
RESEARCH Open Access

Semantic integration of gene expression analysis
tools and data sources using software connectors
Flávia A Miyazaki, Gabriela DA Guardia, Ricardo ZN Vêncio, Cléver RG de Farias*

From 8th International Conference of the Brazilian Association for Bioinformatics and Computational Biology
(X-meeting 2012)
Campinas, Brazil. 14-17 October 2012

Abstract

Background: The study and analysis of gene expression measurements is the primary focus of functional
genomics. Once expression data is available, biologists are faced with the task of extracting (new) knowledge
associated to the underlying biological phenomenon. Most often, in order to perform this task, biologists execute a
number of analysis activities on the available gene expression dataset rather than a single analysis activity. The
integration of heteregeneous tools and data sources to create an integrated analysis environment represents a
challenging and error-prone task. Semantic integration enables the assignment of unambiguous meanings to data
shared among different applications in an integrated environment, allowing the exchange of data in a semantically
consistent and meaningful way. This work aims at developing an ontology-based methodology for the semantic
integration of gene expression analysis tools and data sources. The proposed methodology relies on software
connectors to support not only the access to heterogeneous data sources but also the definition of transformation
rules on exchanged data.

Results: We have studied the different challenges involved in the integration of computer systems and the role
software connectors play in this task. We have also studied a number of gene expression technologies, analysis
tools and related ontologies in order to devise basic integration scenarios and propose a reference ontology for
the gene expression domain. Then, we have defined a number of activities and associated guidelines to prescribe
how the development of connectors should be carried out. Finally, we have applied the proposed methodology in
the construction of three different integration scenarios involving the use of different tools for the analysis of
different types of gene expression data.

Conclusions: The proposed methodology facilitates the development of connectors capable of semantically
integrating different gene expression analysis tools and data sources. The methodology can be used in the
development of connectors supporting both simple and nontrivial processing requirements, thus assuring accurate
data exchange and information interpretation from exchanged data.

Background
Gene expression is the biological process in which the
information stored in a gene is converted into protein or
RNA. Nowadays, high-throughput expression measure-
ments of entire transcriptomes can be easily obtained
through different techniques. These techniques differ

from each other on the technology and/or approach used
to obtain a measurement. Nonetheless, they can roughly
be classified as: hibridization (e.g., Microarray [1] and
Tiling Array [2]), sequencing (e.g., ESTs [3], SAGE [4],
MPSS [5] and RNA-Seq [6]) and other non high-
throughput approaches (e.g., Northern Blot [7], qPCR [8]
and cDNA Macroarray [9]).
The study and analysis of these measurements is the

primary focus of functional genomics [10]. Overall, the
objectives of functional genomics include the definition

* Correspondence: farias@ffclrp.usp.br
Department of Computer Science and Mathematics (DCM/FFCLRP),
University of São Paulo (USP) Av. Bandeirantes, 3900 - Monte Alegre -
Ribeirão Preto - SP - 14040-901 - Brazil

Miyazaki et al. BMC Genomics 2013, 14(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/14/S6/S2

© 2013 Miyazaki et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:farias@ffclrp.usp.br
http://creativecommons.org/licenses/by/2.0


of the functional roles of different genes and associated
processes, the study of the interactions between gene and
gene products, the study of gene expression variations in
different cell types and under different conditions, among
others [11]. Once expression data is available, biologists
are faced with the task of extracting (new) knowledge
associated to the underlying biological phenomenon.
Most often, in order to carry out this task, biologists per-
form a sequence of analysis activities on the available
gene expression dataset rather than a single analysis
activity. Analysis activities include data normalization,
identification of differentially expressed genes, pathway
analysis, cluster analysis and classification, functional
annotation and modelling gene regulatory networks.
Occasionally, an integrated analysis environment, also

commonly refered as an integrated analysis pipeline
(e.g., [12-17]), can be used to support the integrated
execution of different analysis activities. However, in
most cases biologists have to use different, isolated ana-
lysis tools. In those cases, biologists must frequently
implement themselves, without proper guidelines, the
necessary code to integrate those tools, which can hin-
der effective research [18].
The integration of complete systems or part of systems

to build a new system is a challenging task, even when
these systems were developed using the same program-
ming language and the same execution platform. System
integration can be achieved at syntactical and semantical
levels. On the one hand, the syntactic integration aims at
agreeing on a common syntax for representing the data
exchanged between different parts of the system. On the
other hand, the semantic integration aims at agreeing on
common meanings for the data exchanged, under possi-
bly different syntactical formats, between different parts
of the system. Semantic integration is usually accom-
plished using a neutral (reference) ontology to enable the
translation first from the source system format into the
neutral format and then, from there, into the target sys-
tem format [19]. Thus, semantic integration enables the
assignment of unambiguous meanings to data intended
to be shared among different systems in an integrated
environment, allowing the exchange of data in a semanti-
cally consistent and meaningful way.
In the gene expression domain, the emerging of high-

throughput experimental processes has lead to develop-
ment of different (standard) formats for the representation
and exchange of gene expression data, such as MAGE-ML
[20], MAGE-TAB [21], SOFT [22], MINiML [23], SAM
[24] and FuGE-ML [25,26]. However, the availability of a
standard data representation format is not enough to
guarantee semantic integration of heterogenous tools
because not all tools comply with these formats, different
types of data can be represented using a single format and,
perhaps most importantly, analysis activities can be carried

out without proper reasoning about the meaning of
exchanged data, among others. For example, we can store
and exchange both one-color and two-color microarray
data according to the MAGE-TAB data format. However,
any analysis activity carried out on these data should take
into account its meaning in order to obtain biologically
significant results. Thus, we should not normalize one-
color microarray data in the same way as we normalize
two-color microarray data.
Ontologies have been used to facilitate the integration of

computer systems and information in the biomedical
domain. Particularly, we can identify two general ontol-
ogy-based approaches for the integration of bioinformatics
systems and databases [27]. In the first approach, ontolo-
gies have been used as source for the design of a common
or reference (database) model shared by a number of
related tools or databases (e.g., [20,28-32]). In the second
approach, ontologies have been used as basis for the devel-
opment of mediators, i.e., software entities that encom-
passes a global knowledge (global database schema) and,
at the same time, are able to provide mappings to the spe-
cific (local) schemas to be integrated (e.g., [33-36]).
In the gene expression domain, different and often

complementary activities are usually carried out using
different tools during the analysis process. Additionally,
new biological and experimental developments frequently
lead to the modification of existing data models and the
development of new algorithms and analysis tools. Thus,
both approaches pose a number of limitations for the
integration of gene expression analysis tools. The first
approach lacks flexibility, since the integration of a new
tool requires the adaptation of this tool data model to the
reference model and/or the modification (extension) of
the reference model. The second approach lacks general-
ity, since its primarily focus lies on the translation of
queries between a mediator and local schemas. Finally,
none of the approaches supports dynamic processing
(transformation) of the exchanged data, which is often
necessary to enable the proper usage of data by a target
tool.
This work aims at developing an ontology-based metho-

dology for the semantic integration of gene expression
analysis tools to support not only the access to heteroge-
neous data sources but also the definition of transforma-
tion rules on exchanged data. We have used software
connectors as basis for our integrative solution. Software
connectors represent architectural elements used to model
interactions among either computation or data compo-
nents of a system. We have studied the different chal-
lenges involved in the integration of computer systems
and the role connectors play in this task. We have also
studied a number of gene expression technologies, analysis
tools and related ontologies in order to devise basic inte-
gration scenarios and propose a gene expression domain

Miyazaki et al. BMC Genomics 2013, 14(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/14/S6/S2

Page 2 of 23



ontology. Finally, we have proposed a number of activities
and associated guidelines to develop connectors. This
methodology was then applied in the construction of a
number of integration scenarios involving different gene
expression data and/or tools. The proposed methodology
allows the development of connectors capable of integrat-
ing different gene expression analysis tools and/or related
data at a semantic level, thus assuring accurate data
exchange and information interpretation from the
exchanged data. Additionally, our methodology can be
used in the development of connectors supporting both
simple and nontrivial processing requirements.

Methods
The following steps were carried out in the development
of our ontology-based methodology: 1) study of software
architecture and integration of computer systems; 2)
study of gene expression technologies, analysis tools and
related ontologies; 3) definition of a reference ontology
for the gene expression domain; 4) definition of activ-
ities and associated guidelines for connector develop-
ment, and; 5) application of the proposed methodology
in the construction of different integration scenarios.

Software architecture
Software architecture emmerged as a sub-discipline of
software engeneering in the early 90’s. This discipline is
focused, among others, on the architecture description
of complex systems and on the use of this description
as basis for system design, development, reuse and man-
agement in general [37]. The architecture of a software
system represents the fundamental properties of this
system in relation to its enviroment, embodied in its ele-
ments, relationships, and in the principles of its design
and evolution [38] (cf. [37,39-43]). An architecture is
represented by means of an architecture description.
Architectural Description Languages (ADLs) can be
used to create an architecture description through the
development of one or more architecture models (see
[44] for an overview and comparison of ADLs).
Despite existing diferences among ADLs, there seems

to be general agreement with respect to the elements
needed to describe structural aspects of an architecture,
viz., components, connectors and architectural configura-
tions [44]. A component represents a unit of computa-
tion or data store (state) in a system. A component can
be as simple as a single procedure or method or as com-
plex as an entire application. A connector represents an
architectural element used to model interactions among
components and rules governing those interactions. Con-
nectors also specify any auxiliary mechanism required to
perform the interactions [45]. A connector can be as sim-
ple as a global variable (shared memory) or procedure
call or as complex as a P2P-based data distribution

connector [43]. An architectural configuration represents
a set of associations between components and connectors
pertaining to a system’s architecture. An architectural
configuration can be represented simply as a graph
whose nodes represent components and connectors and
whose edges represent their associations Ibid.
Connectors are built based on basic primitives for

transferring data and/or control. Connectors can be
classified according to the set of provided services. Four
basic services can be identified [43,45]: communication,
which supports transmission of data among compo-
nents; coordination, which supports transfer of control
among components; conversion, which transforms the
interaction provided by one component to the interac-
tion required by another; and facilitation, which med-
iates and streamlines component interaction in order to
optimize interactions and reduce interdependencies.
Simple connectors, which are implemented directly in
programming languages, provide a single service, while
composite connectors provide multiple services, often
exibiting an internal architecture with computation and
data storage capabilities.
Most connectors provide multiple services. For exam-

ple, a procedure call connector provides both communi-
cation and coordenation services, while a P2P-based
data distribution connector provides all four types of
services. In the context of this work, the developed con-
nectors provide a combination of communication, coor-
dination and conversion services in general.

Gene expression analysis
In order to apply the proposed methodology we have
devised three integration scenarios for the analysis of dif-
ferent types of gene expression data. Each scenario
involves the integration of different tools and/or data
sources. The following tools were considered: R Environ-
ment Graphical User Interface (RGUI) [46,47], which was
used for microarray data normalization and identification
of differentially expressed genes; KEGG Mapper -
Search&Color Pathway [48], which was used for searching
KEGG pathway maps using differentially expressed genes
and then coloring regulation accordingly; DataMatrix-
Viewer (DMV) [49], which was used for RNA-Seq data
selection and displaying; TIGR MultiExperiment Viewer
(TMeV) [50], which was used for RNA-Seq data clustering;
and DAVID Bioinformatics Resources (DAVID) [51], which
was used for gene functional classification.
Each proposed integration scenario involves the analy-

sis of different source gene expression data in order to
reproduce (part of) different studies already documented
in the literature. In the first scenario, two-color Plasmo-
dium vivax microarray data [52], available from NCBI
Gene Expression Omnibus (GEO) under the accession
number GSE11075, were initially normalized and then

Miyazaki et al. BMC Genomics 2013, 14(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/14/S6/S2

Page 3 of 23



analysed for differentially expressed genes using RGUI.
In the sequel, KEGG Plasmodium vivax pathways were
analysed using KEGG Mapper - Search&Color Pathway.
This tool was used to identify which parts of pathways
are associated with the list of differentially expressed
genes provided by RGUI, highlighting up and down reg-
ulation according to a user-defined color scheme. In the
second integration scenario, Sulfolobus solfataricus
cDNA sequencing data, obtained from a RNA-Seq plat-
form [53], available from GEO under the accession
number GSE18630 and aligned with Bowtie [54], were
initially filtered using DMV and then clusterized using
TMev. Finally, in the third integration scenario, one-
color microarray data taken from normal and cancer
prostate cells [55], also available from GEO under the
accession number GSE17906, were analysed to find dif-
ferentially expressed genes using a RGUI implementa-
tion of HTself [56], a self-self based statistical method
for low replication microarray data. The obtained data
were then loaded into DAVID for functional analysis.
Automatic interaction with RGUI from a third-party

application was provided by the RServe API [57] (http://
rforge.net/org/doc/org/rosuda/REngine/Rserve/package-
summary.html). This API allows the establishment of a
(remote) communication connection (using TCP) between
the R system and a Java application. This connection was
then used to send R commands to be processed by the R
system and, after their execution, to receive the corre-
sponding answers.

Biomedical ontologies
Many different ontologies have been proposed in the bio-
medical domain. The Open Biological and Biomedical
Ontologies (OBO) Foundry is a consortium that provides
a repository of life-science ontologies [58]. These ontolo-
gies have been developed according to a set of shared
principles, including openness, orthogonality and colla-
borative development. The OBO Foundry ontologies
include the Gene Ontology (GO) [59], the Chemical Enti-
ties of Biological Interest Ontology (ChEBI) [60], the Phe-
notypic Quality Ontology (PATO) [61] and the PRotein
Ontology (PRO) [62], among others. Additionally, the
Foundry also includes a number of candidate ontologies
and other ontologies of interest in the life-science domain,
such as the Sequence Ontology (SO) [63], the Common
Anatomy Reference Ontology (CARO) [64] and the Ontol-
ogy for Biomedical Investigations (OBI) [65].
The proposed methodology uses a reference ontology

for the gene expression domain called Gene Expression
Ontology (GEXPO). Two ontologies were considered in
the development of our reference ontology: Gene Ontol-
ogy (GO) [59] and Sequence Ontology (SO) [63]. GO pro-
vides a set of terms and relations used for standardization
of genes and their products in eukaryotic organisms using

three independent ontologies: Cellular Component, which
describes cellular structures in which genes can be
expressed; Molecular Function, which describes activities
that occur at the molecular level; and Biological Process,
which describes collections of processes (series of events
or molecular functions) related to the functioning of inte-
grated living units. SO provides a set of terms and rela-
tions used to describe features and attributes of biological
sequences. The development of such controlled terminol-
ogy aims at facilitating the exchange, analysis and manage-
ment of genomic data, particularly genomic databases and
flat file data exchange formats.
Ontologies can be represented using different languages,

such as the Unified Modeling Language (UML) [66,67],
the Web Ontology Language (OWL) [68] and the OBO
Flat File Format [69]. UML is a standard graphical lan-
guage widely used in the specification, documentation and
visualization of computer artifacts and ontologies. OWL is
an ontology definition language originally conceived for
the semantic web. OWL specifications are serialized using
a machine-readable RDF/XML-based format. The OBO
Flat File Format or simply OBO format is also a machine-
readable, text-based ontology representation language.
The OBO format provides a subset of the concepts in
OWL, with a number of extensions.
Our gene expression reference ontology has been

represented using OWL. In order to facilitate the visuali-
zation of the proposed ontology and the understanding
of the integration scenarios, we have also created UML
representations of parts of our reference ontology.

Results
Basic integration scenarios
In order to develop our methodology, we initially had to
identify a set of basic scenarios in which integration
could take place.
A tool TA can be integrated to another tool TB or to a

data source D in different ways, considering both the
transfer of data and/or control. In this sense, five basic
integration scenarios can be identified (see Figure 1): (a)
data stored in D are transferred to TA; (b) data pro-
duced by TA are transferred to D; (c) data stored in D
are transferred to TA and later data produced by TA are
transferred back to D; (d) data and/or control from TA

are transferred to TB; and (e) data and/or control from
TA are transferred to TB and later data and/or control
from TB are transferred back to TA.
Integration scenarios c and e can be considered compo-

site integration scenarios since they can be structured as a
composition of the other (simpler) scenarios (a, b and d).
Integration scenario c can be considered a combination of
scenarios a and b, while integration scenario e can be con-
sidered a combination of two scenarios d. In both cases,
there is a bidirectional flow of data between a data source

Miyazaki et al. BMC Genomics 2013, 14(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/14/S6/S2

Page 4 of 23

http://rforge.net/org/doc/org/rosuda/REngine/Rserve/package-summary.html
http://rforge.net/org/doc/org/rosuda/REngine/Rserve/package-summary.html
http://rforge.net/org/doc/org/rosuda/REngine/Rserve/package-summary.html


and a tool or a bidirectional flow of data and/or control
between two tools. In this sense, the guidelines provided
in this work take into account only unidirectional scenar-
ios (a, b and d), but can be easily extended to cover bidir-
ectional scenarios.

Gene Expression Ontology (GEXPO)
Different ontologies have been proposed in the biomedical
domain. These ontologies usually focus on specific aspects
of this domain, such as biological processes, cellular com-
ponents, molecular functions, biological sequences, etc.
However, there is no ontology whose primary focus is
the gene expression domain, although many concepts of
this domain are present in different ontologies. So, after
identifying the basic integration scenarios we developed a
reference ontology, called Gene Expression Ontology
(GEXPO), to be used as basis for semantic integration.
All classes (concepts) defined in our reference ontology

are subclasses of the general OWL class Thing. Figures 2,
3, 4 and 5 present the concepts and relationships defined
as part of the ontology through UML class diagrams. Not
all concepts and relationships are graphically presented
using UML, only those which were considered more rele-
vant to the application of the developed methodology to
the proposed integration scenarios. A concept in our
ontology is represented by a UML class. The relation-
ships between concepts are presented through a notation
similar to the one proposed in [70]. The subsumption
relation of OWL is presented as a UML generalization
stereotyped as is a. The part of relation and its inverse
(has part) are presented as a UML shared aggregation
stereotyped as part of and has part, respectively. The
other relations are presented as stereotyped UML
associations.
Particularly, the concepts reused from the Gene Ontol-

ogy represent biological processes, such as gene expression,
reverse transcription and translation, while the concepts
reused from Sequence Ontology represent “things”, such

as DNA, mature transcript and protein. Most of the rela-
tionships used to relate these and other concepts were
reused from the OBO Relation Ontology [71,72], except
for the produced by, affected by and quantifies relations,
which we have introduced in our ontology. The produced
by relation was defined as a relation between a process
and an entity produced by this process. The affected by
relation was defined as a relation between an experimental
process and an experimental condition capable of affecting
this process. Finally, the quantifies relation was defined as
a relation between a biopolymer quantity and the biopoly-
mer which it quantifies.
Figure 2 presents the concepts associated to gene

expression.
The class gene expression represents a biological pro-

cess (class biological process) by which the information
codified by a gene is used to synthesize functional gene
products, i.e., proteins and functional RNAs. The classes
transcription, RNA processing, translation and protein
maturation represent different subprocesses involved in
gene expression. These subprocesses are related to the
class gene expression through part of relations. The rela-
tionship preceded by defined between the classes RNA
processing and transcription indicates that the occurence
of RNA processing is preceded by the occurence of tran-
scription. This relationship is also defined between the
classes translation and RNA processing, and between the
classes protein maturation and translation.
The class transcription represents the production (rela-

tionship produced by) of a primary transcript (class primary
transcript) from the information codified (relationship has
participant) by a gene (class gene). The class RNA proces-
sing represents the occurence of modifications in a primary
transcript (relationship has participant), such as polyadeny-
lation and splicing. The class mature transcript represents
the result of this subprocess (relationship produced by).
There are two subtypes of mature transcript: non-coding
RNA (class ncRNA) and messenger RNA (class mRNA).

Figure 1 Basic integration scenarios. A cylinder represents a data source, while a rectangle with rounded corners represents a tool. An one-
way arrow represents a directed flow of data and/or control, while a two-way arrow represents a bidirectional flow of data and/or control.

Miyazaki et al. BMC Genomics 2013, 14(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/14/S6/S2

Page 5 of 23



The class translation represents the production (relation-
ship produced by) of a protein (class protein) from the
information codified in a mRNA molecule (relationship has
participant). Finally, the class protein maturation repre-
sents the occurence of chemical modifications in a protein
(relationship has participant), leading to the attainment of
its full functional capacity.
Figure 3 presents the concepts associated to the gene

expression measurement process.
The class biological experimental process represents a

general biological experimental process. The class
experimental condition represents any experimental con-
dition that can affect a biological experimental process
(relationship affected by). The class gene expression mea-
surement represents a specific experimental process
whose objective is to quantify the functional products,
i.e., functional RNAs and proteins, produced by a gene
as result of its expression. In the context of this work,
this process can be realized through a hibridization-

based or sequencing-based approach (subclasses hybridi-
zation-based gene expression measurement and sequen-
cing-based gene expression measurement). The class
DNA microarray experimental process specializes the
class hybridization-based gene expression measurement.
Basically, DNA microarray experimental process repre-
sents the process by which DNA probes attached to the
surface of microarray chips are used to hybridize with a
labeled cDNA sample, in order to quantify functional
gene products. The classes one-color microarray experi-
mental process and two-color microarray experimental
process also specialize DNA microarray experimental pro-
cess. The class one-color microarray experimental process
represents a specific DNA microarray experimental pro-
cess in which the biological samples of interest are
labeled with the same fluorescent dye and hybridized in
different arrays. Conversely, the class two-color microar-
ray experimental process represents a specific DNA
microarray experimental process in which the biological

Figure 2 Gene expression process. A named rectangle represents a concept. A white rectangle represents a concept introduced in our
ontology, while a gray rectangle represents a concept reused from another ontology. A solid line with a stick arrowhead at its end represents a
relationship between two concepts. A solid line with a hollow diamond at its end represents a part of relationship. Finally, a solid line with a
hollow triangle as an arrowhead represents an is a relationship.

Miyazaki et al. BMC Genomics 2013, 14(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/14/S6/S2

Page 6 of 23



samples of interest are labeled with different fluorescent
dyes and hybridized in the same array. Finally, the class
RNA-Seq experimental process specializes sequencing-
based gene expression measurement. Basically, RNA-Seq
experimental process represents the process by which
cDNA molecules produced from a biological sample of
interest are sequenced through next-generation sequen-
cing technologies and quantified.
The class gene expression value represents a value

obtained by quantifying the functional products produced
by a gene as a result of its expression (relationship quanti-
fies). The classes fluorescence intensity-based value and
sequence counting-based value specialize gene expression
value. Additionally, the classes absolute intensity-based
value and ratio intensity-based value specialize fluores-
cence intensity-based value to represent the values
produced by one-color and two-color microarray experi-
mental processes (relationships produced by), respectively.

Specifically, the class absolute intensity-based value repre-
sents a value that quantifies the expression of a gene
under a unique experimental condition, while the class
ratio intensity-based value represents the ratio between
the levels of expression of a gene under two different
experimental conditions. The class cDNA reads counting-
based value specializes sequence counting-based value.
cDNA reads counting-based value represents a value pro-
duced by a RNA-Seq experimental process (relationship
produced by) to quantify the expression of a gene. The
classes absolute cDNA reads counting-based value and
relative cDNA reads counting-based value specialize cDNA
reads counting-based value to represent that the value
obtained from a RNA-Seq experimental process may be
based on the absolute number of cDNA reads or on a rela-
tive value, respectively.
Figure 4 presents the concepts associated to a DNA

microarray experimental process.

Figure 3 Gene expression measurement process. A named rectangle represents a concept. A white rectangle represents a concept
introduced in our ontology, while a gray rectangle represents a concept reused from another ontology. A solid line with a stick arrowhead at its
end represents a relationship between two concepts. A solid line with a hollow triangle as an arrowhead represents an is a relationship.

Miyazaki et al. BMC Genomics 2013, 14(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/14/S6/S2

Page 7 of 23



The class DNA microarray experimental process repre-
sents a hybridization-based experimental process aiming
at quantifying the functional products generated by a
gene as result of its expression. The classes microarray
manufacturing, microarray washing, microarray image
acquisition and microarray gene expression profiling

represent different subprocesses of a DNA microarray
experiment. These subprocesses are associated to the
class DNA microarray experimental process through
part of relations, since they only occur as part of a DNA
microarray experimental process. The classes RNA
extraction, reverse transcription, cDNA labeling and

Figure 4 DNA microarray experimental process. A named rectangle represents a concept. A white rectangle represents a concept introduced
in our ontology, while a gray rectangle represents a concept reused from another ontology. A solid line with a stick arrowhead at its end
represents a relationship between two concepts. A solid line with a hollow diamond at its end represents either a part of or a has part
relationship.

Figure 5 RNA-Seq experimental process. A named rectangle represents a concept. A white rectangle represents a concept introduced in our
ontology, while a gray rectangle represents a concept reused from another ontology. A solid line with a stick arrowhead at its end represents a
relationship between two concepts. A solid line with a hollow diamond at its end represents either a part of or a has part relationship.

Miyazaki et al. BMC Genomics 2013, 14(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/14/S6/S2

Page 8 of 23



hybridization also represent subprocesses of a DNA
microarray experiment. However, these subprocesses are
associated to the class DNA microarray experimental
process through has part relations, since they can also
occur as part of other biological or experimental
processes.
The class microarray manufacturing represents the

process of manufacturing a microarray chip with probes
of interest (relationship has participant ). The class
probe represents fragments of DNA used in the microar-
ray manufacturing process. The class RNA extraction
represents the process by which functional RNA mole-
cules (class mature transcript ) are extracted from cells
or tissues of interest (relationship has participant ). The
class reverse transcription represents the biological pro-
cess by which a complementary DNA (cDNA) molecule
is produced (relationship produced by ) from a mature
transcript (relationship has participant ). The class cDNA
labeling represents the process by which cDNA mole-
cules (class cDNA) are labeled with fluorescent dyes
(relationship has participant ). The class hybridization
represents the biological process by which two or more
complementary nucleic acids establish non-covalent
interactions, pairing each other. Specifically, in a DNA
microarray experiment, the process of hybridization
occurs between a DNA fragment and a cDNA molecule.
The class microarray washing represents the washing of
a microarray chip aiming at removing cDNA molecules
that were not hybridized to the chip probes. The class
microarray image acquisition represents the process of
obtaining a microarray image. A microarray image is pro-
duced by exciting the labeled cDNA molecules with a
laser and scanning the microarray chip in order to mea-
sure the emission of these molecules. Finally, the class
microarray gene expression profiling represents the mea-
surement of gene expression levels (hybridized cDNA) by
quantifying the fluorescence intensities contained in a
microarray image (relationship has participant ).
The relationship preceded by defined between the

classes cDNA labeling and reverse transcription indicates
that the process of cDNA labeling is preceded by the
occurence of reverse transcription. This relationship is
also defined between the classes microarray washing and
hybridization, microarray image acquisition and microar-
ray washing, and between the classes microarray gene
expression profiling and microarray image acquisition.
Figure 5 presents the concepts associated to a RNA-

Seq experimental process.
The class RNA-Seq experimental process represents a

sequencing-based experimental process aiming at quan-
tifying the functional products generated by a gene as
result of its expression. The class RNA-Seq gene expres-
sion profiling represents a subprocess of a RNA-Seq
experiment. This subprocess is associated with RNA-Seq

experimental process through a part of relation, since it
only occurs as part of a RNA-Seq experimental process.
The classes RNA extraction, reverse transcription, cDNA
library with adaptors preparation, cDNA next-generation
sequencing, alignment of cDNA read to a reference gen-
ome and de novo assembly of cDNA reads also represent
subprocesses of a RNA-Seq experiment. However, these
subprocesses are associated with RNA-Seq experimental
process through has part relations, since they can
also occur as part of other biological or experimental
processes.
The class cDNA library with adaptors preparation

represents the preparation of a cDNA library containing
cDNA molecules (relationship has participant ) with
adaptors. The class cDNA next-generation sequencing
represents the process of sequencing a cDNA molecule
(relationship has participant ) through next-generation
sequencing technologies in order to produce cDNA reads
(relationship produced by ). The class cDNA read repre-
sents a cDNA sequence fragment obtained as a result of a
sequencing experiment (relationship derives from). The
class reference genome represents a standard collection of
sequences for a given organism and genome assembly.
The class alignment of cDNA read to a reference genome
represents the process of aligning a cDNA read to a refer-
ence genome (relationship has participant ). The class de
novo assembly of cDNA reads, in turn, represents the pro-
cess of assembling cDNA reads (relationship has partici-
pant ) to create a transcriptome without the aid of a
reference genome. The classes alignment of cDNA read to
a reference genome and de novo assembly of cDNA reads
represent alternative processes of a RNA-Seq experiment
(choice relationship not depicted in Figure 5). Finally, the
class RNA-Seq gene expression profiling represents
the measurement of gene expression levels based on the
counting of cDNA reads (relationship has participant ).
The relationship preceded by defined between the classes

cDNA library with adaptors preparation and reverse tran-
scription indicates that preparing a cDNA library with
adaptors is preceded by the occurrence of reverse tran-
scription. This relationship is also defined between the
class RNA-Seq gene expression profiling and the classes
alignment of cDNA read to a reference genome and de
novo assembly of cDNA reads. However, since alignment
of cDNA read to a reference genome and de novo assembly
of cDNA reads represent alternative processes of a RNA-
Seq experiment, gene expression profiling is preceded by
the occurrence of either one of these processes, not both
(choice relationship not depicted in Figure 5 either).
The complete OWL specification of the Gene Expres-

sion Ontology, including the definition of a SAGE experi-
mental process, can be found in a supplementary material
(see Additional File 1: OWL specification of the Gene
Expression Ontology).

Miyazaki et al. BMC Genomics 2013, 14(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/14/S6/S2

Page 9 of 23



Connector development methodology
A methodology consists of a collection of systematic
procedures or guidelines used to produce an intended
set of artifacts (e.g., documents, models and code) to
represent the different elements of a target application
domain. Thus, we defined a set of activities and asso-
ciated guidelines that prescribe how the development of
a connector C to integrate tools TA and TB or to inte-
grate a tool TA to a data source D should be carried out:

1. Identification of main functionalities. This activity
aims simply at identifying the main functionalities
provided by the tools being integrated. We should
develop a functional specification listing the main
functionalities FA1, FA2, ..., FAN and FB1, FB2, ..., FBM
of tools TA and TB, respectively. This abstract speci-
fication both provides a better understanting of the
services provided by each tool and serves as a start-
ing point for the identification of possible integration
scenarios. Considering the integration of a data
source D to a tool TA, only the functionalities of TA

should be identified.
2. Integration scenario initial description. Since each
tool being integrated provides different sets of func-
tionalities and since these sets of functionalities can
possibly be combined and used in many different
ways, we need to delimit a target integration scenario.
So, this activity aims at providing an initial description
of this target scenario. Such a description can be
obtained in three steps. First, we should select among
the functionalities previously identified a set of interest
functionalities for the target scenario. Then, we should
identify any new functionality that should be provided
as part of the integration scenario. Such functionality
will be provided by the connector under development
itself. Together, both sets of funcionalities form the set
of relevant functionalities for the target scenario.
Finally, we should provide a general textual description
of this scenario. Such a description must include all
relevant functionalities identified.
3. Integration scenario detailed description. After the
initial description of the integration scenario, we need
to detail this scenario. So, this activity aims at provid-
ing a detailed description of the target integration sce-
nario through the development of an activity model
and a use case model. These models can be obtained
through the development of UML activity and use
case diagrams [66,67], respectively. The development
of an activity model aims at capturing the order in
which the relevant functionalities are executed and the
functional entities (tool or connector) responsible for
their execution. The development of a use case model
aims at capturing additional information regarding the
execution of the relevant functionalities through the

description of the interactions between the functional-
ity users and the entities responsible for their
execution.
An activity diagram describes a coordinated execution
of a sequence of activities performed by one or more
functional entities. Each relevant functionality should
be mapped to a corresponding activity. Activities can
be organised into swimlanes, which represent respon-
sibility zones. Thus, swimlanes, one for each entity,
should be used to associate each activity to the entity
responsible for its execution. The execution ordering
of the identified activities should be established based
on the integration scenario initial description.
A use case diagram describes an interaction scenario
between a set of users and a functional entity. A use
case diagram consists of a set of actors, use cases and
their relationships. A use case represents a unit of
functionality comprising sequences of actions that the
functional entity perform to produce an observable
result to one or more outside interactors, called actors.
An actor represents a role that a user plays with
respect to the functional entity. Use cases are identified
based on the developed activity model. In general, each
identified activity should be mapped to a single use
case. However, multiple (fine-grained) activities could
also be mapped to a single use case. Each identified
use case should be associated to either one of the tools
involved in the integration or the connector itself. This
association is directly obtained from the activity dia-
gram swimlanes. Actors and their association to use
cases should be identified based on the integration sce-
nario initial description.
A detailed description of selected use cases should
complement the use case diagram. Such a description
consists of a textual description of the main aspects
associated to the use case in a table-like format. For
each use case, the following information should be
provided: use case purpose, list of associated actors,
numbered account of the interactions initiated by the
associated actors and the corresponding functional
entity response. These interactions should be
described in a typical or normal course of events,
which does not preclude the description of alternative
courses of events either. The selection of use cases to
be described is based on the activity diagram. Only use
cases created based on activities directly related to
the interactions between a tool or a data source and
the connector should be described.
As a final and complementary step of the integration
scenario detailed description, we should provide an
architectural description of the scenario to facilitate
the visualization of the different roles played by the
involved entities. In order to produce such a descrip-
tion we can use an ADL or simply represent graphically

Miyazaki et al. BMC Genomics 2013, 14(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/14/S6/S2

Page 10 of 23



the different architectural elements (tools, data sources
and connectors) and their relationships using an ad
hoc notation. At this point, we can structure (refine) a
complex (composite) connector as an integrated set of
simple connectors. This can be accomplished through
the assignment of different use cases to different (sim-
ple) connectors.
4. Interest data detailed description. This activity
aims at providing a detailed description of the inte-
gration interest data. Interest data include data
either consumed or produced by a connector. Such
information can be typically obtained from the use
case detailed descriptions. However, other sources
can be used to provide additional information, such
as user manuals, help entries, etc. For each function-
ality Fi previously associated to a use case, we should
describe in a table format each data item either con-
sumed or produced.
Two separate tables should be created for each con-
nector: one to describe data items that are consumed
and one to describe data items that are produced. For
each identified data item, a new row should be added
to the table. A separate column should be used to
describe the data item identification, the data item
semantic description and the data item syntactic
description. The data semantic description contains a
textual description of the intended meaning of the
data item. The data syntactic description contains all
information needed to concretely represent the data,
including the data storage medium (e.g., text file, bin-
ary file, database entry, etc), encoding format (e.g.,
ASCII, Unicode, etc), content type (e.g., integer, float,
string, etc) and cardinality (e.g., single entry, array,
matrix, etc).
5. Interest data conceptual modelling. After the
detailed description of the interest data, we should
develop conceptual models to represent such informa-
tion at a high abstraction level. Two conceptual mod-
els should be developed for each (simple) connector
using UML class diagram [66,67]: one to represent the
data consumed by the connector and another to repre-
sent the data produced by the connector.
Each conceptual model should formalize the con-
cepts and relationships identified in the interest data
detailed description. Each identified data item should
be mapped to a corresponding concept (UML class)
in the concept model. Additionally, any identified
relationship between data items should be mapped
to a corresponding relationship between concepts.
Typical relationships include UML association and
aggregation.
6. Reference ontology mapping. After creating the con-
ceptual models of interest data, we should map the
concepts present in these models to concepts present

in the reference ontology. So, this activity aims at
identifying the correspondence between concepts
representing either consumed or produced data items
and concepts from the reference ontology.
The mapping can be accomplished through the con-
struction of an equivalence table for each (simple)
connector. This table contains three columns: the
first column contains concepts representing con-
sumed data items; the second column contains con-
cepts present in the reference ontology; and, the third
column contains concepts representing produced
data items. First, we should add one row for each
concept representing an identified consumed data
item. Then, we should identify the equivalence
between each one of these concepts and a corre-
sponding concept present in the reference ontology.
Whenever such equivalence can be identified, the
corresponding reference ontology concept should be
added to the appropriate row. Finally, we should also
add one row for each concept representing an identi-
fied produced data item and then identify the equiva-
lence between each one of these concepts and a
corresponding concept present in the reference
ontology. Once again, whenever such equivalence can
be identified, the corresponding reference ontology
concept should be added to the appropriate row. In
case the same concept appears repeatedly in different
rows, it should be merged into a single row. Figure 6
illustrates the construction of an equivalence table.
At the end of the equivalence table construction,
ideally we should have mapped each concept repre-
senting a consumed data item to a corresponding
concept from the reference ontology, which also cor-
responds to a concept representing a produced data
item. However, situations in which (at first) partial
mappings are obtained are quite common and
should be dealt with accordingly.
Three cases in which a partial mapping is obtained
can be identified: 1) a consumed data item is simply
not used by the connector to produce an output; 2)
a consumed data item may represent part of the
information used by the connector to produce an
output; and 3) a concept representing a produced
item may be derived from the input data. Since, in
case 1, the data is not used to produce an output,
the lack of correspondence to a reference ontology
concept is meaningless for the problem at hand, so
the complete mapping is not required. In cases 2
and 3, the definition of of semantic equivalence rules
is required (see activity Grounding and semantic
transformation definition.).
After the specification of semantic equivalence rules,
table entries should be merged or split accordingly.
Once such correspondences can be established for

Miyazaki et al. BMC Genomics 2013, 14(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/14/S6/S2

Page 11 of 23



all consumed and produced data items, except for
unused data items, we can assert that semantic inte-
gration can be obtained.
7. Grounding and semantic transformation definition.
This activity aims at describing the mapping between
syntactic and semantic data descriptions. Addition-
ally, this activity also aims at describing any possible
semantic mapping transformation that might be
required in order to establish equivalent relations
between concepts representing produced and/or con-
sumed data items and concepts from the reference
ontology.
The mapping between syntactic and semantic data
descriptions is often called grounding in the literature
[73]. Grounding is required because frequently the
same semantic information can be represented differ-
ently at a syntactic level (e.g., different formats for

date representation). Grounding can be specified by
means of two complementary operations: lifting,
which is used to interpret semantic data from a (con-
crete) syntactic representation, and lowering, which is
used to create a (concrete) syntactic representation
from semantic data. In the context of this work, lift-
ing and lowering operations should be specified tex-
tually for each consumed and produced data item.
This specification should be based on the Interest
data detailed description and Reference ontology map-
ping activities and serves as basis for the Connector
implementation activity.
During the specification of the lifting and lowering
operations, we need to identify and represent any
semantic transformation between consumed data con-
ceptual model elements and reference ontology ele-
ments as well as between reference ontology elements

Figure 6 Equivalence table creation. Concepts representing consumed and produced data items are mapped to a reference ontology
concept. 1) The concept Gene Id is added to the consumed data item concept column; 2) An equivalence is identified between the Gene Id
concept and the reference ontology concept of Gene; 3) The concept Official Symbol is added to the produced data item concept column; 4) An
equivalence is identified between the Official Symbol concept and the reference ontology concept of Gene; rows representing consumed and
produced data items are merged.

Miyazaki et al. BMC Genomics 2013, 14(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/14/S6/S2

Page 12 of 23



and produced data conceptual model elements that
might be necessary. The need for such semantic trans-
formation might have been identified during the Refer-
ence ontology mapping activity. In such case, we need
to formally represent either mathematically or through
a series of inference rules how a produced data con-
ceptual model element can be derived from a reference
ontology element or from a set of consumed data con-
ceptual model elements, thus creating an equivalence
relation between all these concepts. Once this equiva-
lency is defined, the equivalence table developed at the
Reference ontology mapping activity should be updated.
8. Access policy identification. This activity aims at
providing a textual description of the integration
target object (tool or data source) access policy. This
description specifies how and where the functional-
ities of the integration target object can be accessed
by the connector under development.
The access policy description should include the
identification of the mechanism to be used to either
access consumed and/or produced data (e.g., SQL
query mechanism (relational databases), file input/
output (binary or text files), etc) or provide (auto-
matic) transfer of data and control to the integration
target object (e.g., procedure call, Unix/Linux pipes,
TCP/UDP communication sockets, HTTP connec-
tions, etc). Automatic transfer of data and control is
usually available only whenever an API describing
the integration target object functionalities exists.
The access policy description should also include
information regarding the physical and logical location
(e.g., local directory, file name, database name, URL, IP
address, etc) of the integration target object, as well as
any existing access restriction to the object (e.g., pub-
lic, protected or private access with authorization).
This information can be usually obtained from user
manuals, help pages, API documentation, etc.
9. Connector implementation. This activity aims at
implementing the connector in a systematic way.
There is no restriction on the choice of implementa-
tion language to be used. The connector’s developer
is free to use any language she or he sees suitable for
this task. However, some of the guidelines provided
below take into account the use of an object-oriented
programming language.
The functionalities of each connector should be struc-
tured into four functional blocks: 1) Data Input Pro-
cessing, which is responsible for obtaining the input
data according to the specified data input format and
producing an object-oriented representation of the
data; 2) Lifting, which is responsible for transforming
the previously obtained object-oriented data represen-
tation into a reference (canonical) object-oriented
representation of the data; 3) Lowering, which is

responsible for transforming the previously obtained
canonical representation into an object-oriented repre-
sentation of the data suitable for output; and 4) Data
Output Processing, which is responsible for producing
the desired output according to the specified data for-
mat based on the previously obtained object-oriented
representation of the data.
The Lifting functional blocks is also responsible for
implementing any required semantic transformation
of the concepts according to the equivalence rela-
tions specified in the Grounding and semantic trans-
formation definition activity. The Data Output
Processing functional block is also responsible for
accessing the target tool or data source being inte-
grated and realizing the transfer of data and/or con-
trol as specified in the Access policy identification
activity.
The requirements for the implementation of each
functional block can be identified based on the
information produced by the Interest data detailed
description, Grounding and semantic transformation
definition and Access policy identification activities.
The execution of the functional blocks should be
carried out serially according to the order in which
they have been defined. Figure 7 illustrates the time-
line execution of a connector’s implementation func-
tional blocks.
The connector can be implemented completely inde-
pendent from tool TA or as an integral part of this
tool. The independent connector implementation is
simpler to be implemented since no changes are
required to tool TA. However, this implementation
choice relies on the user to explicitly execute the con-
nector. The integral part connector implementation
enables the connector to be automatically executed
from tool TA integrated interface. However, this imple-
mentation choice relies on the availability of the source
code of this tool.

Methodology application
We applied the proposed methodology in the develop-
ment of three integration scenarios for the analysis of
different types of gene expression data.
In the first scenario, two-color Plasmodium vivax

microarray data were normalized using RGUI. In order
to facilitate multiple condition normalization by RGUI,
different two-color microarray data should be combined
into a single multi-column dataset. Normalized microar-
ray data was then used by RGUI itself for the identifica-
tion of differentially expressed genes. In the sequel,
KEGG Plasmodium vivax pathways were analysed using
KEGG Mapper - Search&Color Pathway. This tool was
used to identify which parts of pathways were associated

Miyazaki et al. BMC Genomics 2013, 14(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/14/S6/S2

Page 13 of 23



with the differential gene expression analysis provided by
RGUI, highlighting up and down regulation according to
a color scheme.
Figure 8 illustrates the architecture of our first inte-

gration scenario with focus on the flow of data. Two
connectors were developed to integrate two-color
microarray data to RGUI and KEGG Mapper. Connector
C1 groups separate two-color microarray data into a
single two-color microarray dataset to facilitate normali-
zation by RGUI, while connector C2 processes RGUI
output data, so they can be used by KEGG Mapper.
Different files were used to store two-color microarray

data (SOFT format), each representing a separate experi-
mental condition. So basically, connector C1 was responsi-
ble for reading these files and for producing a single
(multi-column) file containing all data to facilitate further
analysis activities. From a semantic point of view, the con-
struction of the equivalence table was straightforward since
the same set of concepts was used to represent data items
both consumed and produced by the connector. These
concepts were also directly mapped to the concepts of the
reference ontology. Thus, no transformation was required.
Connector C1 was implemented as a separate Java appli-

cation. Its different functional blocks were implemented as

follows. The Data Input Processing functional block reads
a number of files containing two-color microarray data
and stores these data as lists of strings (one list for each
file). Then, the Lifting functional block transforms the lists
of strings into three separate lists, containing instances of
genes, experimental conditions and multiple lists of ratio
intensity-based values. Next, the Lowering functional block
transforms all the previous lists into a single list of strings.
Each string represents the concatenation (tab-delimited)
of the different instances of the elements identified in the
Lifting functional block. Finally, the Data Output Proces-
sing functional block simply writes the list of strings pre-
viously produced into a single text file (one string per
line). This general strategy has been similarly adopted in
the implementation of all connectors in the context of this
work.
Connector C1 was also designed to provide both man-

ual and automatic transfer of control to RGUI (para-
meter-based selection). The automatic integration of the
connector with RGUI was provided by the RServe API.
Since the connector is capable of providing both forms
of transfer of control to RGUI, the automatic integration
was implemented independently of the Data Output
Processing functional block in order to maintain a sound

Figure 7 Connector implementation functional blocks. An arrow represents an implementation functional block. The left to right serial
disposition of the arrows indicates the order in which each functional block should be executed, starting at the Data Input Processing block.

Figure 8 Integration architecture of two-color microarray data to tools RGUI and KEGG Mapper - Search&Color Pathway. A rectangle
represents a data source, while a rectangle with rounded corners represents either a tool or a connector. An one-way arrow represents a
directed flow of data and/or control.

Miyazaki et al. BMC Genomics 2013, 14(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/14/S6/S2

Page 14 of 23



implementation structure. Nevertheless, the interaction
with RGUI takes place after data output processing is
complete. Detailed information regarding connector C1
implementation can be obtained in a supplementary
material (see Additional File 2: Connectors C1 and C2
Implementation).
Finally, we have also developed an API, called Gene

Expression Library Class (GELC), to facilitate the imple-
mentation of any semantic-based application in the
domain. This API contains a number of Java classes, each
corresponding to a different concept of our reference
ontology. Examples of classes contained in the GELC
API include AbsoluteIntensityBasedValue, CDNARead,
ExperimentalCondition, Gene, RatioIntensityBasedValue,
SAGETag, etc. All connectors were implemented using
the GELC API in the context of this work. The GELC
API binary code and documentation is also available as
supplementary material (see Additional File 3: GELC
API).
RGUI produced as output a single file containing the

result of the differential gene expression analysis. These
data were processed directly by connector C2 in order to
produce an input suitable for KEGG Mapper - Search&-
Color Pathway. Connector C2 also received two user-pro-
vided (auxiliary) inputs, viz., i) the identification of the
experimental condition whose expression values should be
considered for further analysis; and ii) the value of a gene
expression threshold that was used in the gene expression
(regulation) classification (upregulated, downregulated and
undefined). As a result, connector C2 produced as output
a list of genes and their respective color information, viz.,
red, green or yellow, to be used as input by KEGG
Mapper.
The semantical mapping between concepts representing

either consumed or produced data items and concepts
from the reference ontology for connector C2 was not as
direct as for connector C1. There were cases where no
direct association between a concept representing a con-
sumed data item and a concept representing a produced
data item were identified. So, two equivalence relations
had to be created for those cases. The first equivalence
relation was straightforward and was created to associate
an instance of the concept experiment-specific gene identi-
fier with a possible instance of the concept KEGG identi-
fier. Although both concepts were associated to the
reference ontology concept of gene, not all instances of
experiment-specific gene identifier have corresponding
instances of KEGG identifier. The second equivalence rela-
tion was created to associate the instances of the concepts
of experimental condition, ratio intensity-based value and
gene expression threshold with an instance of the concept
of ratio intensity-based value. Although quite simple in
principle, the definition of this equivalence relation was
quite elaborated. It involved the definition of a mapping

over instances of ratio intensity-based value from the real
numbers domain to the up, down and undefined regula-
tion range according to a (user-provided) instance of gene
expression threshold.
Connector C2 was also implemented as a separate

Java application. This connector provided only manual
transfer of control to KEGG Mapper - Search&Color
Pathway. Once the equivalence relations were defined,
the specification and implementation of the grounding
operations was straightforward. Additionally, the trans-
formation of instances of the concept experiment-speci-
fic gene identifier to instances of the concept KEGG
identifier was carried out using a platform mapping file
(SOFT format), also provided as input to connector
C2. This mapping is usually carried out in two steps: 1)
from experiment-specific gene identifier to official gene
identifier; and 2) from official gene identifier to KEGG
identifier. However, in the specific case of Plasmodium
vivax, each KEGG identifier corresponds directly to its
official gene identifier. In the implementation of the
Lowering functional block instances of the concept
ratio intensity-based value, viz., upregulated, downregu-
lated and undefined, were mapped respectively to the
red, green and yellow KEGG Mapper - Search&Color
Pathway color schema. Detailed information regarding
connector C2 implementation can also be obtained in a
supplementary material (see Additional File 2: Connec-
tors C1 and C2 Implementation).
The second scenario consisted of the integration of

tools DMV and TMev in order to clusterize Sulfolobus
solfataricus RNA-Seq data. This scenario was inspired by
the increasing popularity of next-generation sequencing
platforms for gene expression. Despite the benefits of
storing the actual reads in RNA-Seq databases, these raw
data files provide little support for high-level gene
expression analysis. So, they were transformed into a
numeric representation to be filtered using DMV accord-
ing to some user defined criteria. Next, DMV output was
used as input data for clustering using TMev. However,
DMV output data must be normalized to account for dif-
ferent library sizes (total of sequenced reads) before clus-
terization by TMev.
Figure 9 illustrates the architecture of our second inte-

gration scenario with focus on the flow of data. Two
connectors were developed to integrate RNA-Seq data
to DMV and TMev. Connector C3 transforms RNA-Seq
data, so they can be filtered by DMV, while connector
C4 normalizes DMV filtered data, so they can be clus-
terized by TMev.
Different files were used to store aligned RNA-Seq data

(SAM format), each representing a different experimental
condition. RNA-Seq data was then transformed into a
numeric representation in a three-step process. The first
step was the identification of known transcribed genes

Miyazaki et al. BMC Genomics 2013, 14(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/14/S6/S2

Page 15 of 23



(represented by cDNA reads) using the Sulfolobus solfa-
taricus genome description (GFF format) and replacing
them in each source file with the associated gene identi-
fiers (annotation). In case no match was found, the asso-
ciated cDNA read was removed from the source file. The
second step was the counting of the total number of
annotated genes present in each source file. The result
was then stored in a text file (tab-delimited format - one
column for each experimental condition). The third step
was the counting of the number that each annotated
gene appears in each experimental condition. Once
again, the result was stored in a text file (tab-delimited
format - one column for each experimental condition
and one row for each annotated gene identifier).
Connector C3 was created to integrate RNA-Seq data to

DMV. C3 represents a composite connector consisting of
three simple connectors: C3.1, C3.2 and C3.3, which are
responsible for performing steps one to three of the afore-
mentioned transformation process, respectively. Figure 10
shows the internal architecture of connector C3, focusing
on the flow of data between connectors.
The semantical mapping between concepts represent-

ing either consumed or produced data items and con-
cepts from the reference ontology for connector C3 was
not straightforward. In several cases, there was no direct

association between a concept representing a consumed
data item and a concept representing a produced data
item. So, equivalence relations had to be created for
those cases. For example, in connector C3.1, an equiva-
lence relation was created to associate an instance of the
concept cDNA read with an instance of the concept
gene (inferred from the reference ontology); in connec-
tor C3.2, an equivalence relation was created to associ-
ate an instance of the concept gene with an instance of
the concept absolute cDNA reads counting-based value
(the total number of cDNA reads represents the abso-
lute number of instances of all genes observed in a
RNA-Seq data file obtained according to a particular
experimental condition); finally, in connector C3.3,
another equivalence relation was created to associate
instances of the concepts gene and experimental condi-
tion with an instance of the concept absolute cDNA
reads counting-based value (the number of cDNA reads
represents the absolute number of instances of a parti-
cular gene observed in a RNA-Seq data file obtained
according to a particular experimental condition).
Once the equivalence relations were defined, the speci-

fication and implementation of grounding operations was
carried out based on these definitions. Connectors C3.1,
C3.2 and C3.3 were each implemented as a separate Java

Figure 9 Integration architecture of RNA-Seq data to tools DMV and TMev. A rectangle represents a data source, while a rectangle with
rounded corners represents either a tool or a connector. An one-way arrow represents a directed flow of data and/or control.

Figure 10 Connector C3 architecture. A rectangle represents a data source, while a rectangle with rounded corners represents a simple
connector. An one-way arrow represents a directed flow of data.

Miyazaki et al. BMC Genomics 2013, 14(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/14/S6/S2

Page 16 of 23



application. Thus, each connector can be executed and
(re)used independently. These simple connectors were
then composed to form connector C3, which is responsi-
ble for controlling the ordering in which the simple con-
nectors are executed, viz., first C3.1, then C3.2 and finally
C3.3. Although connectors C3.2 and C3.3 can be exe-
cuted in any order (even concurrently), we have chosen
that specific sequencing because performance is not an
issue in the scope of this work. Connector C3 as a whole
was designed to provide only manual transfer of control
to DMV, since this tool does not provide an API for
automatic interaction from a third-party application.
Data output from DMV must be normalized before

they can be clusterized by TMev to account for different
library sizes. Normalization was carried out by connector
C4 by dividing the number that each annotated gene
appears in each experimental condition by the total num-
ber of annotated genes present in each source file. These
normalized data produced by connector C4 were then
used as input by TMev.
Similarly to connector C3, the semantical mapping

between concepts representing either consumed or pro-
duced data items and concepts from the reference ontol-
ogy for connector C4 was not straightforward either. So,
an equivalence relation was defined to associate two
instances of the concept of absolute cDNA reads counting-
based value with one instance of the concept of relative
cDNA reads counting-based value (relative cDNA reads
counting-based value represents the normalization of the
absolute number of instances of a particular gene by the
absolute number of instances of all genes according to a
particular experimental condition).
Connector C4 was also implemented as a separate Java

application. This connector provided only manual transfer
of control to TMev, since this tool does not provide an
API for automatic interaction from a third-party applica-
tion either. Once the equivalence relation was defined, the
specification and implementation of the grounding opera-
tions were straightforward. All data consumed and pro-
duced by this connector were stored in ASCII text files
(tab-delimited format).
The third integration scenario was inspired by a study

where histologically normal and tumor-associated stromal
cells were analysed in order to identify possible changes in
the gene expression of prostate cancer cells [55]. In order
to cope with a low replication constraint, we needed to
use an appropriate statistical method, called HTself [56].
However, this method was designed for two-color micro-
array data, thus a non-trivial data transformation on input
data was required. One-color microarray data taken from
normal and cancer cells were transformed into (vitual)
two-color microarray data and then used as input for the
identification of differentiated expressed genes using

HTself. Then, the obtained data were filtered to be used as
input for functional analysis carried out using DAVID.
Figure 11 illustrates the architecture of our third inte-

gration scenario with focus on the flow of data. Two
connectors were developed to integrate one-color
microarray data to RGUI and DAVID. Connector C5
transforms one-color microarray data into (virtual) two-
color microarray data, so they can be processed by
RGUI, while connector C6 filters the produced differen-
tial gene expression data, so they can be analysed by
DAVID.
One-color microarray data was transformed into vir-

tual two-color microarray data by creating sets of ratios
using all possible pair-wise comparisons among experi-
ments. This transformation process was carried out in
two steps. The first step consisted of creating sets of
ratios derived only from samples pertaining to the same
cathegory (virtual self-self data), while the second step
consisted of creating sets of ratios derived only from
actual comparisons among different cathegories.
Connector C5 was created to integrate one-color

microarray data to RGUI. C5 represents a composite
connector consisting of two simple connectors: C5.1
and C5.2, which are responsible for performing steps
one and two of the aforementioned transformation pro-
cess, respectively.
The semantical mapping between concepts representing

either consumed or produced data items and concepts
from the reference ontology for connector C5 was not
straightforward either. In two cases, there was no direct
association between a concept representing a consumed
data item and a concept representing a produced data
item. So, equivalence relations had to be created in both
cases. In both connectors C5.1 and C5.2, an equivalence
relation was created to associate two instances of the con-
cept absolute intensity-based value with one instance of
the concept ratio intensity-based value according to the
aforementioned transformation process (see [55] for a
detailed account of this transformation process).
Once the equivalence relations were defined, the spe-

cification and implementation of the grounding opera-
tions for each simple connector was straightforward.
Connectors C5.1 and C5.2 consumed as input a number
of one-color gene expression data files (SOFT format)
and produced as output a single virtual two-color gene
expression data file each (tab-delimited format). These
connectors were then implemented each as a separate
Java application, so each connector can be executed and
(re)used independently. Connectors C5.1 and C5.2 were
then composed to form connector C5, which is respon-
sible for controlling the ordering in which the simple
connectors are executed, viz., first C5.1 and then C5.2.
Although connectors C5.1 and C5.2 can be executed in

Miyazaki et al. BMC Genomics 2013, 14(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/14/S6/S2

Page 17 of 23



any order (even concurrently), we have chosen that spe-
cific sequencing because, once again, performance is not
an issue in the scope of this work.
Similarly to connector C1, connector C5 as a whole was

designed to provide both manual and automatic transfer
of control to RGUI (parameter-based selection). The auto-
matic integration of the connector with RGUI was also
provided by the RServe API. Since connector C5 is capable
of providing both forms of transfer of control to RGUI, the
automatic integration was implemented independently of
connectors C5.1 and C5.2 in order to maintain a sound
implementation structure. Nevertheless, the interaction
with RGUI takes place after connector C5.2 concludes its
execution.
RGUI was used for the identification of differentiated

expressed genes on the transformed (virtual) two-color
microarray data using HTself. RGUI produced as output
two numeric values associated to each gene, viz., the
resulting value of HTself and an associated p-value.
These data had to be filtered directly by connector C6
in order to select for the functional analysis study only
those genes whose values for HTself and p-value are
above and below provided thresholds, respectively. As a
result, connector C6 produced as output a list of genes
to be used as input by DAVID.
The semantical mapping between concepts representing

either consumed or produced data items and concepts
from the reference ontology for connector C6 was simpler

than for connector C5. Initially during the equivalence
table construction, two out of three concepts representing
a consumed data item (HTself and p-value) could not be
mapped to an equivalent reference ontology concept. In
principle, this was not a problem because these concepts
were only used as filtering criteria by the connector for the
production of the output list of genes. Despite this fact, an
equivalence relation was defined to associate instances of
the concepts of gene, HTself and p-value (last two as selec-
tion criteria) with instances of the concept gene.
Connector C6 was also implemented as a separate Java

application. This connector provided only manual transfer
of control to DAVID, since this tool does not provide an
API for automatic interaction from a third-party applica-
tion either. Once the equivalence relation was defined, the
specification and implementation of the grounding opera-
tions was straightforward. All data consumed and pro-
duced by this connector were stored in ASCII text files
(tab-delimited format).

Discussion
We have developed an ontology-based methodology for
the semantic integration of gene expression analysis tools
and data sources using software connectors. Our metho-
dology supports not only the access to heterogeneous
gene expression data sources but also the definition and
implementation of transformation rules on exchanged
data. First, we have defined a reference ontology for the

Figure 11 Integration architecture of one-color microarray data to tools RGUI and DAVID. A rectangle represents a data source, while a
rectangle with rounded corners represents either a tool or a connector. An one-way arrow represents a directed flow of data and/or control.

Miyazaki et al. BMC Genomics 2013, 14(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/14/S6/S2

Page 18 of 23



gene expression domain. Then, we have defined a num-
ber of activities and associated guidelines to prescribe
how the development of connectors should be carried
out. Finally, we have applied the proposed methodology
in the construction of three different integration scenar-
ios involving the use of different tools for the analysis of
different types of gene expression data. The availability of
a step-by-step methodology based on a reference ontol-
ogy for the gene expression domain facilitated the devel-
opment of connectors responsible for the semantic
interoperability of the proposed set of data and tools.
The two general approaches used in the semantic inte-

gration of bioinformatics tools and databases do not
tackle adequately the integration of gene expression ana-
lysis tools. In the first approach, ontologies have been
used as a common database model to integrate a number
of related tools and/or data sets (e.g., Atlas [28], IMGT
[31] and IntegromeDB [32]). Although, in principle our
reference ontology can be used as basis for the develop-
ment of a (common) database schema for a number gene
expression analysis tools, this is not the main purpose of
our reference ontology. GEXPO is used as a reference for
mapping concepts representing consumed and produced
data items, so they directly or indirectly (through equiva-
lence rules) bear the same semantics as defined in the
reference ontology.
In the second approach, mediators have been used to

integrate heterogeneous data sources (e.g., TAMBIS [33],
SEMEDA [34] and ONTOFUSION [36]). Mediators
represent software entities capable of mapping concepts
of a global (database) schema to concepts of a local
schema. The role played by software connectors in our
methodology resembles the role played by mediators,
viz., both bridge the gap between global (reference ontol-
ogy) and local (specific conceptual model). However,
mediators are only used to support the translation of
queries to local schemas, whereas software connectors
can be used not only to perform queries on local data-
bases, but also to relate and transform (sets of) input data
onto semantically equivalent output data. Besides, soft-
ware connectors are primarily intended to integrate ana-
lysis tools instead of (multiple) databases in the context
of this work.
Semantic integration can also be achieved using a non-

systematic approach. In such approach, which could also
be based on software connectors, the semantic integration
would be achieved on an ad-hoc basis, possibly using the
concepts of an existing ontology as reference. However,
the lack of a systematic methodology for achieving integra-
tion would likely result on a more complex, costly and
error-prone development process. Furthermore, the lack
of structuring guidelines for implementing a connector
would possibly reduce the likelihood of reusing existing
connectors. Alternatively, integration can also be achieved

using a semantic flexibility approach [49]. In this case, no
formal mappings are required, i.e., data are exchanged
regardless of its meaning. An adapter, associated to each
integrated application, receives exchanged data and assigns
specific meaning to them according to each specific con-
text of use. Both the non-systematic and the semantic
flexibility approaches fall short with respect to our metho-
dology because our systematic approach reduces the
chances of misinterpreting data and consequently
increases the likelihood of producing meaningful results.
Despite the benefits of our methodology, we must

acknowledge a few limitations to our study. In the gene
expression domain, there are many different tools and
data sources, which can be combined in many different
ways. In this sense, the first limitation of our work was the
restricted number of integration scenarios in which our
methodology was applied. Actually, any methodological
work such as ours presents the same limitation. However,
our methodology is not restricted to the proposed set of
data and tools. On the contrary, it was defined to be as
general as possible, so it can be applied in the integration
of different tools and data sources in the domain. The pro-
posed integration scenarios were carefully defined. They
include the most representative types of gene expression
data, as well as tools representing some of the most com-
mon gene expression analysis activities. We have also
combined tools with different access interfaces and poli-
cies. Most of all, we have demonstrated how our metho-
dology was applied to transform actual gene expression
data so that semantic integration could be achieved.
The potential limitation of the reference ontology is

another source of concern. We were able to successfully
map all concepts representing a data item either con-
sumed or produced by the developed set of connectors to
a concept defined in the gene expression ontology. Never-
theless, the development of other integration scenarios
involving additional sets of data and analysis activities
could possibly result in a situation in which such mapping
could not be accomplished. In such case, we can fairly
assume the reference ontology would be incomplete. Still,
since continuous modifications of existing ontologies
according to emerging new biological insights represent a
common practice in the biomedical domain, our reference
ontology could also be subject to a review. Besides, in
addition to the set of concepts already defined for the dif-
ferent gene expression measurement approaches described
in this paper, we have also included into the reference
ontology a set of concepts related to another usual high-
throughput gene expression measurement approach, viz.,
SAGE (see Additional File 1 for the complete gene expres-
sion ontology specification).
Finally, despite all structuring guidelines provided by

our methodology, there is a lack of (semi-automatic)
support for the implementation of the connectors,

Miyazaki et al. BMC Genomics 2013, 14(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/14/S6/S2

Page 19 of 23



which can potentially represent a burden for a biologist
undertaking this task. Still, the mere existence of sys-
tematic methodology containing a set of guidelines for
the design and implementation of connectors not only
facilitates the development process but also helps redu-
cing potential (conceptual) mistakes that the biologist
would more likely incur using an ad-hoc development
process. In order to facilitate the implementation of
connectors, we have developed the GELC API contain-
ing a number of classes representing different concepts
of our reference ontology. Thus, the biologist can focus
on the implementation of the functional blocks of the
connector under development. Ultimately, most of the
connectors developed in the context of this work were
based on nontrivial transformation rules, which are unli-
kely to be properly generated by any (semi-automatic)
code generation tool.
To the best of our knowledge this is the first initiative to

provide a systematic methodology for the semantic inte-
gration of gene expression analysis tools and data sources
using software connectors. Our methodology allows not
only the identification of simple equivalence between con-
cepts representing consumed and produced data items but
also the definition of (nontrivial) rules in order to establish
an equivalence between sets of concepts representing con-
sumed and produced data items. Further, our methodol-
ogy separates the connector development guidelines from
the reference ontology itself. Thus, the same guidelines
can be used in the semantic integration of tools and data
sources in different (biomedical) domains, such as proteo-
mics, metabolomics and interactomics, provided that a
suitable ontology is available to be used as reference for
the target domain.
Our ontology-based methodology can be used in the

development of semantically integrated analysis environ-
ments. The proposed methodolody facilitates the devel-
opment of connectors capable of achieving semantic
interoperability between gene expression analysis tools
and data sources. Additionally, developed connectors are
capable of supporting both simple and nontrivial proces-
sing requirements on exchanged data. Our methodology
can be used to create an integrated environment from a
set of isolated (non-related) tools and data sources, as
well as to extend an existing integrated analysis environ-
ment with the integration of new tools and data sources.
Thus, our methodology favors the execution of a broader
and richer set of analysis activities on available gene
expression data.
Furthermore, the set of connectors developed in the

context of this work can also be adapted and reused in the
integration of other tools and data sources in the domain.
For example, connector C2 can be adapted to provide
integration to other KEGG pathway analysis tools; connec-
tors C3 and C4 can easily be adapted to process SAGE

data; and, finally, connector C6 can be adapted to provide
integration to other functional and enrichment analysis
tools [74]. In this way, connectors can be reused to create
other similar integration scenarios.
Semantical integration is pivotal for gene expression

analysis. On one hand, a semantically integrated analysis
environment is fundamentally important for unveiling
new biological knowledge. On the other hand, the lack of
semantic integration can, most likely, produce results
without biological significance. In many occasions, inte-
gration is carried out by someone with insufficient
knowledge of the target domain. Even if a domain expert
is available, the absence of a systematic approach towards
integration favours the arising of (semantical) inconsis-
tencies because integration is based only on tacit knowl-
edge. Our methodology enforces the use of explicit
knowledge, since conceptual models must be developed
to represent input and output data items. Then, the set
of identified concepts are mapped to concepts from a
(reference) gene expression ontology, hence contributing
for semantic accuracy.

Conclusions
High-throughput expression measurements of entire
transcriptomes can be obtained through different techni-
ques. These data have to be analysed using different
tools in order to understand the underlying biological
phenomenon. In order to facilitate such analysis, guar-
anteeing at the same time the soundness of the results,
a semantically integrated analysis environment is
needed. In this sense, we have developed an ontology-
based methodology to support the development of soft-
ware connectors to integrate gene expression analysis
tools and data sources. Our results indicate that the use
of our methodology requires the biologist undertaking
the integration task to explicitly reason about the under-
lying semantics of the concepts representing connector
input and output data, thus contributing for the correct-
ness and accuracy of the resulting integration as a
whole.
Any design methodology can be evaluated according

to some general quality properties [75]. Results from the
application of our methodology indicate that the pro-
posed methodology adhere to the following properties,
viz., simplicity, since the methodology uses a minimal
set of concepts, which facilitates its learning and appli-
cation as a whole; systematicness, since the methodology
provides a stepwise process to guide connector develop-
ment, in which details are added systematically along
the development trajectory; prescriptiveness, since the
methodology prescribes what should be done rather
than what may be done; and, finally, flexibility, since the
methodology can be used in a variety of situations, with-
out (major) changes or adaptations.

Miyazaki et al. BMC Genomics 2013, 14(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/14/S6/S2

Page 20 of 23



Recently, we have observed an increasing number of
gene expression analysis tools becoming available as web
services. Web services represent software resources with
well-defined interfaces that can be executed remotely
through the Internet. Communication and information
exchange are carried out using XML-based standard Inter-
net protocols. Similarly to the integration of different tools
to create an integrated analysis environment, web services
can be integrated to create a composed (analysis) service.
Web services whose interfaces are semantically enriched
through the use of ontologies are called semantic web ser-
vices. The availability of semantic descriptions for these
services facilitates machine interpretation and, conse-
quently, the automated execution of service compositions.
In this sense, future research includes the development
and (automatic) composition of semantic web services in
the gene expression domain using the reference ontology
proposed as part of this work. Additionally, we will also
investigate the role played by software connectors to
enable proper service compositions.

Additional material

Additional file 1: OWL Specification of the Gene Expression
Ontology. Complete specification of the Gene Expression Ontology in
OWL.

Additional File 2: Connectors C1 and C2 Implementation. Connectors
C1 and C2 source code and documentation (javadoc format).

Additional File 3: GELC API. GELC API binary code (jar format) and
documentation (javadoc format).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
FM defined the methodology, helped to define the reference ontology and
to implement the integration scenarios. GG defined the reference ontology
and helped to draft the manuscript. RV helped to define the reference
ontology, defined the integration scenarios and helped to draft the
manuscript. CF helped to define the methodology and the reference
ontology, implemented the integration scenarios and drafted the
manuscript. All authors read and approved the final manuscript.

Declarations
Publication for this article has been funded by the Brazilian Ministry of
Education (CAPES).
This article has been published as part of BMC Genomics Volume 14
Supplement 6, 2013: Proceedings of the International Conference of the
Brazilian Association for Bioinformatics and Computational Biology
(X-meeting 2012). The full contents of the supplement are available online
at http://www.biomedcentral.com/bmcgenomics/supplements/14/S6.

Published: 25 October 2013

References
1. Rockett J, Hellmann G: Confirming microarray data - is it really necessary?

Genomics 2004, 83(4):541-549.
2. Bertone P, Gerstein M, Snyder M: Applications of DNA tiling arrays to

experimental genome annotation and regulatory pathway discovery.
Chromosome Research 2005, 13(3):259-274.

3. Alba R, Fei Z, Payton P, Liu Y, Moore S, Debbie P, Cohn J, D’Ascenzo M,
Gordon J, Rose J, Martin G, Tanksley S, Bouzayen M, Jahn M, Giovannoni J:
ESTs, cDNA microarrays, and gene expression profiling: tools for
dissecting plant physiology and development. Plant J 2004,
39(5):697-714.

4. Velculescu V, Zhang L, Vogelstein B, Kinzler K: Serial analysis of gene
expression. Science 1995, 270(5235):484-487.

5. Reinartz J, Bruyns E, Lin J, Burcham T, Brenner S, Bowen B, Kramer M,
Woychik R: Massively parallel signature sequencing (MPSS) as a tool for
in-depth quantitative gene expression profiling in all organisms. Brief
Funct Genomic Proteomic 2002, 1:95-104.

6. Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for
transcriptomics. Nat Rev Genet 2009, 10:57-63.

7. Rosen K, Lamperti E, Villa-Komaroff L: Optimizing the northern blot
procedure. Biotechniques 1990, 8(4):398-403.

8. Heid C, Stevens J, Livak K, Williams P: Real time quantitative PCR. Genome
Res 1996, 6(10):986-994.

9. Rast J, Amore G, Calestani C, Livi C, Ransick A, Davidson E: Recovery of
developmentally defined gene sets from high-density cDNA
macroarrays. Dev Biol 2000, 228(2):270-286.

10. Butte A: The use and analysis of microarray data. Nat Rev Drug Discov
2002, 1(12):951-960.

11. Brazma A, Volo J: Gene expression data analysis. FEBS letters 2000,
480:17-24.

12. Zhang M, Zhang Y, Liu L, Yu L, Tsang S, Tan J, Yao W, Kang M, An Y, Fan X:
Gene Expression Browser: large-scale and cross-experiment microarray
data integration, management, search & visualization. BMC Bioinformatics
2010, 11(433).

13. Goncalves A, Tikhonov A, Brazma A, Kapushesky M: A pipeline for RNA-seq
data processing and quality assessment. Bioinformatics 2011,
27(6):867-869.

14. Kumar R, Burgess S, Lawrence M, Nanduri B: TAAPP: Tiling Array Analysis
Pipeline for Prokaryotes. Genomics Proteomics Bioinformatics 2011,
9(1-2):56-62.

15. Cumbie J, Kimbrel J, Di Y, Schafer D, Wilhelm L, Fox S, Sullivan C, Curzon A,
Carrington J, Mockler T, Chang J: GENE-counter: a computational pipeline
for the analysis of RNA-Seq data for gene expression differences. PLoS
One 2011, 6(10):e25279.

16. Tsirigos A, Haiminen N, Bilal E, Utro F: GenomicTools: a computational
platform for developing high-throughput analytics in genomics.
Bioinformatics 2012, 28(2):282-283.

17. Haibe-Kains B, Olsen C, Djebbari A, Bontempi G, Correll M, Bouton C,
Quackenbush J: Predictive networks: a flexible, open source, web
application for integration and analysis of human gene networks. Nucleic
Acids Res 2012, 40(Database):D866-D875.

18. Kumar S, Dudley J: Bioinformatics software for biologists in the genomics
era. Bioinformatics 2007, 23(14):1713-1717.

19. Uschold M, Gruninger M: Ontologies and semantics for seamless
connectivity. ACM SIGMod Record 2004, 33(4):58-64.

20. Spellman P, Miller M, Stewart J, Troup C, Sarkans U, Chervitz S, Bernhart D,
Sherlock G, Ball C, Lepage M, Swiatek M, Marks W, Goncalves J, Markel S,
Iordan D, Shojatalab M, Pizarro A, White J, Hubley R, Deutsch E, Senger M,
Aronow B, Robinson A, Bassett D, Stoeckert C, Brazma A: Design and
implementation of microarray gene expression markup language
(MAGE-ML). Genome biology 2002, 3(9):research0046.

21. Rayner T, Rocca-Serra P, Spellman P, Causton H, Farne A, Holloway E,
Irizarry R, Liu J, Maier D, Miller M, Petersen K, Quackenbush J, Sherlock G,
Stoeckert C, White J, Whetzel P, Wymore F, Parkinson H, Sarkans U, Ball C,
Brazma A: A simple spreadsheet-based, MIAME-supportive format for
microarray data: MAGE-TAB. BMC Bioinformatics 2006, 7:489.

22. Simple Omnibus Format in Text (SOFT). [http://www.ncbi.nlm.nih.gov/
geo/info/soft2.html].

23. MIAME Notation in Markup Language (MINiML). [http://www.ncbi.nlm.nih.
gov/geo/info/MINiML.html].

24. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R, Subgroup GPDP: The Sequence Alignment/Map
format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.

25. Jones A, Miller M, Aebersold R, Apweiler R, Ball C, Brazma A, DeGreef J,
Hardy N, Hermjakob H, Hubbard S, Hussey P, Igra M, Jenkins H, Julian R,
Laursen K, Oliver S, Paton N, Sansone SA, Sarkans U, Stoeckert C, Taylor C,
Whetzel P, White J, Spellman P, Pizarro A: The Functional Genomics

Miyazaki et al. BMC Genomics 2013, 14(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/14/S6/S2

Page 21 of 23

http://www.biomedcentral.com/content/supplementary/1471-2164-14-S6-S2-S1.OWL
http://www.biomedcentral.com/content/supplementary/1471-2164-14-S6-S2-S2.zip
http://www.biomedcentral.com/content/supplementary/1471-2164-14-S6-S2-S3.zip
http://www.biomedcentral.com/bmcgenomics/supplements/14/S6
http://www.ncbi.nlm.nih.gov/pubmed/15028276?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15868420?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15868420?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15315633?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15315633?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7570003?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7570003?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15251069?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15251069?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19015660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19015660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1692716?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1692716?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8908518?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11112329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11112329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11112329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12461517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10967323?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20727159?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20727159?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21233166?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21233166?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21641563?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21641563?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21998647?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21998647?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22113082?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22113082?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22096235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22096235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17485425?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17485425?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12225585?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12225585?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12225585?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17087822?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17087822?dopt=Abstract
http://www.ncbi.nlm.nih.gov/geo/info/soft2.html
http://www.ncbi.nlm.nih.gov/geo/info/soft2.html
http://www.ncbi.nlm.nih.gov/geo/info/MINiML.html
http://www.ncbi.nlm.nih.gov/geo/info/MINiML.html
http://www.ncbi.nlm.nih.gov/pubmed/19505943?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19505943?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17921998?dopt=Abstract


Experiment model (FuGE): an extensible framework for standards in
functional genomics. Nature Biotechnology 2007, 25(10):1127-1133.

26. FuGE. [http://fuge.sourceforge.net/].
27. Bodenreider O: Biomedical Ontologies in Action: Role in Knowledge

Management, Data Integration and Decision Support. Yearb Med Inform
2009, 67-79.

28. Shah S, Huang Y, Xu T, Yuen M, Ling J, Ouellette B: Atlas-a data
warehouse for integrative bioinformatics. BMC Bioinformatics 2005, 6:34.

29. Blake J, Bult C: Beyond the data deluge: data integration and bio-
ontologies. Journal of Biomedical Informatics 2006, 39(3):314-320.

30. Whetzel P, Brinkman R, Causton H, Fan L, Field D, Fostel J, Fragoso G,
Gray T, Heiskanen M, Hernandez-Boussard T, Morrison N, Parkinson H,
Rocca-Serra P, Sansone SA, Schober D, Smith B, Stevens R, CJ S, Taylor C,
White J, Wood A, Group FW: Development of FuGO: an ontology for
functional genomics investigations. Omics: a journal of integrative biology
2006, 10(2):199-204.

31. Lefranc M, Giudicelli V, Regnier L, Duroux P: IMGT, a system and an
ontology that bridge biological and computational spheres in
bioinformatics. Briefings in bioinformatics 2008, 9(4):263-275.

32. Baitaluk M, Ponomarenko J: Semantic integration of data on
transcriptional regulation. Bioinformatics 2010, 26(13):1651-1661.

33. Stevens R, Baker P, Bechhofer S, Ng G, Jacoby A, Paton N, Goble C, Brass A:
TAMBIS: transparent access to multiple bioinformatics information
sources. Bioinformatics 2000, 16(2):184-186.

34. Köhler J, Philippi S, Lange M: SEMEDA: ontology based semantic
integration of biological databases. Bioinformatics 2003, 19(18):2420-2427.

35. Joubert M, Dufour J, Aymard S, Falco L, Fieschi M: Designing and
implementing health data and information providers. International journal
of medical informatics 2005, 74(2-4):133-140.

36. Pérez-Rey D, Maojo V, García-Remesal M, Alonso-Calvo R, Billhardt H, Martin-
Sánchez F, Sousa A: ONTOFUSION: Ontology-based integration of
genomic and clinical databases. Computers in Biology and Medicine 2006,
36(7-8):712-730.

37. Perry D, Wolf A: Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes 1992, 17(4):40-52.

38. ISO/IEC/IEEE: ISO/IEC/IEEE 42010, Systems and software engineering -
Architecture description 2011 [http://www.ieee.org].

39. Garlan D, Shaw M: An introduction to software architecture. Advances in
Software Engineering and Knowledge Engineering World Scientific Publishing
Company; 1993, 1-39.

40. Garlan D, Perry D: Introduction to the Special Issue on Software
Architecture. IEEE Transactions on Software Engineering 1995,
21(4):269-274.

41. Shaw M, DeLine R, Klein D, Ross T, Young D, Zelesnik G: Abstractions for
Software Architecture and Tools to Support Them. IEEE Transactions on
Software Engineering 1995, 21(4):314-335.

42. Bass L, Clements P, Kazman R: Software Architecture in Practice (Second
Edition) Pearson Education; 2003.

43. Taylor R, Medvidovic N, Dashofy E: Software Architecture: Foundations,
Theory, and Practice Wiley; 2009.

44. Medvidovic N, Taylor R: A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Transactions on
Software Engineering 2000, 26:70-93.

45. Mehta N, Medvidovic N, Phadke S: Towards a taxonomy of software
connectors. Proceedings of the 22nd International Conference on Software
Engineering (ICSE’00) 2000, 178-187.

46. The R Foundation for Statistical Computing: An Introduction to R, Version
2.14.1 Austria; 2011.

47. The R Project for Statistical Computing. [http://www.r-project.org/].
48. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M: KEGG for integration

and interpretation of large-scale molecular data sets. Nucleic Acids
Research 2012, 40(Database):D109-114.

49. Shannon P, Reiss D, Bonneau R, Baliga N: The Gaggle: an open-source
software system for integrating bioinformatics software and data
sources. BMC Bioinformatics 2006, 7(176).

50. Saeed A, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M,
Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D,
Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V,
Quackenbush J: TM4: a free, open-source system for microarray data
management and analysis. Biotechniques 2003, 34(2):374-378.

51. Huang da W, Sherman B, Lempicki R: Systematic and integrative analysis
of large gene lists using DAVID bioinformatics resources. Nature Protocols
2008, 4:44-57.

52. Fernandez-Becerra C, Yamamoto M, Vêncio R, Lacerda M, Rosanas-Urgell A,
del Portillo H: Plasmodium vivax and the importance of the subtelomeric
multigene vir superfamily. Trends Parasitol 2009, 25:44-51.

53. Wurtzel O, Sapra R, Chen F, Zhu Y, Simmons B, Sorek R: A single-base
resolution map of an archaeal transcriptome. Genome Res 2010,
20:133-141.

54. Langmead B, Trapnell C, Pop M, Salzberg S: Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol
2009, 10(3):R25.

55. Pascal L, Goo Y, Vêncio R, Page L, Chambers A, Liebeskind E, Takayama T,
True L, Liu A: Gene expression down-regulation in CD90+ prostate
tumor-associated stromal cells involves potential organ-specific genes.
BMC Cancer 2009, 9:317.

56. Cortez D, Tonon A, Colepicolo P, Vêncio R: Combining P values to
improve classification of differential gene expression in the HTself
software. Genet Mol Res 2011, 10(4):3586-3595.

57. Urbanek S: Rserve - A Fast Way to Provide R Functionality to
Applications. Proceedings of the 3rd International Workshop on Distributed
Statistical Computing (DSC 2003) 2003.

58. Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, Goldberg LJ,
Eilbeck K, Ireland A, Mungall CJ, Consortium TO, Leontis N, Rocca-Serra P,
Ruttenberg A, Sansone SA, Scheuermann RH, Shah N, Whetzel PL, Lewis S:
The OBO Foundry: coordinated evolution of ontologies to support
biomedical data integration. Nature Biotechnology 2007, 25:1251-1255.

59. Consortium TGO: Gene Ontology: tool for the unification of biology.
Nature Genetics 2000, 25:25-29.

60. Degtyarenko K, Matos P, Ennis M, Hastings J, Zbinden M, McNaught A,
Alc’antara R, Darsow M, Guedj M, Ashburner M: ChEBI: a database and
ontology for chemical entities of biological interest. Nucleic Acids
Research 2008, 36:D344-D350.

61. Mungall C, Gkoutos G, Smith C, Haendel M, Lewis S, Ashburner M:
Integrating phenotype ontologies across multiple species. Genome
Biology 2010, 11:R2.

62. Natale D, Arighi C, Barker W, Blake J, Chang T, Hu Z, Liu H, Smith B, Wu C:
Framework for a Protein Ontology. BMC Bioinformatics 2007, 8(Suppl 9):S1.

63. Eilbeck K, Lewis S, Mungall C, Yandell M, Stein L, Durbin R, Ashburner M:
The Sequence Ontology: a tool for the unification of genome
annotations. Genome Biology 2005, 6(5):R44.

64. Haendel M, Osumi-Sutherland D, Neuhaus F, Mabee P, Mungall C,
Ashburner M, Smith B: CARO: The Common Anatomy Reference
Ontology. In Anatomy Ontologies for Bioinformatics: Principles and Practice.. 1
edition. Springer;Burger A, Davidson D, Baldock R 2007:327-349.

65. The OBI Consortium: Ontology for Biomedical Investigations [http://purl.
obolibrary.org/obo/obi].

66. Object Management Group: OMG Unified Modeling Language, Infrastructure,
Version 2.4.1 United States; 2011.

67. Object Management Group: OMG Unified Modeling Language, Superstructure,
Version 2.4.1 United States; 2011.

68. Group WOW: OWL 2 Web Ontology Language Document Overview World
Wide Web Consortium; 2009 [http://www.w3.org/TR/owl2-overview/], [W3C
Recommendation].

69. OBO Foundry: The OBO Flat File Format Specification, version 1.2 2006
[http://www.geneontology.org/GO.format.obo-1_2.shtml].

70. Guardia G, Vêncio R, de Farias C: A UML Profile for the OBO Relation
Ontology. BMC Genomics 2012, 13(Suppl 5):S3.

71. Smith B, Ceusters W, Klagges B, Kohler J, Kumar A, Lomax J, Mungall C,
Neuhaus F, Rector AL, Rosse C: Relations in biomedical ontologies.
Genome Biology 2005, 6:R46.

72. OBO Relationship Types. [http://www.obofoundry.org/cgi-bin/detail.cgi?
id=relationship].

73. Kopecky J, Roman D, Moran M, Fensel D: Semantic Web Services
Grounding. Proceedings of the Advanced International Conference on
Telecommunications and International Conference on Internet and Web
Applications and Services (AICT/ICIW 2006) 2006, 127.

74. Huang da W, Sherman B, Lempicki R: Bioinformatics enrichment tools:
paths toward the comprehensive functional analysis of large gene lists.
Nucleic Acids Res 2009, 37:1-13.

Miyazaki et al. BMC Genomics 2013, 14(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/14/S6/S2

Page 22 of 23

http://www.ncbi.nlm.nih.gov/pubmed/17921998?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17921998?dopt=Abstract
http://fuge.sourceforge.net/
http://www.ncbi.nlm.nih.gov/pubmed/18660879?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18660879?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15723693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15723693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16564748?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16564748?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16901226?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16901226?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18424816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18424816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18424816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20427517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20427517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10842744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10842744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14668226?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14668226?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15694618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15694618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16144697?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16144697?dopt=Abstract
http://www.ieee.org
http://www.r-project.org/
http://www.ncbi.nlm.nih.gov/pubmed/22080510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22080510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16569235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16569235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16569235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12613259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12613259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19131956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19131956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19036639?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19036639?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19884261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19884261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19261174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19261174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19737398?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19737398?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22180073?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22180073?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22180073?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17989687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17989687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17932057?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17932057?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20064205?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18047702?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15892872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15892872?dopt=Abstract
http://purl.obolibrary.org/obo/obi
http://purl.obolibrary.org/obo/obi
http://www.w3.org/TR/owl2-overview/
http://www.geneontology.org/GO.format.obo-1_2.shtml
http://www.ncbi.nlm.nih.gov/pubmed/23095840?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23095840?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15892874?dopt=Abstract
http://www.obofoundry.org/cgi-bin/detail.cgi?id=relationship
http://www.obofoundry.org/cgi-bin/detail.cgi?id=relationship
http://www.ncbi.nlm.nih.gov/pubmed/19033363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19033363?dopt=Abstract


75. de Farias CRG: Architectural Design of Groupware Systems: a
Component-Based Approach. PhD thesis University of Twente; 2002.

doi:10.1186/1471-2164-14-S6-S2
Cite this article as: Miyazaki et al.: Semantic integration of gene
expression analysis tools and data sources using software connectors.
BMC Genomics 2013 14(Suppl 6):S2.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Miyazaki et al. BMC Genomics 2013, 14(Suppl 6):S2
http://www.biomedcentral.com/1471-2164/14/S6/S2

Page 23 of 23


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Software architecture
	Gene expression analysis
	Biomedical ontologies

	Results
	Basic integration scenarios
	Gene Expression Ontology (GEXPO)
	Connector development methodology
	Methodology application

	Discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Declarations
	References

