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Abstract

Background: Recent discovery in tumor development indicates that the tumor microenvironment (mostly stroma
cells) plays an important role in cancer development. To understand how the tumor microenvironment (TME)
interacts with the tumor, we explore the correlation of the gene expressions between tumor and stroma. The
tumor and stroma gene expression data are modeled as a weighted bipartite network (tumor-stroma coexpression
network) where the weight of an edge indicates the correlation between the expression profiles of the
corresponding tumor gene and stroma gene. In order to efficiently mine this weighted bipartite network, we
developed the Bipartite subnetwork Component Mining algorithm (BCM), and we show that the BCM algorithm
can efficiently mine weighted bipartite networks for dense Bipartite sub-Networks (BiNets) with density guarantees.

Results: We applied BCM to the tumor-stroma coexpression network and find 372 BiNets that demonstrate statistical
significance in survival tests. A good number of these BiNets demonstrate strong prognosis powers on at least one breast
cancer patient cohort, which suggests that these BiNets are potential biomarkers for breast cancer prognosis. Further
study on these 372 BiNets by the network merging approach reveals that they form 10 macro bipartite networks which
show orchestrated key biological processes in both tumor and stroma. In addition, by further examining the BiNets that
are significant in ER-negative breast cancer patient prognosis, we discovered a ubiquitin C (UBC) gene network that
demonstrates strong prognosis power in nearly all types of breast cancer subtypes we used in this study.

Conclusions: The results support our hypothesis that the UBC gene network plays an important role in breast
cancer prognosis and therapy and it is a potential prognostic biomarker for multiple breast cancer subtypes.

Introduction
The initiation, development and metastasis of tumor are
complicated biological processes. The tumor microenvir-
onment (TME), which surrounds the tumor immediately
with secreted proteins, small signaling molecules, blood
vessels, and normal cells, plays an essential role in each
step. Tumor and its microenvironment consist of
diverse cell types. For instance, for epithelial type of
cancers, besides the epithelial cells, the TME includes

fibroblast, endothelial cell, macrophage, and etc. All of
them play critical roles in the formation and development
of tumor [1]. In addition, recently it has been shown that
genetic changes in the stroma (e.g., in fibroblast) can lead
to the development of epithelial tumor [2]. Therefore, an
important issue in cancer research is to understand how
TME components interact with the tumor. It has been
suggested that such interaction is mediated by extracel-
lular molecules coded by the so-called stromal genes
including signaling molecules such as cytokines/chemo-
kines, structural molecules such as collagens (and the
associated receptors such as DDR2) and extracellular
proteinase such as metalloprotease (MMPs). It has been
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shown that some of these stromal genes may serve as
important biomarkers to predicting drug responses for
ER-negative breast cancer patients which are usually con-
sidered to have poor prognosis [3]. Recent research
results provide further evidences that tumor-stroma
interaction plays an important role in breast cancer
tumor growth [4,5]. However, despite these progresses
and intensive research efforts, many issues still remain
unclear, including how such interactions lead to the
intracellular changes in tumor and TME components.
Recently there has been a study using tissue-tissue

gene co-expression network to characterize the interac-
tions and the corresponding intracellular effects in obe-
sity study [6]. Basically by identifying gene clusters that
show high levels co-expression between different tissues,
researchers discovered orchestrated biological processes
between different tissues without the need to explicitly
characterize the intercellular signaling mechanisms. In
this paper, we adopted this approach to study the gene
co-expression between tumor and its microenvironment
in breast cancer. Specifically, we used a public gene
expression microarray dataset consisting of 47 breast
cancer biopsy samples, in which tumor and the matching
surrounding stroma (TME) are isolated by laser capture
microdissection (LCM) technology. The gene expression
profiles in this dataset are generated for tumor and
stroma separately for every sample [7]. By mining the
tightly correlated gene expression profiles between the
matching tumor and stroma, we identify dense networks
of putative gene interactions between the two tissues
(tumor and stroma). Our goals are to characterize orche-
strated biological processes between the two tissues
through the identified gene-gene communications/
interactions, and at the same time to identify potential
new biomarkers for breast cancer prognosis or treatment
prediction.
From the bioinformatics point of view, our project falls

into the category of gene co-expression network (GCN)
analysis. GCN analysis has been shown to be very effective
in discovering new gene functions [8], predicting disease
biomarkers [9] and identifying disease genes [10]. How-
ever, most of GCN analysis methods focuse on a single
type of sample. For tissue-tissue GCN, the problem was
formulated as a bipartite graph mining problem in [6] in
which a heuristic algorithm was used on a thresholded
binary bipartite graph.
Mining dense components from bipartite graphs is a

fundamental research problem in related fields. A sim-
plest version of this problem is to find just one maximum
clique in an unweighted bipartite graphs. Even for this
simplest version, it was proved [11] to be an NP-hard
problem. To tackle this problem, a few dense component
mining algorithms, e.g. [12-15], having been proposed for
unweighted bipartite graphs, for which many efficient

pruning techniques are available. However, in biomedical
research, many data are in the form of weighted bipartite
graphs. Since the correlation coefficients between gene
expression profiles can be used as weights of the edges in
the graph, we expect a weighted bipartite graph mining
approach would provide much more information on the
gene-gene crosstalk between different tissue types. Given
the successful cases of mining weighted network data
[16,17], we want to extend our work to mine weighted
bipartite networks in matching gene expression data
from different tissue types. As a result, in this paper we
propose a novel weighted Bipartite network Component
Mining algorithm BCM which guarantees a lower bound
on the densities of the identified components, i.e., Bipartite
sub-Networks (BiNets). We tested and validated the prog-
nosis power of identified BiNets on three separate breast
cancer microarray studies. In addition, the results of BCM
can be further summarized by our network merging
approach which also guarantees a lower bound on the
densities of summarized macro networks. We would like
to point out that although clustering-based approaches
such as [10,18,19] for gene co-expression network may
be extended to handle weighted bipartite networks,
our approach has clear advantages on exploring these net-
works for biomarker prediction. This is because BCM
allows shared genes between BiNets and can find small
dense BiNets that are suitable for biomarker prediction.
At the same time, our approach is able to merge BiNets
into Macro Bipartite Networks for understanding the
general structure of the bipartite networks. Shared genes
may still exist between Macro Bipartite Networks. In con-
trast, the clustering based approaches do not allow shared
genes between two clusters and the clusters identified are
often too large to find small gene networks with subtle
functions.

Results
BiNets in tumor-stroma co-expression network
Using the BCM algorithm described in the Materials
and Methods, we obtained 826 BiNets with a bounded
density. Among them, 422 contain at least 10 distinct
genes. These 422 BiNets were then subjected to survival
analysis on five different breast cancer patient cohorts,
i.e., the entire patients in the Netherlands Cancer Insti-
tute (NKI) dataset [20,21], the Lymph-Node-positive
(LN-positive) patients in the NKI dataset, the Estrogen-
Receptor-negative (ER-negative) patients in the NKI
dataset, the entire patients in the GSE1456 (Stockholm)
dataset [22], and the entire patients in the GSE2034
(Wang) dataset [23,24]. The results showed that 372
BiNets have significant prognostic power (p-values
<0.05 from log-rank test) in at least one patient group.
The percentage (372/422 ≈ 88.2%) demonstrates the
effectiveness of mining tumor-stroma co-expression
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network using BCM. The number of BiNets with p-value
less than 0.05 for each patient cohort is listed in Table 1,
from which we can also observe that survival tests on
three patient cohorts (NKI, NKI LN-Positive, GSE1456)
yield a minimum p-value no more than 7.466e − 08.
To obtain a macro view on these BiNets, we further

merge the identified BiNets into larger clusters. Figure 1
shows the dendrogram of merging the 372 BiNets using
[25]. At a density boundary of 0.3, the merging algorithm
yields 10 macro bipartite networks and we further apply
Gene Ontology enrichment analysis on these clusters by

Toppgene (http://toppgene.cchmc.org/enrichment.jsp).
Table 2 describes the most enriched GO term for each
macro bipartite network.

BiNets as potential biomarkers for breast cancer
prognosis
For each patient group or subtype, we have identified a
number of BiNets with p-value less than 0.05 in log rank
test as shown in Table 1. Many of them are good candi-
dates for breast cancer prognosis in the corresponding
patient group or subtype. In the past we have also

Table 1 Log-rank test summary

NKI data (295
patients)

NKI LN-positive (144
patients)

NKI ER-negative (69
patients)

GSE2034 GSE1456

Number of Bi-Nets with P-
value<0.05

306 260 14 27 277

Minimum observed P-value 1.763e − 13 6.698e - 09 7.905e − 04 2.153e-
03

7.466e −
08

Summary of the log-rank tests on patient groups or subtypes separated by genes in each BiNet.

Figure 1 Merging bipartite networks. Merge the 372 BiNets into ten macro bipartite networks. The colors are for distinguishing different
macro bipartite networks.
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successfully identified potential biomarkers for such
patient groups [16,25]. However, identifying good biomar-
kers for prognosis on ER-negative breast cancer remains a
challenge. In this work, we successfully identified several
BiNets with strong ER-negative prognosis power. Among
them, two BiNets (BiNet 52 and BiNet 228) have both low
p-values and well-separated survival curves (Figure 2). We
searched for interactions for genes from the two BiNets in
IPA Knowledge Base, and found both BiNets contain
genes surrounding the gene UBC, although UBC is not
included in either BiNet. We wanted to find out if a com-
bination of the two BiNets will reinforce their prognostic
power in the survival test. Thus, we conducted another
survival test on the combined gene list of the two BiNets
plus UBC. It resulted in an even better separation of the
ER-negative patient outcomes with a p-value of 4.924E −
5, as shown in Figure 2(d), whereas the breast cancer prog-
nosis benchmark van’t Veer-70 genes virtually has no
prognosis power at all. By further examining the interac-
tions among the genes in this BiNet using IPA (Figure 3),

we obtain a gene interaction network centered on the
UBC gene that possesses a strong prognosis power in sur-
vival tests on nearly all types of patient groups tested in
this work (Figure 4).

Discussion and conclusion
As shown in Table 2 the ten macro bipartite networks
cover many key biological processes including cell cycle,
immune response, cell-cell signaling, respiratory electron
transport chain, and defense response to virus. Despite
the size difference between the tumor side and the
stroma side in these macro bipartite networks, top
enriched Biological Process (BP) terms are often shared
between the two sides. This indicates that the underly-
ing biological processes are synchronized between
tumor and stroma, presumably via cell-cell signaling
mechanisms.
An interesting exception is the 3-rd macro bipartite

network. The genes in the stroma side are enriched with
the biological process of “development of primary male

Table 2 GO ontology enrichment analysis for ten macro bipartite networks

BiNets density Tumor
Genes

Top Enriched GO Terms (p-value) Stroma
Genes

Top Enrich GO Terms (p-value)

1 25 0.365644 118 BP: cardiovascular system development (2.309E-14);
CC: extracellular matrix (1.098E-20)

154 BP: muscle organ development (5.371E-9); CC:
extracellular matrix (8.853E-19)

2 3 0.534566 73 BP: adenylate cyclase-activating G-protein coupled
receptor signaling pathway (1.547E-6)

4 BP: protein-chromophore linkage (2.271E-3)

3 58 0.332754 278 BP: response to iron ion (1.948E-5), epithelial cell
development (4.760E-5), response to estrogen
stimulus (2.065E-4)

224 BP: gland development (8.306E-6), development of
primary male sexual characteristics (1.596E-5), male
sex differentiation (2.602E-5); MF: enzyme binding
(1.636E-4); CC cell projection (6.956E-8)

4 13 0.326076 113 BP: cell-cell signaling (1.934E-8); MF: receptor
binding (8.154E-6)

89 BP: cell-cell signaling (2.233E-9); MF: receptor
binding (5.040E-7)

5 103 0.320424 521 BP: mitotic cell cycle (3.640E-32), cell cycle phase
(3.333E-30), cell cycle process (5.346E-27), cell cycle
(4.043E-25); MF: RNA binding (3.610E-9)

629 BP: mitotic cell cycle (7.256E-41), cell cycle phase
(9.357E-39), cell cycle process (1.771E-32), cell cycle
(1.319E-28); MF: RNA binding (2.821E-11)

6 16 0.3014 117 BP: defense response to virus (2.621E-32), response
to virus (2.914E-32); MF: double-stranded RNA
binding (5.875E-12)

99 BP: defense response to virus (1.307E-34), response
to virus (2.873E-33), innate immune response
(2.983E-32); MF: double-stranded RNA binding
(1.255E-12)

7 99 0.329521 525 BP: mitotic cell cycle (5.339E-29), cell cycle phase
(3.764E-27), cell cycle process (1.512E-23); CC:
mitochondrial part (9.680E-23)

489 BP: cell cycle phase (7.556E-34), mitotic cell cycle
(4.042E-32), cell cycle process (1.732E-28); MF: RNA
binding (1.179E-14); CC: mitochondrial part (5.769E-
24)

8 2 0.464059 26 BP: response to progesterone stimulus (4.135E-4) 30 BP: immune response (1.287E-7)

9 41 0.348161 278 BP: respiratory electron transport chain (1.096E-28),
electron transport chain (1.967E-24), cellular
respiration (1.066E-23); CC: mitochondrial part
(7.866E-24)

219 BP: respiratory electron transport chain (2.241E-27),
cellular respiration (1.460E-25), electron transport
chain (1.381E-23); MF: RNA binding (7.907E-16); CC:
mitochondrial membrane part (1.505E-23),
mitochondrial part (6.889E-23), mitochondrial inner
membrane (2.245E-21), organelle inner membrane
(2.951E-21)

10 12 0.417881 80 BP: immune response (7.503E-25) 110 BP: defense response (3.448E-22), immune response
(4.224E-21)

For each macro bipartite network, we list the numbers of genes in the tumor side and the stroma side separately as well as significant GO terms with the p-
values obtained from ToppGenes. P-values were before Bonferroni corrections. BP, MF, and CC stand for Biological Process, Molecular Function and Cellular
Component, respectively.
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sexual characteristics” and “male sex differentiation”.
These male-gender specific GO terms seem to be incon-
sistent with the fact that the data were obtained from
female breast cancer patients. A detailed inspection on
the genes in this macro bipartite network indicates that it
actually contains several key sex hormone related genes
such as ESR1 (estrogen receptor a) and AR (androgen
receptor) as well as ERBB4. These genes are all well
known for their involvement with breast cancer

prognosis [26-28]. The fact that the gene expression
ESR1 shows high correlation between tumor and stroma
suggests that estrogen, an important factor in breast can-
cer development, not only affects the tumor epithelial
cells but may also affect the stroma cells in similar ways.
Since ESR1 is a target for breast cancer drugs such as
tamoxifen, it is thus important to study the effect of the
drugs on the stroma cells such as fibroblast in addition to
the cancer cells. Therefore a more comprehensive

Figure 2 Survival tests on NKI ER-Negative. The survival test on NKI ER-Negative patients using (a) well-established 70-gene signature from
[32], (b) Genes in BiNet 52 “C11orf51, DAP, EBP, HOMER2, LOC100129361, MAGT1, NDUFS6, NUDT21, PEX3, SDHA, SLC3A2”, (c) Genes in BiNet
228 “C4BPB, CCR10, CKM, CPS1, CYP2F1, GPR6, GUCY1A2, HAUS6, HPD, HYAL1, PGAM2, PLA1A, PPP1R14D, PROC, REC8, SERPINA6, SFTPA2,
STXBP5L, SYNPO2L, TGFB2, TPTE, VASH2”, (d) the union of gene lists (b) and (c) plus gene UBC. Blue lines are the survival curves of good survival
groups. Red lines are the survival curves of poor survival groups.
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characterization of the drug effects and mechanisms can
be pictured.
As shown in Table 1, there are a good number of BiNets

that can separate patient cohorts from different breast
cancer microarray studies into two subgroups with signifi-
cant differences. Among them, some can achieve highly
significant prognosis with very small p-values. In the past
studies we have also successfully identified gene lists that
demonstrate good prognostic power in survival tests
[16,25]. But such discoveries on ER-negative patients are
quite limited. Thus in this work, we are particularly inter-
ested in finding BiNets that are potential biomarkers for
ER-negative patients.
The strong prognostic power of the combined BiNets on

ER-Negative patients led us to hypothesize that UBC and
its interacting genes play an important role in breast can-
cer prognosis. To test our hypothesis, we extracted a UBC
network, which consists of the UBC gene and directly
interacting genes (i.e., genes that have PPI with the UBC
gene in BiNets 52 and 228), as shown in the red circle of

Figure 3. Then we applied this gene network to survival
analysis on all 5 patient cohorts (NKI ALL, NKI LN-Posi-
tive, NKI ER-Negative, GSE2034, GSE1456), and it gener-
ated p-values less than 0.05 in all of them (Figure 4(a-e)).
We also tested it on the ER-negative group of GSE2034,
and we also get a p-value quite close to 0.05 (Figure 4(f)).
To the best of our knowledge, this is the first report of dis-
covering a gene list that has significant prognosis results
on all major subtypes of breast cancer and their mixture.
Our observation is further supported by the recent

research on ubiquitin and cancers. Ubiquitin is a small
regulatory protein that can be attached to proteins and
label them for destruction. UBC is the gene encodes Ubi-
quitin C protein. It is known that many proteins studied
by clinical breast cancer researchers, such as cyclins, CDK
inhibitors, and the SCF in cell cycle control, are involved
in ubiquitin pathways [29]. In addition, Mani and Gelm-
man [30] discovered that ubiquitin plays a critical role in
protein degradation pathways, which are targets for cancer
therapy. Our discovery provides biologists and clinicians

Figure 3 IPA network visualization of BiNets 52 and 228. A network found by analyzing the combined network of BiNets 52 and 228 using
IPA. The sub network within the red circle is the UBC network whose survival test result is shown in Figure 4.

Xiang et al. BMC Genomics 2013, 14(Suppl 5):S4
http://www.biomedcentral.com/1471-2164/14/S5/S4

Page 6 of 12



an additional promising hypothesis that the UBC gene
network is effective in the prognosis of multi types of
breast cancers. Based on the previous discoveries [29,30],
we conjecture that the UBC gene network is also a pro-
mising target for cancer therapy.

In summary, we developed a bipartite subnetwork
component mining algorithm BCM for weighted bipar-
tite graphs and applied it to mine the interaction net-
works between the breast cancer tumor and its
microenvironment. Our results reveal highly coordinated

Figure 4 Survival tests of the UBC network. The survival results of UBC Network (containing genes “UBC, DAP, CPS1, GUCY1A2, TPTE/TPTE2,
NDUFS6, SDHA, NUDT21, HAUS6, PGAM2”) on (a) All patients in NKI dataset (b) LN-Positive patients in NKI dataset, (c) ER-Negative patients in
NKI dataset, (d) All patients in GSE2034 datasets, (e) All patients in GSE1456 dataset, (f) ER Negative patients in GSE2034 dataset. Blue lines are
the survival curves of good survival groups. Red lines are the survival curves of poor survival groups.
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biological processes such as cell cycle and immune
responses between tumor and stroma. In addition, we
identified potential biomakers which can perform very
well on the ER-negative type of breast cancer prognosis.

Materials and methods
Datasets
GSE5847 was used to construct the tumor-stroma coex-
pression network. NKI dataset [20,21], GSE1456 (Stock-
holm) dataset [22], and GSE2034 (Wang) dataset [23,24]
were used to perform survival tests.

Microarray data processing
Gene expression microarray dataset GSE5847 was
obtained from the NCBI Gene Expression Omnibus.
It contains 95 gene expression profiles on Affymetrix
HU133 Plus 2.0 genechip from 48 patients. Out of
them, 47 pairs of matched tumor and stroma samples

were used in our study. Since the tumor and the stroma
datasets are normalized separately, an additional linear
global normalization between microarray data for the
two tissues were performed. This normalization does
not change the rank or linear relationship between any
pair of genes except to match the median gene expres-
sion levels from all the probes.
Genes with small (<20%) variation in expression pro-

files were excluded, since low variation will lead to bias
in correlation coefficient computing. Only probes with
available matched gene names were used.

Construction of tissue-tissue gene co-expression network
Given a set of K samples with two types tissues, we com-
pute the Pearson correlation coefficient (ri,j) between any
gene gi in tissue 1 and gene gj in tissue 2. As shown in
Figure 5, a bipartite graph between the two tissues can
thus be established. In this graph, nodes are the genes in

Figure 5 Bipartite graph of the tissue-tissue network. An illustration of the formulation of the tissue-tissue network as a weighted bipartite
graph. For clarity of the figure, we do not show all the edges. Bipartite sub-networks in the two circles are examples of BiNets.
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both tissues. The weight of an edge is defined as the
Pearson correlation coefficient (r) between the expression
profiles for the two genes connected by the edge (for easy
visualization, we did not show all the edges in Figure 5).
Our goal is to identify densely-connected-bipartite com-
ponents (i.e., bipartite sub networks) of the weighted
bipartite graph.

Bipartite sub network mining with bounded density
gurantee
Let G = (VX , VY , E) denote a bipartite graph with set
VX of vertices on one side, and set VY of vertices on the
other side. E is the set of edges connecting vertices
between VX and VY. B = (VX,VY ,E(B)) is a BiNet of a
bipartite graph G = (VX , VY , E) if and only if VX ⊆ VX
and VY ⊆ VY, and E(B) be the set of edges induced by
VX and VY on G.
Let w(e) be the weight of an edge e Î E. Let a = |VX|,

b = |VY|. We define the density of B to be:

d(B) =

∑
e∈E(B) w(e)

ab
. It is easy to see d(B) is the average

weight of edges of B.
For a vertex v ∈ VX − VX, we define its density contri-

bution to B by: d(v,B)X =

∑
u∈VY

w(uv)

b
. Similarly, for a

vertex v ∈ VY − VY, we define its density contribution to

B by: d(v,B)Y =

∑
u∈ VX

w(uv)

a
. A key idea of our algo-

rithm is to grow a dense bipartite component by itera-
tively adding high contribution vertices from either side
that can result in a density bound guarantee.
The pseudocode of our bipartite subnetwork component

mining algorithm (BCM) is given in Algorithm 1. BCM
discovers a BiNet by starting from an unselected edge with
weight no less than a threshold. The density of the discov-
ered BiNet is guaranteed to be bounded by a constant fac-
tor of the weight of the starting edge. The purpose of
starting from an unselected edge is to avoid excessive
numbers of highly overlapped BiNet. However, it shall be
noted that unlike traditional clustering methods (such as
k-means), BCM allows a vertex to be shared by multiple
BiNets. It is also necessary to point out that quasi-clique
(which resembles a fully connected graph) mining algo-
rithm with bounded density known as QCM is available
for weight graphs [31], which hints us to develop BCM.
However, the QCM algorithm and its properties are not
readily extendable to weighted bipartite graphs.
Algorithm 1 BCM(G = (VX ,VY ,E), αa, αb, β)
1: Sort E such that edges in E are ranked in descend-

ing order of their weights;
2: Let wmax be the weight of the first edge in E.
3: Selected = ∅
4: for all e = (x, y) Î E do

5: if w(e) < bwmax then
6: break;
7: end if
8: if e Î Selected then
9: continue;
10: end if
11: B = ∅;
12: Create an empty biclique B = (VX, VY);
13: VX = VX ∪ {x}; VY = VY ∪ {y};
14: while true do
15: Pick p ∈ VX − VX such that d(p,B)X is

maximum;
16: Pick q ∈ VY − VYsuch that d(p,B)Y is

maximum;
17: if d(p,B)X > d(q,B)Ythen
18: if d(p,B)X ≥ αad(B)then
19: VX = VX ∪ {p};
20: Insert into Selected any edge in E con-

necting p to any vertex in VY;
21: else
22: break;
23: end if
24: else
25: if d(q, B)Y ≥ abd(B) then
26: VY = VY ∪ {q};
27: Insert into Selected any edge in E con-

necting q to any vertex in VX;
28: else
29: break;
30: end if
31: end if
32: end while
33: B = B ∪ {B};
34: end for
36: return B;
In BCM, we set αa = 1 − 1

λa(a+τ+1), and

αb = 1 − 1
λb(b+τ+1), where λi = max{1, C

(i+τ+1)2
}. We use

two parts in the following to show that every bipartite
subgraph B ∈ B, which is outputted by Algorithm 1, has
a bounded density.
In the first part, we analyze the density ratio

between two consecutive steps of BCM. Let

f (a, b) = d(Bab) =

∑
e∈E(B ab) w(e)

ab
be the density of Bab, a

transit bipartite subgraph in Algorithm 1, with a num-
ber of vertices in VX and b number of vertices in VY.
Adding one more vertex v to Bab by Algorithm 1 will
make the density of Bab be either f(a + 1, b) or f(a, b + 1).
Without loss of generality, let us assume the new vertex v
is added to VX and the density of Bab becomes f(a + 1, b).
According to Algorithm 1, we have

d(v,B)X ≥ αad(B)
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which is equivalent to:∑
u∈VY

w(uv)

b
≥ αaf (a, b) (1)

(1) can be rewritten as

(a + 1)bf (a + 1 , b) − abf (a, b)
b

≥ αaf (a, b) (2)

From (2) we have

(a + 1)f (a + 1, b) ≥ af (a, b) + αaf (a, b) (3)

Thus, we have

f (a + 1, b)
f (a, b)

≥ a + αa

a + 1
=

λa(a + 1)(a + τ + 1) − 1
λa(a + 1)(a + τ + 1)

(4)

With similar analysis, we also have

f (a, b + 1)
f (a, b)

≥ b + αb

b + 1
=

λb(b + 1)(b + τ + 1) − 1
λb(b + 1)(b + τ + 1)

(5)

Next we show that a bipartite subgraph B ∈ B has a
bounded density with respect to the weight of the start-
ing edge. Assume B = (VX, VY, E(B)) where |VX| = s and
|VY| = t. Thus, the density of B is f(s, t). According to
Algorithm 1, the density of B evolves from f(1, 1) to f(s,
t), with a vertex added to either VX or VY in each step.
To show that the density of B is bounded, we only need
to show that F = f (s,t)

f (1,1) is a constant.
Theorem 1. Let f(s, t) be the density of BiNet B = (VX,

VY, E(B)) where |VX| = s and |VY| = t. Let f (1, 1) be
the weight of the starting edge for B in Algorithm
BCM. Then F = f(s, t)/f(1, 1) is larger than

( 2C−τ−2
2C

)2⌈√
C−τ−2

⌉
× (

⌈√
C−τ−1

⌉
⌈√

C−τ
⌉ )2, where C and τ are

nonnegative integer parameters.
(See Appendix for proof.)
C and τ are used for tuning the bound. For example, if

we choose C = 100 and τ = 1, according to Theorem 1,
we have:

F > (
200 − 1 − 2

200
)2∗7 × (

10 − 1 − 1
10 − 1

)2 ≈ 0.64

One can easy to get a large bound by setting a large C
and a small τ. For example, when C = 10000 and τ = 0,
we have F >0.96 by (14).

Evaluation of gene networks as potential prognostic
biomarkers
Once the bipartite graph between the tumor genes and
stromal genes was constructed, it was subjected to the
BCM algorithm for BiNet discovery. We set the para-
meters C = 36, τ = 2 which guarantees F >47.4% according
to Theorem 1. We also set b = 0.7 to ensure a reasonably

large search space. After this step, we map the BiNets
back to genes. Each BiNet is also corresponding to one
combined gene set which is obtained by union the two
separate gene sets in the BiNet into one.
For genes in each BiNet, their potential as breast cancer

prognostic biomarker was tested using breast cancer
microarray datasets. The primary dataset used for testing
is the well known NKI dataset which are composed of 295
patients. To validate the survival analysis results, two more
microarray datasets from GEO were used: GSE1456 con-
taining data for 159 breast cancer patients, and GSE2034
dataset containing data for 286 breast cancer patients. The
time-to-recurrence information for patients from these
two datasets were used in the survival analysis.
In the survival test, genes in each BiNet (including both

tumor and stroma sides) are used as features for the
patients. The patients are then divided into two groups
based on these feature values by K-means algorithm (K = 2,
distance=cityblock, repeating 100 times). Log-rank
test (publicly available at: http://www.mathworks.nl/
matlabcentral/fileexchange/20388) was used to determine
the statistical significance (p-value) between the survival
time (or time-to-recurrence) for the two group of patients.

Summarize BiNets into macro bipartite networks by
merging
In order to understand the general structure of the
tumor-stroma network, BiNets were further summarized
into a few macro bipartite networks by SINGEMERGE
[25], a network merge algorithm that guarantees merge
density. We set the density threshold to be 0.3 and we
merged the 372 BiNets into 10 macro bipartite networks
which were further subjected to gene ontology enrich-
ment analysis. Figure 1 is the merging dendrogram and
the parameters of the 10 macro bipartite networks
including their GO analysis are listed in Table 2.

Gene Ontology (GO) analysis
GO enrichment analysis for the gene list from each
macro bipartite network is carried out using ToppGene
(http://toppgene.cchmc.org/enrichment.jsp), a publicly
available web tool. Pathway analysis on selected BiNets
is further carried out using Ingenuity Pathway Analysis
(https://analysis.ingenuity.com).

Appendix
Proof of Theorem 1
Proof. To facilitate our discuss, we assume it takes n

steps to generate B where fk denotes the density of B at
step k, e.g., f1 = f(1, 1) and fn = f(s, t). Thus

F =
fn
f1

=
f2
f1

f3
f2

· · · fn−1

fn−2

fn
fn−1

(6)
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For some fk+1
fk
, the change is on VX thus we apply (4);

for others, the change is on VY and we apply (5). Let gi
denote the fraction of the new density over the old one
when it is the ith time of adding a vertex to VX. Simi-
larly, let hj denote the fraction of the new density over
the old one when it is the jth time of adding a vertex to
VY. Thus (6) can be rewritten as:

F =
fn
f1

=
s∏

i=1

gi
t∏

j=1

ht (7)

To analyze (7), we first consider
∏s

i=1 gi, which can be
factorized into two parts:

s∏
i=1

gi =

⌈√
C−τ−2

⌉
∏
i=1

gi ×
s∏

i=
⌈√

C−τ−1
⌉
gi (8)

Given λi = max{1, C
(i+τ+1)2

} and (4), we have:
⌈√

C−τ−2
⌉

∏
i=1

gi =

⌈√
C−τ−2

⌉
∏
i=1

C( i+1
i+τ+1 ) − 1

C( i+1
i+τ+1 )

≥ (
2C − τ − 2

2C
)
⌈√

C−τ−2
⌉

(9)

s∏

i=
⌈√

C−τ−1
⌉
gi =

s∏

i=
⌈√

C−τ−1
⌉
(i + 1)(i + τ + 1) − 1
(i + 1)(i + τ + 1)

≥
s∏

i=
⌈√

C−τ−1
⌉
(i + 1)2 − 1

(i + 1)2

(10)

Let Mi = (i + 1)2 − 1 and Ni = (i + 1)2, then we have
Mi

Ni−1
=
(i + 1)2 − 1

i2
=
i + 2
i

. Thus, (10) can be further

extended as:

s∏

i=
⌈√

C−τ−1
⌉
gi

≥
s∏

i=
⌈√

C−τ−1
⌉
(i + 1)2 − 1

(i + 1)2

=
s∏

i=
⌈√

C−τ−1
⌉
Mi

Ni

=

(⌈√
C − τ − 1

⌉
+ 1

)2
− 1

(⌈√
C − τ − 1

⌉
+ 1

)(⌈√
C − τ − 1

⌉
+ 2

) (s + 1)(s + 2)

(s + 1)2

>

⌈√
C − τ − 1

⌉
⌈√

C − τ
⌉

(11)

Combining (8), (9), and (11), we have

s∏
i=1

gi > (
2C − τ − 2

2C
)
⌈√

C−τ−2
⌉
⌈√

C − τ − 1
⌉

⌈√
C − τ

⌉ (12)

Using the similar analysis as above, we have:

t∏
j=1

hj > (
2C − τ − 2

2C
)
⌈√

C−τ−2
⌉
⌈√

C − τ − 1
⌉

⌈√
C − τ

⌉ (13)

Combining (12) and (13), we eventually have the
bound for F:

F =
fn
f1

=
s∏

i=1

gi
t∏

j=1

ht

> (
2C − τ − 2

2C
)
2
⌈√

C−τ−2
⌉

× (

⌈√
C − τ − 1

⌉
⌈√

C − τ
⌉ )2

(14)

(To facilitate our analysis, C is set to be larger than
(τ + 2)2.)
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