
how the old clash method performed. In the old method,
no account was made of the degree of clash — overlaps of
0.01A or of 1.0A were treated the same. Figure 4 shows
the energy distribution for sidechain replacements con-
sidered to make 0-5 clashes by the old method. Looking
at sidechain replacements that made no clashes using the
old method (Figure 4, panel 1), we see that 99% of the
data have an energy below 34.33 kcal/mol using the new
energy-based method. Panels 2 and 3 show cases evalu-
ated as making one or two clashes using the old method.
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Figure 2 Schematic indicating the two new terms used in
evaluation of clashes. £, is the van der Waals energy evaluated
using a standard Lennard-Jones potential while E,, is a torsion
energy.
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Figure 3 Distribution of sidechain clash energies calculated
according to Equation 1 for high resolution structures
amongst CATH O-representatives.

Using 34.33 kcal/mol as an energy cutoff, these graphs
indicate that 33.2% and 28.9% of potentially damaging
clashes (shaded regions in panels 2 and 3 respectively)
were not detected using the old method. Panels 4, 5 and
6 show the energy distributions for sidechain replace-
ments having 3-5 clashes by the old method which would
have been classified as damaging. However, using the
new method, 19.5%, 10.7% and 11.2% of cases (shaded
regions in panels 4, 5 and 6 respectively) have energies
below the threshold and are therefore unlikely to be
damaging.

Overall, approximately 32% of mutations previously
classified as not clashing are now found to clash while
approximately 15% of mutations previously classified as
clashing are now found to have only minor clashes which
could be relieved by very slight movements in the
structure.

Glycine and proline mutations

Glycine and proline are the ‘structural’ amino acids which
show an unusual Ramachandran distribution. Because gly-
cine has no sidechain, it is able to access a wider range of
phi/psi combinations while the cyclic sidechain of proline
restricts the available phi angles. Consequently, backbone
conformational changes may be necessary to accommo-
date mutations from-glycine or to-proline.

Previously, we used a very simple set of allowed bound-
aries for backbone phi/psi angles. We have now developed
a pseudo-energy potential based on Ramachandran plots.
A non-redundant set (sequence identity <25%) of high
resolution protein domains (resolution < 1.8A, R-Factor
<0.3) was selected from CATH and Ramachandran plots
were generated on a 1-degree grid for proline, glycine and
‘other’ amino acids. The plot was smoothed by averaging
each of the cells with its eight neighbours (Figure 5). For
each cell, we can then calculate:
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a bad clash. In each plot, the shaded area shows those residues that were mis-classified according to the new energy-based criterion.
J
obs expected number, calculated as the total number of
E=—log exp (2)  observations divided by the number of cells. A threshold

energy was calculated for each plot based on 1% of obser-
where ‘obs’ is the (smoothed) observed number of resi-  vations in high quality non-redundant structures having a
dues with a given phi/psi combination while ‘exp’ is the =~ worse energy.
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Figure 5 Ramachandran plots generated from high resolution structures. a) glycine, b) pro-line, c) other. Favoured regions are shown in
progressively paler green while disfavoured regions are shown in red.




Al-Numair and Martin BMC Genomics 2013, 14(Suppl 3):S4
http://www.biomedcentral.com/1471-2164/14/S3/S4

SAAP data analysis pipeline (SAAPdap)

SAAPdb was designed as a regularly updated pre-calcu-
lated resource. However, it has proved very difficult to
maintain and changes in licensing of OMIM data mean
that we may no longer be able to use this as our primary
source of PDs. In addition, with the increasing routine use
of high-throughput sequencing methods to detect muta-
tions, more and more people want to be able to analyze
their own mutations.

Consequently we believe the value of SAAPdb has
diminished and have now implemented SAAPdap (Single
Amino Acid Polymorphism Data Analysis Pipeline). This
is a complete rewrite of the mutation analysis software in
SAAPdb using a plugin architecture and making use of
the new non-Boolean analyses. While we still indicate
whether a mutation is likely to have a detrimental effect
on structure using cutoff values, we also provide continu-
ous values for each of the analyses.

Results from the SAAPdap pipeline are presented as
shown in Figure 6a. Results are summarized at the top
where the effects on each structure to which the muta-
tion maps are shown. Below, the analyses of structural
effects on each structure are presented and these can
then be expanded to provide more detail on the analyses
as shown in Figure 6b. Analysis descriptions are much
more comprehensive than was the case in SAAPdb to
make the results easier to understand.

We have now implemented a web interface to allow
users to enter mutations for analysis. Because some of the
analyses (especially the analysis of voids) are quite time
consuming (taking several minutes), the web interface
makes use of AJAX (Asynchronous JavaScript And XML)
to update the user with the progress of the analysis. The
submission page is available at http://www.bioinf.org.uk/
saap/dap/.

Predicting damaging mutations (SAAPpred)

The data in SAAPdD (Figure 1) show clear differences in
the sequence and structural characteristics of SNPs and
PDs: PDs have additional, and more severe, structural
effects. Thus there is a clear signal that can be used to
predict the pathogenicity of a novel mutation.

In preliminary experiments, we used a balanced set of
mutation data from SAAPdb with Random Forests imple-
mented in Weka obtaining an accuracy (Acc) of 0.935 and
a Matthews Correlation Coefficient (MCC) of 0.871 (based
on 10-fold cross-validation). The balanced dataset con-
sisted of 30,500 SNPs mapped to unique PDB structures
(see Table 2) and processed without any errors, and a ran-
dom selection of 30,500 PDs (mapped to unique PDBs).
Where several structures are available for a mutated resi-
due, each is used as an independent data point in training
the machine learning. While the 10-fold cross-validation

Page 6 of 11

in Weka ensures that there is no direct overlap between
the training and test sets, in these preliminary experi-
ments, there may be some ‘structural’ overlap — in other
words, for a given mutation in the test set, the same muta-
tion in a different PDB file of the same protein may be
present in the training set.

Gonzdlez-Pérez and Lépez-Bigas [18], report that well
known individual methods (SIFT, PolyPhen2, Logre [25],
MAPP [26] and MutationAssessor) give accuracies
between 0.690 and 0.771 evaluated on the HumVar data-
set developed for PolyPhen2. Their consensus method
(Condel) gives an accuracy of 0.882. While our prelimin-
ary value of 0.935 is considerably better, we are using a
different dataset.

However, having trained on SAAPdb, if we test on 1540
SNPs and 7182 PDs from the HumVar dataset that
mapped to structure we obtain Acc = 0.446, MCC = 0.135
—essentially a random prediction. This appears to be
because of the different definition of the ‘boundary’
between SNPs and PDs. As stated above, SNVs form a
spectrum from completely silent SNPs at one end, to
100% penetrance, Mendelianly inherited PDs at the other
end. As shown in Figure 7, different datasets use different
thresholds to separate the data into two sets or may con-
sider only the extremes. Prediction of the extremes may
appear to be a trivial problem, but this is not always the
case — some damaging mutations are very hard to predict.
HumVar uses a broader definition of PDs than the
SAAPdb data; in contrast, the SAAPdb definition of SNPs
is rather wide (anything in dbSNP not annotated as being
involved in disease) while the definition in HumVar
enforces the requirement that SNPs are present in at least
1% of a normal population. Since, in this experiment, we
use very different definitions for the training and testing, it
is not surprising that we obtain poor performance. We
considerably over-predict SNPs, consistent with our
broader definition of SNPs in the SAAPdb dataset.

Consequently, for the final version of SAAPpred, we
both trained and tested our method on the HumVar
dataset (using 10-fold cross-validation). HumVar (2011/
12) contains 22,196 deleterious mutations and 21,151
neutral mutations of which 7,182 and 1,540, respectively,
can be mapped to structure. Consequently, to obtain a
balanced dataset, only 3,080 mutations (equal numbers
of deleterious and neutral) can be used. Ten runs were
performed, each of which used all 1,540 neutral muta-
tions with a random selection of 1,540 deleterious muta-
tions from the total of 7,182. Results from the ten runs
were then averaged. In each run, to avoid the ‘structural
overlap’ between the training and testing data during
cross-validation (which was present in the preliminary
experiments with SAAPdb data), the mutations were
split into 10 sets of approximately the same size. Each
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Interfaces are defined by a difference in solvent accessibility between a complex and the
individual chain in the crystal structure.
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had an accessibility of 58.112%, a difference of 9.513%.
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this position was 31%.
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conserved.

Note that since there are <10 sequences in the alignment, this result should be treated with
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Mutant residue hydrophobicity: 0.53
Relative aceessibility of native residue: 58.112%
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No problems identified,
The native residue was not a cysteing in a disulphide bond.

.

Figure 6 Results pages from the new SAAPdap pipeline. a) Summary and brief structural reports — hovering over any of the titles brings up
a box to explain the meaning of the effect; b) Expanded view of full structural analysis.

of these 10 sets in turn was chosen as a test set. The
remaining 9 sets were used for training by randomly
drawing balanced datasets of different sizes from the
mutations as mapped to protein chains (see Table 2).
This manual cross-validation ensures that there are no
cases of the same mutation in the training and test sets
but from different PDB chains.

As expected, the performance (Acc = 0.846, MCC =
0.692) is rather worse than with the SAAPdb data, sim-
ply because the size of the HumVar dataset that can be
mapped to structure is much smaller than the SAAPdb
dataset. Figure 8 shows the effect of dataset size on
training and testing using subsets of the SAAPdb data.
The same procedure described above was used to avoid
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Table 2 Breakdown of the number of mutations in
SAAPdb and their mapping to structure.

Number of Mutations PDs SNPs
Mapped to UniProtKB/SwissProt 13,059 48452
Mapped to PDB 6,527 17915
Mapped to multiple PDBs 202,566 33,369
Mapped to multiple Chains 405,497 45,699

In some cases, several hundred structures are available (e.g. haemoglobin,
carbonic anhydrase, prthrombin, transthyretin, insulin, CDK2, lysozyme) and,
on average there are approximately two copies of each chain in each PDB file.

structural overlap between training and testing sets dur-
ing cross-validation. The graph clearly shows that the
smaller datasets perform considerably worse.

Nonetheless, our results from training and testing on
HumVar mutations that map to structure considerably
outperform other well-known individual methods includ-
ing SIFT and PolyPhen2 as reported by Gonzalez-Pérez
and Lopez-Bigas [18] (Accuracies between 0.690 and
0.771). However these results are still not directly com-
parable with the other methods as those methods are
evaluated on the complete HumVar dataset and it may
be argued that the subset of mutations for which struc-
tures are available somehow outperform those for which
structures are not available in these other methods. For
example, PolyPhen2 makes limited use of structural data
where these are available.

Consequently, we have evaluated the performance of
PolyPhen2, SIFT and MutationAssessor using balanced
datasets (1451 neutral mutations and ten random selec-
tions of 1451 deleterious mutations) used to assess the
performance of our method. (Note that we could only
use 1451 rather than 1540 mutations since the remain-
ing 89 PDs failed in at least one of the other predictors.)
In fact this gives a significant advantage to PolyPhen2
which is itself trained on HumVar leading to an overlap
between the training and test set. It is not clear precisely
what data are used to train SIFT; in their latest paper,
Sim et al. [27]. state that SIFT was originally trained
and tested on Lacl, Lysozyme and HIV protease, and
refer to the original SIFT papers, but they do not state
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whether the training has since been modified. Mutatio-
nAssessor does not appear to use a training set per se.

Results are summarized in Table 3 where it can be seen
that our method (SAAPpred) evaluated using 10-fold
cross-validation (i.e. with no overlap between test and
training sets) performs better than competing methods
where there may be overlap between testing and training
data. In particular, PolyPhen-2 was trained on the com-
plete HumVar dataset from which our test set is extracted.
If we allow overlap in our own set (the fairest comparison)
then we outperform PolyPhen2 (the best of the competing
methods) by an even larger margin.

While SAAPpred is clearly performing extremely well,
we expect to be able to improve results further through
feature selection (to help with the relatively small HumVar
dataset size), feature combination (e.g. subtracting native
void sizes from mutant void sizes) and feature normaliza-
tion (e.g. taking the log of some feature values to improve
the distribution of values). We also hope to develop meth-
ods to make more complete use of unbalanced datasets
and intend to use our predictor as a component predictor
of the consensus predictor Condel [18] which outperforms
the other individual methods (Acc = 0.882).

Conclusions

In conclusion, we have updated the data in SAAPdDb,
improved the analyses and integrated these into the new
SAAPdap pipeline and web interface. It is intended that
SAAPdap will replace SAAPdb (which has proved difficult
to update regularly and reliably). The submission page for
SAAPdap is available at http://www.bioinf.org.uk/saap/
dap/.

We are currently working on new analyses that examine
sequence differences at the DNA and RNA level. In addi-
tion to changes to the protein structure, mutations can
have effects on expression, RNA splicing and RNA folding
and stability [28-30].

Results of machine learning using the structural para-
meters calculated in SAAPdap considerably out-perform
any other individual predictor and approaching the perfor-
mance of the combined predictor, Condel. Future work

Silent
SNPs

PDs

SAAPdb IR ——

Humvar [N | | | [ [ [ IR

not consider mutations that lie in the middle.
A\

Figure 7 The penetrance of a mutation lies on a scale between ‘True SNPs’ which show no phenotypic effect at one extreme to
Mendelianly inherited PDs with 100% penetrance at the other. In SAAPdb, we use a very conservative definition of PDs, but a rather wide
definition of SNPs. In contrast, HumVar uses a somewhat broader definition of PDs, but a much more conservative definition of SNPs and does
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Figure 8 Performance of the machine learning method trained on different sized sets of data from SAAPdb. In each case, a balanced
dataset of the required size was extracted at random from the SAAPdb dataset of mutations mapped to protein chains (Table 2) and random
forests were trained and tested using 10-fold cross-validation. The graph clearly shows that performance drops as the dataset size decreases,
showing a marked drop in performance with datasets below 10,000 samples in size (5000 SNPs and 5,000 PDs).
A

will further optimize the performance of this method
using feature selection, feature combination and feature
normalization as well as exploiting strategies to make
more complete use of unbalanced datasets. We will inte-
grate our predictor as a component of Condel and expect
performance to outperform the current Condel method.
While the coverage of our method is currently some-
what limited by the need for a structure of the protein, we

Table 3 Performance of different prediction methods
using a balanced dataset of mutations that map to
structure extracted from HumVar.

Method Cross-validated MCC Acc

SAAPpred Yes 0.692 0.846
SAAPpred No 0.894 0.944
PolyPhen2 No 0.572 0.785
SIFT ? 0528 0.763
MutationAssessor N/A 0453 0.698

The values for the cross-validated assessment of SAAPpred were obtained
from 10-fold cross-validation performed during the Weka training and used all
1540 SNPs from HumVar that mapped to structure with a random sample of
1540 of the 7182 PDs that mapped to structure. This was repeated 10-times
and the results averaged. Non cross-validated results were performed by
using a slightly smaller set of 1451 SNPs that mapped to structure and could
be assessed by all the other methods together with a random sample of 1451
PDs that could be assessed by all methods. Again this was repeated 10-times
and the results averaged. The non-cross-validated values for SAAPpred give
the fairest comparison with PolyPhen2 which is trained on the HumVar
dataset. It is unclear exactly what data were used in training the most recent
version of SIFT so there may be some overlap between training and test sets
while MutationAssessor has no training set per se.

plan to investigate the use of modelled structures. How-
ever, we currently don’t know how well this will work
given the detailed structural analysis (e.g. of hydrogen
bonds) that our method performs. However clinically rele-
vant proteins tend to be key targets for structural studies,
and as more structures become available, the number of
mutants mapped to structure will increase, improving the
coverage of our method. In addition, more structural data
will allow us to train the machine learning methods with
more data. Consequently, as shown in Figure 8, we expect
performance to increase further.

Materials and methods
SNP data were extracted from the XML format dump of
dbSNP [31] obtained from the NCBI. Non-synonymous,
‘valid’ human SNPs (i.e. those annotated with validation
strings ‘by frequency’, ‘by 2hit 2allele’, or ‘by hapmap’),
were extracted and combined into a single XML file.
Any mutations not annotated as having disease involve-
ment were assumed to be neutral. PDs were obtained
from Online Mendelian Inheritance in Man (OMIM,
http://www.ncbi.nlm.nih.gov/omim/) and a number of
locus-specific mutation databases (LSMDBs’) [20], see
Table 1. All mutations were then mapped to protein
sequences and thence to structure as described pre-
viously [19].

SAAPdb and SAAPdap perform fourteen analyses:
Interface: (or PQS:) Residue is in an interface according


http://www.ncbi.nlm.nih.gov/omim/

Al-Numair and Martin BMC Genomics 2013, 14(Suppl 3):S4
http://www.biomedcentral.com/1471-2164/14/S3/S4

to solvent accessibility criteria; Binding: Residue makes
specific interactions with a different protein chain or
ligand; SprotFT: Residue is annotated as functionally rele-
vant by UniProtKB/SwissProt; Clash: Mutation introduces
a steric clash with an existing residue; Void: Mutation
introduces a destabilizing void in the protein core;
Cis-Proline: Mutation from cis-proline, introducing an
unfavorable omega torsion angle; Glycine: Mutation from
glycine, introducing unfavorable torsion angles; Proline:
Mutation to proline, introducing unfavorable torsion
angles; HBond: Mutation disrupts a hydrogen bond;
Corephilic: Introduction of a hydrophilic residue in the
protein core; Surfacephobic: Introduction of a hydropho-
bic residue on the protein surface; Buriedcharge: Muta-
tion causes an unsatisfied charge in the protein core;
SSgeometry: Mutation disrupts a disulphide bond;
Impact: Residue is significantly conserved. From these
analyses (using software written in Perl and C) we derive
47 features that are used for machine learning. Random
Forests (implemented in Weka [32]) were used for all pre-
dictions. Random Forests are ensemble classifiers that
consist of multiple decision trees, each of which uses a
random subset of the available features. The output of the
predictor is the fraction of trees voting for the most popu-
lar class (in this case PD or SNP). Initial trials were per-
formed using SAAPdb and HumVar data with 1000 trees
and between 4 and 45 features per tree. 40 features per-
formed best with SAAPdb while 4 features performed best
with HumVar and these values were used for building the
final machine learning models. Data are stored in a
PostgreSQL relational database.

Note added in proof

An additional predictor FATHMM (http://fathmm.biocom-
pute.org.uk/) has become available since this work was
completed (Shihab HA, Gough J, Cooper DN, Stenson PD,
Barker GLA, Edwards KJ, Day INM, Gaunt, TR. (2013). Pre-
dicting the Functional, Molecular and Phenotypic Conse-
quences of Amino Acid Substitutions using Hidden Markov
Models. Hum. Mutat., 34:57-65). Evaluation of FATHMM
on the same dataset shows a performance of ACC=0.836,
MCC=0.671. While approaching our cross-validated perfor-
mance, it is likely that some of the HumVar data were
included in training FATHMM.
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