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Abstract

In this paper, we propose an Advanced Bayesian-based Personalized Laboratory Tests recommendation (BPLT+)
model. Given a patient, we estimate whether a new laboratory test should belong to a “taken” or “not-taken” class.
We use the bayesian method to build a weighting function for a laboratory test and the given patient. A higher
weight represents that the laboratory test has a higher probability of being “taken” by the patient and lower
probability of being “not-taken” by the patient. For the sake of effectiveness and robustness, we further integrate
several modified smoothing techniques into the model. In order to evaluate BPLT+ model objectively, we propose
a framework where the data set is randomly split into a training set, a validation input set and a validation label
set. A training matrix is generated from the training data set. Then instead of accessing the training data set
repeatedly, we utilize this training matrix to predict the laboratory test on the validation input set. Finally, the
recommended ranking list is compared with the validation label set using our proposed metric CorrectRateM. We
conduct experiments on real medical data, and the experimental results show the effectiveness of the proposed
BPLT+ model.

Background
Large amounts of clinic laboratory test data are col-
lected and stored every day. Therefore, there is an
increasing need for analyzing and utilizing the labora-
tory test data. The problem we are working on in this
paper is to recommend laboratory tests for given
patients. Health care recommendation problems have
drawn researchers’ attention for years. However, there
are not a lot of studies conducted on the clinic labora-
tory test recommendation problem.
The medical data we are working on contains several

years patients’ laboratory test records. Figure 1 shows an
example of the data format. Formally, the laboratory test
prediction problem can be described as follows [1]:
“Given a set of patients P = {p1, p2, ..., pn} and a set of
laboratory tests T = {test1, test2, ... testM}, each patient pj
has done tests testj,1, ..., testj,kj. If a doctor would like to

assign a new test for patient pj, which test in T should
be chosen?”
The computer systems have been playing for an

important role in health care for years [2-8]. Statistic
algorithms [9-12] lead an important role in investigating
health care data. [13,14] extracts chemical keywords
from a query patent by analyzing word frequency and
the word’s effect over the data collection. Bayesian
learning is a widely used algorithm that shows good per-
formance [15-19]. A semantic-based association rule
mining approach is proposed to model the medical
query contexts in [20]. Using a novel classifier based on
the Bayesian discriminant function, Raymer, M. L. [21]
present a hybrid algorithm that employs feature selec-
tion and extraction to isolate salient features from large
medical and other biological data sets. Martín and Pérez
[22] analyze the robustness of the optimal action in a
Bayesian decision making problem in the context of
health care. [23,24] studies the association between two
words by simulating the impact of words in documents
in the context of information retrieval. A probabilistic
survival model is derived from the survival analysis
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theory for measuring aspect novelty of genomics data
[25]. A mixture markov model is proposed to investigate
user navigation patterns so that a personalized recom-
mendation system for each user can be built [26]. In
our previous work [1], we propose a laboratory test pre-
diction model, which would objectively determine
whether a laboratory test is associated to a patient. This
paper is a significant extension to [1].
Smoothing [27] is a technique to create an approxi-

mating function that attempts to capture important pat-
terns in the data, while leaving out noise or other fine-
scale structures/rapid phenomena. The smoothing tech-
niques have been used in many realms to improve the
accuracy [28]. Based on the basic Bayesian algorithm
and smoothing techniques, we propose an Advanced
Bayesian-based Personalized Laboratory Tests recom-
mendation (BPLT+) model, to investigate the correlation

among laboratory tests for each patient. Evaluation is a
crucial issue in the health care domain [29]. Some pre-
vious health care researchers do evaluation via patient
interaction [30] or statistics [31]. We present a metric
CorrectRateX by employing the idea of Mean Average
Precision (MAP) [32] in Information Retrieval domain.
Four unique contributions are presented in this paper.

Firstly, we learn the associations among laboratory tests
and make personalized recommendations to patients
without human interaction. Secondly, we integrate mod-
ified smoothing technologies to improve the persona-
lized recommendation model and propose the BPLT+
model. Thirdly, we propose a framework to randomly
generate a training data set, a validation input set and a
validation label set. Fourth, we use a objective evaluation
metric for personalized recommendation systems with-
out patient interaction.

Figure 1 An example dataset. The format of the laboratory data sets is presented: the attributes from left to right are SDTE (SERVICE DATE),
REQ# (REQUISITION NUMBER), PNUM (PATIENT HEALTH CARD#), PNAM (PATIENT NAME), PSEX (PATIENT SEX), BDTE (PATIENT DATE OF BIRTH),
TSEQ (TEST SEQUENCE NUMBER), TEST (TEST CODE), DESC (TEST DESCRIPTION), RSLT (TEST RESULT), NORM (NORMAL RANGE), REXP (RESULT
EXPECTED Y/N), EXRS (EXTENDED RESULT Y/N). The patient information in this table is fake due to privacy.
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Methods
Bayesian-Based personalized laboratory tests
recommendation (BPLT) model
Here we assume that the laboratory tests for a patient
have associations among each other. For instance, if a
patient is suspected to have diabetes, usually the doctor
will assign both Hemoglobin test and Glucose Fasting
test for this patient. We can see that there exists an
association between Hemoglobin and Glucose Fasting
with respect to some hidden information, diabetes in
this case. On the other hand, if a patient is assigned
Hemoglobin test, then it is very likely that this patient
should also take Glucose Fasting test. In this section, we
build a model for learning the associations of the labora-
tory tests, inferring the associations between patients
and laboratory tests, and therefore recommending new
laboratory tests to the patients. We regard the test
recommendation problem as a special classification pro-
blem, where a test belongs to either a “taken” or “not-
taken” class. We use Bayesian classifier as our basic clas-
sifier, and modify it to a personalized ranking model.
Basic concept: Bayesian classifier
A classification problem is the following [33]: given a set
of training instances, each described with a set of n
attributes and each belonging to exactly one of a certain
number of possible classes, learn to classify new, unseen
objects. In addition, each attribute has a fixed number
of possible values. We use naive Bayesian classifier as
our basic classifier in this paper, since it evaluates
directly the probability of taking a test and the condi-
tional probability among two tests. Moreover, naive
Bayesian is easy to construct and has surprisingly good
performance in classification, even though the condi-
tional independence assumption is rarely true in real-
world applications [34]. The probability model for a
classifier is a conditional model

(1)

where F1, ..., Fn are attributes, and C is a class variable.
By Bayesian criteria, it equals to

(2)

The denominator is effectively constant, and the
numerator is equivalent to the joint probability model

In naive Bayesian, it assumes the features are condi-
tional independent

Therefore, the probability of a class C given feature F1,
..., Fn is

(3)

where is a constant.

The weighting function of BPLT model
In this Section, we describe the Bayesian-based Persona-
lized Laboratory Tests recommendation (BPLT) model,
which was proposed in our previous work [1]. More
details are given in this paper. The purpose of BPLT
model is to classify the laboratory tests for individual
patients by their personal conditions. In the real world,
it is often easier to obtain the patients’ previous labora-
tory tests information. Therefore, the BPLT model
recommends additional new laboratory tests to
patients, given the previous laboratory tests that the
patients have taken.
Suppose we have a set of M laboratory tests T = {test1,

test2, ..., testM }, and a patient pj who has taken tests Tj =
{testj,1, ..., testj,kj } where testj,i Î T for all 1 ≤ i ≤ kj. We
denote the events that tests in Tj are taken by pj as Fj,1,
Fj,2, ...Fj,M . For example, if we have 7 tests in T, and pj
has taken test3, test5 and test7 could be represented as
(Fj,1, Fj,2, ..., Fj,7) = (0, 0, 1, 0, 1, 0, 1). Bayesian Classifier
is employed to evaluate the association between pj a new
test test0 where test0 Î T and test0 ∉ Tj. We use Fj,0 to
represent the event of pj should take t0, and to repre-
sent the event of pj should not take t0. By Formula (3),
the probability of Fj,0 given Fj,1, Fj,2, ...Fj,M is

The probability of given Fj,1, Fj,2, ... Fj,M is

In the BPLT model, we reward the tests with high
probability of “taken” and low probability of “not-taken”.
The correlation between a new test test0 and a given
patient pj is shown in Definition 1 [1].
Definition 1 The correlation between a new test test0

and a given patient pj is defined as the log function of
the probability of pj should take test 0 divided by the
probability of pj should not take test 0 given Fj,1 , Fj,2, ...
Fj,M.

(4)
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We can see that higher value of corr(test0, pj) indicates
that test0 has more association with pj. The calculation
of corr(test0, pj) can be further simplified as follows

(5)

Moreover, a test either belongs to a “taken” class or a
‘not taken” class. Thus, the following two formulas are
held.

from which we can obtain and

Thus and in (5) can be eliminated
in corr (test0, pj ), as shown below

A joint probability for patient pj take both of the tests
testi and test0 is

The definition of the correlation between test0 and pj
is

which leads to the following Definition 2 [1].
Definition 2 The weighting function for a laboratory

test test0 for a patient pj is the simplified correlation
between test0 and pj

(6)

where

The new laboratory tests will be ranked in a list
according to w(test0, pj ) for a given patient pj. In the
later section, we will present the evaluation environ-
ments for the laboratory test ranking list.

An advanced model: BPLT+

To have a more robust and better performance model, we
further propose an advanced model, BPLT+, by improving
the BPLT model using several smoothing techniques.
There are two reasons for smoothing BPLT. One reason is
that smoothing is a way to deal with noise within the data.
Another reason is to avoid the mathematically meaning-
less. When test0 laboratory test has not been observed in
the previous visits, which means a = 0, the first part of for-
mula (6) will become an irrational number. Meanwhile,
when the joint frequency of two laboratory tests is zero,
which means bj,i = 0, the second part of (6) will become
an irrational number. Therefore, we introduce smoothing
technologies to further improve BPLT model.
Smoothing techniques
In statistics, smoothing [27] is a technique to create an
approximating function that attempts to capture impor-
tant patterns in the data, while leaving out noise or
other fine-scale structures/rapid phenomena. The main
purpose of smoothing in this paper is to assign a non-
zero probability to the unseen tests and improve the
accuracy of test probability estimation in general.
The smoothing techniques are discussed based on the

following definitions of a conditional probability [28].

(7)

where c(t;p) is the count of a patient taking a test.
Here are some commonly used smoothing methods.
Since we have defined a ranking problem, which is simi-
lar to the problems in Information Retrieval (IR), we use
some widely used smoothing methods in language
model in IR. The general form of a smoothed model
[35] is assumed to be the following:
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(8)

where Prt(t|p) is the smoothed probability of a test t
given the patient with existing tests. Pr(t|C) is the prob-
ability of a test t given the whole data set.
A smoothing method may be as simple as adding an

extra count to every test, which is called additive or
Laplace smoothing, or more sophisticated as in Katz
smoothing, where tests of different count are treated dif-
ferently. Three representative methods that are popular
and effective are:
• The Jelinek-Mercer method

(9)

where l is a balancing parameter ranges from 0 to 1.
• Bayesian Smoothing using Dirichlet Priors

(10)

where µ0 is a balancing parameter, and µ0 >0. The
Laplace method is a special case of this technique.
• Absolute Discounting

(11)

where δ Î [0, 1] is a discount constant and s = δ|p|u/|
p|, so that all probabilities sum to one. Here |p|u is the
number of unique terms in document d, and |p| is the
total count of words in the documents.
BPLT+ with smoothing techniques
There are two parts in formula (6) that need smoothing.
The first one is the conditional probability bj,i = Pr(Fj,i|
Fj,0). Its smoothed format is as follows:
• BPLT+ with Jelinek-Mercer

(12)

• BPLT+ with dirichlet priors

(13)

• BPLT+ with absolute discounting

(14)

In Jelinek-Mercer BPLT+ and Absolute Discounting
BPLT+, we use the existing smoothing method. The
smoothing parameters l, δ are within the range of [0,
1]. In Dirichlet Priors BPLT+, we modify the Dirichlet
smoothing technique, by divide both the numerator and

the denominator in (10) by , and normalize

the parameter µ to the range of 0[1], where

.
Another part in formula (6) needs smoothing is

, which is a simple division that could be
smoothed
via Laplace smoothing as

(15)

where θ is a tuning parameter ranges from 0 to 1.

Evaluation environments
Datasets
The datasets in our experiment are obtained from Alpha
Global IT [1,36]. Alpha Corporate Group provides
laboratory, medical clinic, commercial electronic medical
record and practice management software. The data set
contains 78 monthly patient’s laboratory test results.
Our experiments use 6 month results, containing
1,048,575 patients’ records, as a key study. Thousands of
patients’ records and more than 400 laboratory tests are
included in our experiments. The data format is the
same as the example shown in Figure 1. Our data set
contains real patients’ information, such as health card
ID, age, gender, date of visit, laboratory test ID, labora-
tory test results. We only use the patient ID and labora-
tory ID attributes in this paper, and analyze the
associations among these laboratory tests. In our future
work, we will incorporate more attributes in the labora-
tory recommendation model.

Validation data and measure
To evaluate BPLT+ models objectively, we divide the
data set into three components: a training set, a valida-
tion input set, and a validation label set. The data set is
firstly randomly split into a training set and a validation
set. In this step, we split based on the patients and do
not split the records from a same patient. Then for the
validation set, we randomly remove one test t* from
each patient pj, and store the t* in the validation label
set. The ranked list returned by BPLT+ will be com-
pared with t* for each patient. To measure such compar-
ison and finally evaluate the effectiveness of BPLT+, we
use the following defined CorrectRateX [1]. Suppose the
returned laboratory ranking list is , Correc-
tRateX validates whether t* appears in the top ranked
tests. The measure is modified from Mean Average Pre-
cision (MAP) [32] evaluation metric.
Definition 3 The CorrectRateX evaluates the accuracy

of a laboratory tests prediction system. It is the number
of patients with the desired (golden standard) test
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matching one of the top X tests generated by the system,
divided by the total number of the patients.

(16)

where

n is the number of patients, X is a parameter indicat-
ing how many top tests are compared to the golden stan-
dard test t*, which is set to be 1 or 3 in this paper.
We present an example to show how the CorrectRateX

evaluates the model in Table 1. Suppose the laboratory
test sets includes 200 tests and there are 5 patients in the
validation set. As we have introduced, the BPLT+ model
returns a ranked list for each patient. Here “>“ represents
that the weight of the left-side laboratory test is higher
than the weight of the right-side laboratory test. In our
example, 2 out of 5 patients have the desired test
t* ranked in the top 1 position of the list, then Correc-
tRate1 equals 0.4. And 4 out of 5 patients have t* appears
within the top 3 positions of the returned ranking list,
then CorrectRate3 equals 0.8. We can see that the top
3 positions include the top 1 position, so the following
statement is always true: CorrectRate1 ≤ CorrectRate3.

BPLT+ System Framework
The framework of BPLT+ Model is shown in Figure 2.
The data set in this framework is abstracted to contain
only patient ID and laboratory test ID. The procedures
in the proposed framework are described as follows.
• Split: First the data set is randomly split into a train-

ing set and a validation set.
• Random Remove a test as label: Since it is hard to

objectively evaluate the performance of the BPLT+ model,
we further randomly remove a test for each visit of the
patients from the validation set. These removed tests are
regarded as labels of the validation set input. Our ultimate
goal is to recommend the missing test for a patient’s visit.
• Build training matrix: To avoid duplicate calculat-

ing the frequency of a test and the joint frequency

between two tests, we build a training matrix out of the
training data. This training matrix contains the fre-
quency of co-occurrences of two laboratory tests. For
example, if a patient in the training data did test1 and
test2 together, then add 1 to F12 and F21. We can see
that the training matrix is a symmetric matrix.
• BPLT+ model: The correlation of a given test0 and a

patient is calculated based on formula (6).
• Evaluation via CorrectRateX: Finally, the evaluation

criteria CorrectRateX evaluates if the model made the
correct recommendations.

Results
We first show the overall performance under different
training-validation proportion in Table 2[1]. We ran-
domly take 40%, 50% and 60% of the data out of the raw
data set as the training data and keep the rest as the vali-
dation data. In general, there is higher performance of
BPLT+ model on a larger training data set. This is because
the larger training data set contains more information,
and more knowledge can be learned. With the develop-
ment of computer technology, larger amount of medical
data will be available in practice. Therefore, we will use
60% of data as training data in the rest of this paper. As
we have discussed before, CorrectRate3 is always higher
than CorrectRate1. In general, the BPLT+ model has
promising performance with an accuracy of 0.7074 for
CorrectRate1 and an accuracy of 0.7840 for CorrectRate3.
Then we investigate how the smoothing parameters

affect the effectiveness in detail. We first consider
smoothing bj,i only. There are three smoothing technol-
ogies utilized to smooth bj,i. They are Jelinek-Mercer
BPLT+, Dirichlet Priors BPLT+ and Absolute Discount-
ing BPLT+, with the corresponding parameters: l, µ, δ
Î [0, 1]. We conduct experiments on these three meth-
ods individually. The change of CorrectRate1 and Cor-
rectRate3 with respect to the parameters are shown in
Figure 3, Figure 4, and Figure 5. We can see from the
figures that the curve of CorrectRate1 is always below
the curve of CorrectRate3, which is consistent as we
have discussed Definition 3. With the increasing of para-
meters from 0.1 to 1, both CorrectRate1 and Correc-
tRate3 become higher at the beginning due to the

Table 1 An example of CorrectRateX
t* Recommendation list X = 1 X = 3

p1 test104 test104 > test5 > test40 > ... TOP1,1 = 1 TOP1,3 = 1

p2 test30 test30 > test3 > test18 > ... TOP2,1 = 1 TOP2,3 = 1

p3 test2 test95 > test2 > test34 > ... TOP3,1 = 0 TOP3,3 = 1

p4 test95 test78 > test19 > test58 > ... TOP4,1 = 0 TOP4,3 = 0

p5 test198 test92 > test134 > test198 > ... TOP5,1 = 0 TOP5,3 = 1

All patients – – CorrectRate1 = 0.4 CorrectRate3 = 0.8

This example contains a validation set of 5 patients, their desired laboratory test t*, the recommendation list, and the corresponding evaluation results.
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incorporating of the smoothing portion. After reaching
the maximum value, CorrectRate1 and CorrectRate3
become lower, since the weighing would tend to be
more universal when too much smoothing is incorpo-
rated. All the smoothing parameters achieve their best
performance at the value of 0.2. Comparing among
these three methods, Jelinek-Mercer BPLT+ obtains the
best performance on both CorrectRate1 and Correc-
tRate3, which are 0.5569 and 0.6167. When it comes to
the average value, Dirichlet Priors BPLT+’s average per-
formance on CorrectRate3 is better than the other two,
and Jelinek-Mercer BPLT+’s average performance on
CorrectRate1 is the best.
We further discuss to smooth the second part of (6),

where the Laplace smoothing parameter is θ. As we have
discussed before, Jelinek-Mercer BPLT+ has the best per-
formance on both CorrectRate1 and CorrectRate3. We
focus on investigating the sensitivity of θ by fixing

Figure 2 BPLT+ System Framework. The procedures for processing the laboratory data and testing the BPLT+ model are shown: (1) the
rectangles represent the data sets; (2) the rounded rectangles present the implemented procedures; (3) the ovals show the personalized
laboratory model; (4) the lines with arrows determine the directions through the framework.

Table 2 Performance

Percentage of Training Data CorrectRate1 CorrectRate3

60% 0.7074 0.7840

50% 0.6962 0.7837

40% 0.6823 0.7821

The overall performance of BPLT+ with different training-validation
proportions.

Figure 3 Parameter Sensitivity of l in Jelinek-Mercer BPLT+.
The influence of parameter l is investigated: (1) the stars represent
the performance of Jelinek-Mercer BPLT+ under the evaluation
metric CorrectRate1; (2) the circles represent the performance of
Jelinek-Mercer BPLT+ under the evaluation metric CorrectRate3;
(3) CorrectRate3 is always higher than CorrectRate1; (4) Jelinek-Mercer
BPLT+ achieves its best performance when l = 0.2.
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Jelinek-Mercer BPLT+ with l = 0.2. The results are
shown in Figure 6. We can see that the CorrectRate1
increases while θ is increasing, and the CorrectRate3
decreases a little and then increases. Both of them reach
the maximum and tend to be stable when θ is greater
than 0.5.

Conclusions and future work
An Advanced Bayesian based Personalized Laboratory
Tests recommendation (BPLT+) model is proposed in
this paper. Based on the assumption that hidden asso-
ciation could exist among laboratory tests, we employ a
Bayesian approach to build a weighting function for
scoring the correlation between a new laboratory test
and a patient. To have a more robust and better perfor-
mance model, we employ several enhanced smoothing
technologies into the BPLT+ model. The main purpose
of smoothing in this paper is to assign a non-zero prob-
ability to the unseen laboratory tests and improve the
accuracy of test probability estimation. We integrate
existing smoothing techniques in the BPLT+ model. In
particular, we use three techniques, Jelinek-Mercer,
Dirichlet Priors and Absolute Discounting approaches,
to smooth the conditional probability of observing a
patient taking an existing test when a new test test0 is
given (Formula 12-14). Also we use Laplace method to
smooth the log function in the BPLT+ model (Formula
15). We conducted experiments to discuss the per-
formance of the BPLT+ model and the sensitivity of
smoothing parameters. We find that BPLT+ is able to
make accurate recommendations under proper smooth-
ing parameters.
Further, we propose a novel framework for effectively

implementing BPLT+ model and objectively testing per-
sonalized recommendation systems without human
interactions, shown in Figure 2. Based on the real
patients’ laboratory test data, we randomly generate a
training data set, a validation input set and a validation
label set. A training matrix containing the laboratory
test statistics is calculated from the training data set and
stored. For new patients (the validation input set),
instead of processing the original training set, we utilize
this training matrix to predict the laboratory test on the
validation input set, and compare the ranking results
with the validation label set.
There are a few future directions of this research

work. As we can see from the data format in Figure 1,
we have not make use of all the attributes. In the future,
we would like to conduct a comprehensive investigation
for the patients’ profiles. For example, we can cluster
the patients into groups and investigate the similarities
of the patients in the same group. We can also analyze
the associations among laboratory test results and there-
fore further enhance our proposed personalized

Figure 4 Parameter Sensitivity of µ in Dirichlet Priors BPLT+.
The influence of parameter µ is studied: (1) the stars represent the
performance of Dirichlet Priors BPLT+ under the evaluation metric
CorrectRate1; (2) the circles represent the performance of Dirichlet
Priors BPLT+ under the evaluation metric CorrectRate3; (3) Dirichlet
Priors BPLT+ achieves its best performance when µ = 0.2.

Figure 5 Parameter Sensitivity of δ in Absolute Discounting
BPLT+. The influence of parameter δ is investigated: (1) the stars
represent the performance of Absolute Discounting BPLT+ under
the evaluation metric CorrectRate1; (2) the circles represent the
performance of Absolute Discounting BPLT+ under the evaluation
metric CorrectRate3; (3) Absolute Discounting BPLT+ achieves its best
performance when δ = 0.2.
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recommendation model. Moreover, we look forward to
testing our proposed models in more real applications.
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