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Abstract

Background: MicroRNAs (miRNAs) are key components in post-transcriptional gene regulation in multicellular
organisms. As they control cooperatively a large number of their target genes, they affect the complexity of gene
regulation. One of the challenges to understand miRNA-mediated regulation is to identify co-regulating miRNAs
that simultaneously regulate their target genes in a network perspective.

Results: We created miRNA association network by using miRNAs sharing target genes based on sequence
complementarity and co-expression patterns of miRNA-target pairs. The degree of association between miRNAs
can be assessed by the level of concordance between targets of miRNAs. Cooperatively regulating miRNAs have
been identified by network topology-based approach. Cooperativity of miRNAs is evaluated by their shared
transcription factors and functional coherence of target genes. Pathway enrichment analysis of target genes in the
cooperatively regulating miRNAs revealed the mutually exclusive functional landscape of miRNA cooperativity. In
addition, we found that one miRNA in the miRNA association network could be involved in many cooperatively
regulating miRNAs in a condition-specific and combinatorial manner. Sequence and structural similarity analysis
within miRNA association network showed that pre-miRNA secondary structure may be involved in the expression
of mature miRNA’s function.

Conclusions: On the system level, we identified cooperatively regulating miRNAs in the miRNA association
network. We showed that the secondary structures of pre-miRNAs in cooperatively regulating miRNAs are highly
similar. This study demonstrates the potential importance of the secondary structures of pre-miRNAs in both
cooperativity and specificity of target genes.

Background
MicroRNAs (miRNAs) play crucial regulatory roles in
repressing mRNA translation or mediating mRNA degra-
dation by targeting mRNAs in a sequence-specific man-
ner [1]. MiRNA-mediated regulation has been found to
encompass a wide spectrum of biological processes ran-
ging from growth and development to oncogenesis [2-5].
In general, one miRNA can target more than one gene (i.
e., multiplicity), and one gene can be controlled by more
than one miRNA (i.e., cooperativity) [6]. Cooperative

binding of one or several distinct miRNAs to a single tar-
get gene has been shown to be important for the func-
tionality of miRNA-mediated gene regulation [6,7]. For
example, genetic evidences in previous research suggest
that the lin-28 gene is cooperatively regulated by the lin-
4 miRNA and another unidentified miRNA [8]. Krek et
al. [9] also presented that miR-375, miR-124 and let-7b
jointly regulate Mtpn, providing evidence to support
coordinate control of miRNAs in mammals. Studying the
cooperativity of miRNAs is a substantial step for under-
standing the contribution of co-regulating miRNAs
towards a complex interplay between miRNAs.
Recently several studies have attempted to develop

methods to understand miRNA cooperativity. Boross et al.
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computed the correlations between the gene silencing
scores of individual miRNAs [10]. Xu et al. also developed
a computational method to identify significant synergistic
miRNA pairs via functional co-regulating miRNAs that
they jointly regulate [11]. Most of these studies however
did not actually considered co-expression profiles of
mRNAs and miRNAs. Considering that most miRNAs
exert their functions through interactions with other miR-
NAs, an understanding of a miRNA network context
using both co-expression pattern and the sequence com-
plementarity between miRNAs and mRNAs is essential to
discover the cooperative regulation of miRNAs.
In this paper, we propose a computational method to

construct a miRNA association network (MRAN) by
integrating multiple genomic data sources including
miRNA-mRNA binding information and miRNA-mRNA
co-expression profiles. While sequence complementarity-
based miRNA-mRNA target relationships serve as a static
set, dynamic expression profiles of miRNAs and mRNAs
are used to identify those subsets that are concurrently
active. We evaluate the miRNAs modules determined to
be significantly cooperative by assessing the functional
coherence of target genes co-regulated by the miRNA
modules. Then, we apply graph theoretical methods to
characterize MRAN and analyse whether miRNAs
belonging to the network are associated with each other
in a condition-dependent manner or not. Finally we
report that co-regulating miRNAs tend to have structural
similarities.

Results
Construction and characterization of miRNA association
networks
Table 1 lists the four datasets used in the present study to
create MRANs following the steps illustrated in Figure 1.
Table 2 shows the distribution of miRNAs and mRNAs
showing inverse expression pattern in each condition.
Figure 2(A) shows the global MRAN created by superim-
posing four conditions specific MRANs (see Figure 1)
consists of 241 miRNAs and 559 connections. In MRAN,
a node corresponds to each miRNA that has the signifi-
cant inverse expression pattern with its targets under
each experimental condition (Pearson’s correlation

coefficient r < 0), and edges represent target overlap
score p value < 0.05. MiRNAs were clustered into distinct
groups.
Molecular COmplex DEtection algorithm (MCODE)

[12] revealed 12 Cooperative MiRNA Modules (CMM)
(Table 3). The numbers of miRNAs and connections of
the CMMs range from 2 to 19 and 2 to 96, respectively
(Table 3). CMM 2 and 4 consist of let-7 family mem-
bers and miR-103/107 family, respectively. Table 3 exhi-
bits miRNA family members included in CMMs and
Figure 3 shows their condition-specific cooperativity.
The first known human miRNA let-7 and its family
members are highly conserved across species in
sequence and function. Misregulation of let-7 leads to a
less differentiated cellular state and the development of
cell-based diseases such as cancer. The role of miR-103
and miR-107 in regulation of CDK5R1 expression and
in cellular migration and neural development is well
documented [13].
Transcription factors are thought to regulate the tran-

scription of miRNAs in a pol II dependent manner simi-
lar to that of protein-coding genes; that is, by binding to
conventional transcription factor binding site sequences
(TFBS) located in or near promoter regions that lie
upstream of the miRNAs [14,15]. We examined the pro-
moter regions of miRNAs for the presence of regulatory
motifs. We determined over-represented motifs and
found 285 significantly over-represented TFBS pairs (1
in prostate cancer, 241 in radiation, 6 in Actinomycin-D
treatment and 37 in circadian rhythm) among the 6790
pairs (i.e., 766 in prostate cancer, 5105 in radiation, 744
in Actinomycin-D treatment, and 175 in circadian
rhythm) using hypergeometric distribution (Bonferroni
corrected p-value < 1.0e-05) (Figure 2(B)).

Mutually exclusive functional landscape of miRNA
cooperativity
The biology of miRNA function will be dictated by the
mRNA transcripts targeted by specific miRNAs [16].
Functional enrichment analysis of miRNA’s target tran-
scripts hence can be used as a proxy for evaluation of
the functional coherence of CMMs. We performed
functional enrichment analysis by using all KEGG and

Table 1 Co-transcriptomic expression datasets

Experiment Sample mRNA expression profile miRNA expression profile Reference

Circadian rhythm Mouse liver Illumina Mouse-6 Expression
BeadChip

Ambion mirVana™ miR
Bioarray V2

Na et al., 2009 [49]

ActinomycinD
treatment

Mouse brain neuroblast N2a cells Affymetrix Mouse Gene 1.0 ST
Array

Ambion mirVana™ miR
Bioarray V2

Unpublished data

Prostate cancer Human prostate adenocarcinomas Affymetrix Human Gene 1.0 ST
Array

OSU-CCC MicroRNA Microarray Prueitt et al.,
2008 [37]

Radiation treatment Human lung cancer H460 and
H1229 cells

Affymetrix Human Gene 1.0 ST
Array

Ambion mirVana™ miR
Bioarray V2

Lee et al., 2008 [36]

Na and Kim BMC Genomics 2013, 14(Suppl 5):S17
http://www.biomedcentral.com/1471-2164/14/S5/S17

Page 2 of 12



Figure 1 Overview of identifying CMMs in MRAN. (A) The conceptual diagram shows the stepwise process by which our methodology
identifies cooperativity of miRNAs. The problem statement is outlined in the right column of the figure. (B) Schematic view of our approach to
create miRNA association network and then to identify cooperatively regulating miRNAs in the miRNA association network.

Table 2 Distribution of miRNAs and mRNAs with inverse expression patterns

Category Circadian rhythm ActinomycinD Prostate cancer Radiation

No. of miRNAs 266 275 157 302

No. of genes 638 2446 1268 4354

No. of miRNA-gene pairs 1104 5095 2673 20522
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BioCarta pathways for each CMM. Heat maps in Figure
4(A) and 4(B) exhibit-log10 p-values obtained by hypergeo-
metric tests between (horizontal axis) CMMs’ target tran-
scripts and (vertical axis) KEGG and BioCarta pathways.
All pathways mapped to at least one CMM and all modules

mapped to at least one pathway appear in the Heat maps.
Those modules and pathways that have no mapping at all
are omitted from each heat map. Ten (i.e., CMMs 1~9 and
12) and nine (i.e., CMMs 1~9) CMMs have at least one
KEGG and BioCarta pathway mappings, respectively.

Figure 2 Global MRAN and co-occurrence graph of regulators on MRAN. (A) Global MRAN. Nodes of the network represent miRNAs, and
edges represent condition-specific cooperativity between a miRNA pair. (B) Co-occurrence graph of regulators on MRAN. In the co-occurrence graph
of regulators on MRAN, nodes represent transcription factors (TFs), and edges statistical significance of co-occurrences. The colors of edges indicate
different conditions (red: circadian rhythm, blue: radiation treatment, yellow: Actinomycin D treatment, green: prostate adenocarcinomas).
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CMM 1 has many significantly enriched pathways
both in KEGG and BioCarta and other CMMs show
small numbers of differently enriched pathways. One
noteworthy pattern in both heat maps is the finding that
functionally enriched pathways (in red) show little over-
lap between CMMs (Figure 4). It seems evident from
the heat maps that CMMs extracted by mining the glo-
bal MRAN exhibit functional landscape of mutually
exclusive CMMs.

Properties of the condition-dependent miRNA association
network
One miRNA may be involved in many CMMs in a condi-
tion-specific and combinatorial manner. Figure 3 illustrates
CMMs 1 to 4 from Table 3. Expression profiles of miR-93
and miR-106a show very high correlation coefficient (>0.8)
as well as high target overlap score (i.e., shared target genes
and inverse co-expression patterns with their shared target
transcript) both in prostate cancer and circadian rhythm.
So do the expression profiles of miR-93 and miR-17-5p in
circadian rhythm. It seems that the function of a miRNA
in the context of cooperativity can better be defined by its
interactions with other miRNAs (or ‘the company it keeps’)
rather than by its individual characteristics. Microarray

analysis by Volinia et al. for determining miRNA signatures
in prostate cancer includes both miR-93 and miR-106a,
which have well-characterized cancer associations [17].
Several lines of evidences suggest that miR-93 may have
different partners in different conditions. miR-93 and
miR-130b affect the proliferation and survival of HTLV-1-
infected/transformed cells [18]. miR-93 and miR-98 are
expressed at higher levels in small-cell than in non-small-
cell lung cancer cell lines and immortalized human bron-
chial epithelial cells (HBEC) [19]. MiRNAs-93, 92, 21, 126
and 29a were significantly over-expressed in the serum
from ovarian cancer patients compared to controls [20].
The three miRNA families in CMM 3 are in fact

regarded as a larger family of miR-15/107 group. These
miRNAs are involved in cell division, metabolism, stress
response, and angiogenesis in vertebrate species and have
been implicated in human cancers, cardiovascular disease
and neurodegenerative disease, including Alzheimer’s dis-
ease [21]. Membership in this group is defined based on
sequence similarity near the mature miRNAs’ 5’ end: all
include the sequence AGCAGC. While all vertebrates stu-
died to date express miR-15a, miR-15b, miR-16, miR-103,
and miR-107, mammals alone are known to express miR-
195, miR-424, miR-497, miR-503, and miR-646.

Table 3 Cooperative miRNA modules extracted from global MRAN

Subnetwork No. of miRNAs No. of links No. of targets miRNA family list

1 19 96 1536 miR-30a-5p, miR-30b, miR-30c, miR-30d, miR-30e, miR-30e-5p

miR-106a, miR-20a, miR-519d, miR-17-5p, miR-93

miR-302b, miR-302c, miR-373

miR-519b, miR-519c

miR-181c

miR-19a

miR-9

2 8 32 361 let-7a, let-7b, let-7c, let-7d, let-7e, let-7f, let-7g, let-7i

3 6 20 403 miR-15a, miR-15b, miR-16, miR-195, miR-424

miR-503

4 2 4 100 miR-107, miR-103

5 4 7 552 miR-130a, miR-130b, miR-301

miR-106b

6 3 5 214 miR-132, miR-212

miR-194

7 3 5 349 miR-29a, miR-29b, miR-29c

8 4 6 105 miR-185 miR-198 miR-326 miR-7b

9 5 7 653 miR-26a, miR-26b

miR-181a, miR-181d

miR-101

10 3 3 10 miR-302d, miR-520b

miR-349

11 2 2 33 miR-422a, miR-422b

12 3 3 132 miR-10a, miR-10b

miR-339
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Sequence and structural similarities within miRNA
association network
Recognition of only 6 ~ 7 nt base pair in the seed sequence
of the miRNA are enough to induce functional inhibition
of the target gene [22]. Although critical points for target
recognition are the short sites that match the seed region
of the miRNA, the possible role of the secondary structure
of miRNA cannot be overlooked in post-transcriptional

regulation of miRNA expression. If we assume that the dis-
tributions of the similarities obtained within CMMs,
between CMMs, and among random miRNAs is a normal
distribution, the appropriate test is Wilcoxon signed rank
test. Table 4 shows the results from statistical comparison
of the distributions of the similarities. As expected, seed
sequences within CMMs were significantly more similar
than those between CMMs. In contrast, mature miRNA

Figure 3 One miRNA participating in multiple condition specificity. The four representative CMMs identified with MCODE. The layout of this
network was produced with Cytoscape [48]. Expression profiles of miR-93 and its partner miRNAs according to different conditions show
correlation patterns.
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Figure 4 Heatmap of over-represented biological pathways of target genes of CMM. Color gradient represents statistical significance as
the -log10 (p-value) in the hypergeometric test for enrichment analysis using (A) KEGG pathway and (B) BioCarta pathway. Red indicates
significant associations while blue indicates insignificant associations.
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sequence did not achieve statistical significance. Neither
did precursor miRNA sequence.
Very interestingly, however, secondary structure of pre-

cursor miRNA showed statistically significant differences
such that precursor structure comparison showed even
much smaller p-values than seed sequence comparison,
which is believed to be the primary regulatory element of
miRNA. Although CMMs tend to include miRNA families
as shown in Table 3, structural similarity of pre-miRNAs
within CMM cannot be explained by miRNA families
because many of them originate from different precursors.
Moreover, a CMM tends to contain more than one
miRNA families and structural similarity of pre-miRNA is
even bigger than seed sequence similarity (Table 3). It is
suggested that pre-miRNA secondary structure may be
involved in the expression of mature miRNA’s function.

Evaluation
To evaluate the efficiency of our pipeline, we compared
target gene enrichment scores of our miRNA modules
with those of miRNA modules from previous study
using enrichment scores provided by DAVID Gene
Functional Classification [23].
The enrichment scores are intended to order the relative

importance of the gene groups. A higher score indicates
that the group members are involved in more important
(enriched) roles. The enrichment score of each group is
measured by the geometric mean of the EASE Scores
(modified Fisher Exact) associated with the enriched anno-
tation terms that belong to this gene group.
We used Wilcoxon Rank Sum test to compare target

gene enrichment scores between this study and previous
study. A statistically significant difference in the target
gene enrichment score distribution was observed (p-value
= 1.495e-06). In addition, in order to compare the distri-
bution of enrichment scores of target genes between this
study and previous study, we made boxplot and density
plot (Figure 5(A,B)). These plots show that the enrichment
scores of targets genes in the miRNA modules obtained
from this study are statistically significantly higher than
those from previous study. In conclusion, we can demon-
strate that our pipeline for finding miRNA modules is
more efficient than previous method in terms of enrich-
ment of target gene function.

Discussion
MiRNAs can bind to one gene [24-26] and the target
sites may overlap to some degree [27]. In many studies,
individual effect of a miRNA may appear to be small
but when they cooperate, the effect can be of significant
proportions [28]. Sætrom et al. (2007) observed that lin-
41 down-regulation in C. elegans requires cooperativity
between three miRNA sites [29]. Mavrakis et al. (2011)
showed that a small set of miRNAs are responsible for
the cooperative suppression of several tumor-suppressor
genes in T-cell acute lymphoblastic leukemia (T-ALL)
[30]. Cooperativity therefore provides the mechanistic
basis for reading out combinatorial expression patterns
of miRNAs.
Network-based approach of the present study aims to

investigate cooperative translational control of miRNAs.
We constructed MRAN and showed that CMMs share
their transcription factors in the association network.
Transcription factors may bind directly to the pri-miR
and/or pre-miR to regulate their processing [31]. TFBS
within pre-miRs might serve specifically to regulate
transcription of the primary miRNA gene transcript
(pri-miR) itself as well as transcription of nearby down-
stream genes. It may be a crucial factor that co-regulat-
ing miRNAs act cooperatively to target genes.
It is demonstrated that individual miRNA may interact

with different miRNA partners in a condition-specific
manner. Some miRNAs may act as ‘global facilitator
miRNAs’ that assist their target-specific partners in their
functions. They may inhibit their target genes depending
on conditions and partner miRNAs, enabling a post-
transcriptional response that integrates multiple envir-
onmental signals and pathways.
MiRNA biosynthesis can no longer be viewed as one

general pathway universal to all miRNAs. Many steps can
be performed in multiple ways, omitted or replaced, and
are affected by different mechanisms for individual miR-
NAs. Most importantly, these specific differences in
miRNA processing suggest multiple opportunities for
post-transcriptional regulation of miRNA expression [32].
We found that the secondary structures of pre-miRNAs in
CMMs are highly similar. On the contrary, pre-miRNAs
in CMMs are not similar at the sequence level. The sec-
ondary structures of pre-miRNAs have been reported to

Table 4 Sequence and structure similarities of cooperative miRNA modules

Comparison between CMMs CMMs vs. random miRNAs

H. sapiens M. musculus H. sapiens M. musculus

Mature form seed sequence 1.87E-01 * 2.59E-01 * 5.50E-02 * 1.18E-01 *

mature sequence 3.67E-01 8.77E-01 8.97E-01 9.96E-01

Precursor form Sequence 6.21E-01 4.59E-01 3.52E-01 1.35E-01

secondary structure 3.19E-08 * 1.06E-03 * < 2.2e-16* < 2.2e-16*

*p < 0.005
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serve as a signature motif that is recognized by the nuclear
export factor Exportin-5 in the biogenesis of miRNA [33].
Structure-function study raises the possibility of the invol-
vement of pre-miRNA secondary structure into specific
functions of targets via different miRNA biogenesis path-
ways. It has been further reported that the processing of
pre-miRNAs is specifically regulated [34]. These differential
processes potentially may have caused selection of distinc-
tive structural features that are involved in discriminating

regulatory interactions. Although the seed sequences of
miRNAs in CMMs are mostly similar (or identical), there
is no one-to-one mapping between CMMs and seed
sequences. Instead, CMMs seem to respond to a small
group of similar seeds that may be shifted from the usual
position (residues 2-8) to, e.g. the positions 1-7 or 4-10.
Our results highlight the potential importance of the

secondary structures of pre-miRNAs in both cooperativ-
ity and specificity of target genes. Vermeulen et al. iden-
tified the features of miRNA structure that affects Dicer
specificity and efficiency showing that various attributes
of the 3’ end structure which play a primary role in
determining the position of Dicer cleavage [35]. In addi-
tion, the functional regulatory networks of miRNAs can
provide insights into the intricacies of miRNA proces-
sing. The systematic study of identifying co-regulating
miRNAs showed that specifically regulated processing of
pre-miRNAs may have caused selection of distinctive
structural features that are involved in discriminating
regulatory interactions. It lends further credibility to the
hypothesis that structural subclasses could be associated
with processing differences of the precursors.

Conclusions
Cooperative signal integration on target genes of miR-
NAs is key features of the control of translation by miR-
NAs. Here, we constructed MRAN using CMMs to
investigate miRNA cooperativity based on integration of
multiple genomic data sources. The functional regula-
tory networks of miRNAs can provide insight into the
intricacies of miRNA processing. Pre-miRNA secondary
structure is suggested to be involved in mature miRNA
function. In conclusion, the molecular dissection of
miRNA modulation will help to unravel their functional
comprehension and escalate one level towards their
molecular decoding.

Methods
Overview of finding co-regulating miRNAs
Steps for identifying co-regulating miRNAs are presented
in Figure 1. Co-regulating miRNAs correspond to a group
of miRNAs silencing together target genes. Sequence com-
plementarity-based computational prediction can consider
static target relation only but not cooperative binding of
miRNAs that may occur in a condition-specific manner.
One needs to systematically investigate expression pat-
terns between miRNAs and mRNAs across different con-
ditions. We used miRNA-mRNA co-expression profiles to
select condition-specific modules of cooperative miRNAs
at the level of functional expression. Using miRNAs which
share common targets, we constructed MRAN and
extracted clusters of tightly co-regulating miRNAs from
MRAN based on the network analytic approach.

Figure 5 Comparison of enrichment scores of target genes
between this study and previous study. We made (A) boxplot
and (B) density plot in order to compare the distribution of
enrichment scores of target genes between this study and previous
study. These plots show that the enrichment scores of targets
genes in the miRNA modules obtained from this study are
statistically significantly higher than those from previous study.
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Datasets
We first used miRNA-mRNA co-transcriptomic datasets
obtained from the same samples by ourselves in our pre-
vious studies (Table 1). Circadian rhythm dataset [12] con-
sists of triplicated mRNA (Illumina Mouse-6 Expression
BeadChip) and duplicated miRNA (Ambion mirVana™
miRNA Bioarray V2) expression profiles from 12 time
points with four-hour interval across two complete circa-
dian cycles, i.e., 48 hours, resulting 36 and 24 hybridiza-
tions for mRNA and miRNA, respectively. One can
download the dataset at Gene Expression Omnibus
(GSE11516). Radiation dataset [36] consists of triplicated
mRNA (Affymetrix Human Gene 1.0 ST Array) and dupli-
cated miRNA (Ambion mirVana™ miRNA Bioarray V2)
expression profiles from 6 time points, resulting 18 and 12
hybridizations for mRNA and miRNA, respectively. Two
lung cancer cell lines, H460 and H1299 were irradiated at
2 Gy, and harvested after 0, 2, 4, 8, 12 and 24 hours to
examine the expressions. Actinomycin D dataset (unpub-
lished data) is created to explore the bio-molecular
mechanism of miRNA decay. It consists of triplicated
mRNA (Affymetrix Mouse Gene 1.0 ST Array) and dupli-
cated miRNA (Ambion mirVana™ miRNA Bioarray V2)
expression profiles from 7 time points, resulting 21 and 14
hybridizations for mRNA and miRNA, respectively. N2a
mouse neuroblastoma cells were treated with Actinomycin
D to block transcription at 0, 1, 2, 4, 8, 12 and 24 h time
points. We also included external dataset from 57 prostate
adenocarcinomas (GSE7055) [37] (Table 1).
Normalizations of the miRNA and mRNA expression

profiles were performed separately. For datasets using
Affymetrix GeneChips, we used RMA (Robust Multi-
Array) normalization method [38]. For datasets using
Ambion miRNA chips and OSU-CCC chips, we used
vsn transformation after background subtraction [39]
and applied quantile normalization method [40]. For
datasets using Illumina chips, we used chip-wise method
using the rank invariant algorithm [41].

Target overlap score and MRAN construction
MRAN is defined as a combined network of cooperative
miRNAs sharing condition-specific target genes. A node
in MRAN corresponds to a miRNA and an edge corre-
sponds to a condition-specific cooperativity between a
miRNA pair. Condition specific cooperativity is defined as
condition specific target sharing and determined by (static)
significant sequence complementarity by computational
target prediction algorithms provided by TargetScan and
(functional) significant inverse expression pattern at a spe-
cific experimental condition (by Pearson’s correlation coef-
ficient). We used the Pearson’s correlation coefficient
(PCC) for measuring similarity/dissimilarity between
expression patterns of miRNAs and genes. The PCC of a
pair of genes commonly returns a real value in [+1, -1].

PCC(x, y) > 0 represents that x and y are positively corre-
lated with the degree of correlation. On the other hand,
PCC(x, y) < 0 represents that x and y are negatively corre-
lated with a value |PCC(x, y)|. A positive value of the PCC
indicates that miRNAs and genes are co-expressed and a
negative value of the PCC indicates that opposite expres-
sion pattern exists between them. Considering the conser-
vation of miRNA-target relationship, we retrieved and
applied 50,339 and 50,349 human and mouse miRNA-tar-
get pairs for the 162 and 7,927 conserved miRNAs and
mRNAs by using TargetScan target prediction database
(release 4.2) [42].
Target overlap score between a pair of miRNAs is

defined as Jaccard similarity coefficient, representing the
fraction of shared condition specific targets. We define the
target overlap score tij between miRNAs i and jas follows:

tij =

⎧⎨
⎩

∣∣Targets(i) ∩ Targets(j)
∣∣∣∣Targets(i) ∪ Targets(j)
∣∣ , i �= j

1, i = j

where Targets(i) represents to the set of targets of
miRNAs i. We measured the statistical significance of the
Jaccard similarity coefficient by using the exact randomi-
zation tests [43]. The n × n condition specific target over-
lap matrix T = [tij] is transformed into an n × n adjacency
matrix A = [aij], which encodes the connection strengths
between pairs of nodes based on the probabilities related
to the Jaccard similarity coefficient. Since the networks
considered here are undirected, A is a symmetric matrix
with non-negative entries.
Figure 1 outlines the steps of the present study. Figure 1

(B) conceptualizes (1) the miRNA-mRNA target relation-
ship as a directed bi-partite graph at the sequence level.
(2) Many condition-specific directed bi-partite graphs are
emerging by combining inversely co-expression patterns
between miRNA and mRNA pairs. (3) By means of apply-
ing target overlap scoring, many condition-specific
MRANs are obtained as undirected weighted graph of
miRNAs. (4) Many condition-specific MRANs are merged
into a combined multiple graph to form global MRAN
(see Figure 2(A)). Now one can extract cooperative
miRNA modules (CMMs) by applying subnetwork detec-
tion algorithms and then characterize and evaluate them
in terms of biological relevance.

Extracting cooperative miRNA modules
In the present study, a subnetwork detection algorithm,
called MCODE [12], was applied to detect coherent
groups in the global MRAN. The MCODE is a graph theo-
retic clustering algorithm specifically designed to find
complexes by identifying densely connected subgraphs in
networks. MCODE algorithm consists of three stages:
vertex weighting, complex prediction and an optional
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post-processing step. The weighting of nodes is based on
the core clustering coefficient. Once the weights are com-
puted, the algorithm traverses the weighted graph in a
greedy fashion to isolate densely connected regions. The
post-processing step filters or adds nodes based on con-
nectivity criteria. MCODE has a parameter that specifies
the size of clusters returned. All MCODE parameters are
applied with default values. Subnetworks are filtered if
they do not contain at least a 2-core (graph of minimum
degree 2). This approach allows us to assign one miRNA
to multiple clusters, considering a biological principle that
miRNAs can have multiple functions.

Regulators of cooperative miRNAs
To investigate the modular nature of global MRAN, we
used predicted binding sites for all Position Specific
Scoring Matrices (PSSMs) from TRANSFAC version 8.3,
as they are defined by the UCSC hg17 genome assembly,
in the tfbsConsSites (http://genome.ucsc.edu/) and
tfbsConsFactors. All RefSeq genes genomic locations were
taken from hg17. In mouse, regulators of miRNAs were
identified in the human genome in the regions ortholo-
gous to the mouse. For example, hsa-miR-101 in human
and mmu-miR-101 in mouse are orthologous. To assess
the statistical significance of the rate of co-occurrence of
motif pairs, we used cumulative hypergeometric distribu-
tion to calculate the probability of obtaining the rate of
co-occurrence, C, equal to or higher than the observed
rate of co-occurrence, c’, by chance:

P
(
C ≥ c′

)
=

min(m1,m2)∑
i=c′

(
m1

i

)(
N − m1

m2 − i

)
(

N
m2

)

where m1 and m2 denote the numbers of miRNAs hav-
ing each of the two motifs, N denotes the total number of
miRNAs in the genome, and i the summation index.
In the co-occurrence graph of regulators on MRAN,

nodes represent transcription factors (TFs), and edges
statistical significance of co-occurrences. Hypergeo-
metric p-values were used as weights (see Figure 2(B)).

Functional coherence analysis of target genes
Plausible characteristics of an extracted subnetwork as a
CMM might be functional coherence, meaningfulness as
well as distinctness from other modules. We performed
functional enrichment analysis by using KEGG (Kyoto
Encyclopedia of Genes and Genomes) [44] and BioCarta
(http://www.biocarta.com) pathways to test their func-
tional coherence and meaningfulness. KEGG pathways
mainly include cellular processes related to metabolism
and biosynthesis. Those on BioCarta cover a wider variety
of cellular processes including a large number of signal

transduction and immune signalling pathways as well as
metabolic and biosynthetic pathways. Pathways with
p-value < 0.05 as revealed by the hypergeometric test were
considered statistically significant in the present study. To
visualize the distinctness of the cooperative modules in
terms of functional enrichment, we created heat maps of
the significances (see Figure 4).

Sequence/structure analysis of the co-regulating miRNAs
Structural similarity of the members of CMMs was evalu-
ated. T-COFFEE (version 5.05) [45] was used to calculate
pairwise sequence similarity between miRNAs. It uses
information from a pre-compiled library of different pair-
wise alignments including both local and global align-
ments. RNAdistance program of the Vienna RNA package
(Version 1.7.1) [46] was applied to calculate structural dis-
tances. Sequence-structure based clustering using the
LocARNA-RNAclust pipeline [47] was applied to pre-
miRNA sequences. LocARNA uses a complex RNA energy
model for simultaneous folding and sequence/structure
alignment of the RNAs [47]. The resulting alignment
scores can be used to cluster RNAs according to their
sequential and structural similarities.
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