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Abstract

Background: Current immunological bioinformatic approaches focus on the prediction of allele-specific epitopes
capable of triggering immunogenic activity. The prediction of major histocompatibility complex (MHC) class | epitopes is
well studied, and various software solutions exist for this purpose. However, currently available tools do not account for
the concentration of epitope products in the mature protein product and its relation to the reliability of target selection.

Results: We developed a computational strategy based on measuring the epitope’s concentration in the mature
protein, called Mature Epitope Density (MED). Our method, though simple, is capable of identifying promising
vaccine targets. Our online software implementation provides a computationally light and reliable analysis of
bacterial exoproteins and their potential for vaccines or diagnosis projects against pathogenic organisms. We
evaluated our computational approach by using the Mycobacterium tuberculosis (Mtb) H37Rv exoproteome as a
gold standard model. A literature search was carried out on 60 out of 553 Mtb's predicted exoproteins, looking for
previous experimental evidence concerning their possible antigenicity. Half of the 60 proteins were classified as
highest scored by the MED statistic, while the other half were classified as lowest scored. Among the lowest
scored proteins, ~13% were confirmed as not related to antigenicity or not contributing to the bacterial
pathogenicity, and 70% of the highest scored proteins were confirmed as related. There was no experimental
evidence of antigenic or pathogenic contributions for three of the highest MED-scored Mtb proteins. Hence, these
three proteins could represent novel putative vaccine and drug targets for Mtb. A web version of MED is publicly
available online at http://med.mmci.uni-saarland.de/.

Conclusions: The software presented here offers a practical and accurate method to identify potential vaccine and
diagnosis candidates against pathogenic bacteria by “reading” results from well-established reverse vaccinology
software in a novel way, considering the epitope’s concentration in the mature portion of the protein.

Background More than 9 million new cases of TB in humans arise

Tuberculosis (TB) has been one of the major causes of
morbidity and mortality worldwide for centuries, and
control of the spread of Mycobacterium tuberculosis
(Mtb) infection remains a public health priority [1].
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every year, resulting in nearly 2 million deaths world-
wide [2]. Bacille Calmette-Guérin (BCQ), the current
vaccine for the treatment of TB, has its limitations;
although it is protective against severe childhood TB, it
does not satisfactorily prevent the pulmonary disease in
adults [3]. Effective prophylactic and therapeutic immu-
nization is a key strategy for global epidemic control [1].
Novel TB vaccine candidates include BCG or
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recombinant BCG (rBCG) strains, which are used in
heterologous prime-boost strategies as a prime vaccina-
tion [4]. Booster vaccinations can include viral vectors
that express immunodominant M¢b antigens or fusion
proteins of these antigens, combined with adjuvanticity
to ensure immunogenicity [5]. Many M¢b antigens,
including Ag85A, Ag85B, TB10.4 and ESAT-6, have
been tested as vaccine candidates; however, these have
not been shown to be successful at treating TB [6].
Consequently, discovering new antigens continues to be
a crucial factor for the successful development of vac-
cines against TB [7].

Exported proteins are currently the main target for
Reverse Vaccinology (RV) due to their essential role in
host-pathogen interactions [8]. Examples of this interac-
tion include the following: (i) adherence to host cells; (ii)
invasion of the cell to which there was compliance; (iii)
damage to host tissues; (iv) resistance from the defense
machinery of the cells to environmental stress; and (v)
mechanisms for subversion of the host’s immune response
[9,10]. In general, RV reveals a great number of proteins
that could constitute potential targets of vaccine candi-
dates that then have to be confirmed via cost-intensive
and time-consuming wet-lab experiments. However,
incorporating immunoinformatic filters, which identify
target proteins with high potential in the RV process,
could reduce these drawbacks [11]. Immunoinformatics
focuses mainly on small peptides ranging from 8 to 11
residues, called linear epitopes, particularly on those that
strongly bind to MHC class I molecules. Just one epitope
per protein can be enough to create an immune response
in the host [12-14]. Bioinformatic techniques to search for
epitopes are well understood and available, but can some-
times lead to high false positive rates [15]. Despite this
drawback, epitope predictors are capable of identifying
weak or even strong epitope motifs that have been experi-
mentally neglected [16].

Epitope density has been described in research as a func-
tion of “hot spots” or regions with enriched MHC class II
binding epitopes [16]. This work reported 544, 609 and
757 15mers peptides binding to three, two and just one of
the molecules HLA-DR1, -DR2, and -DR4, respectively.
An analysis of two of the 61 proteins examined in that
study showed that Ag85B and MPT63 contain, respec-
tively, 30 and 23 peptides with highest binding to MHC
molecules; however, experimental data was only available
for 10 peptides derived from MPT63.

Asking whether specific defined domains have high
epitope densities, one study found that signal peptides
and trans-membrane domains have exceptionally high
epitope densities [17]. This work computed the high
epitope density of signal peptides using in silico methods
which corroborate with the high percentage of identified
signal peptide epitopes in the IEDB (immune epitope
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database). The enhanced immunogenicity of signal
peptides was experimentally confirmed using peptides
derived from Mtb proteins. High antigen-specific
response rates and population coverage to signal peptide
sequences were found when compared with non-signal
peptide antigens derived from the same proteins. The
MED (Mature Epitope Density) concept is similar to
epitope density [16]. To demonstrate the potential of
MED to uncover bacterial targets for RV, we collected a
set of experimental evidence from the literature that
demonstrates a relationship between high MED scores
and promising targets in M. tuberculosis (Mtb) strain
H37Rv.

Results

Allele frequency

Figure 1 shows the MHC allele histogram of the predicted
epitopes of all 553 Mtb H37Rv exported proteins. The
horizontal axis represents the alleles available for predic-
tion through the NetMHC software (version 3.0), and the
vertical axis represents the absolute number of epitopes
predicted by each allele of all exported proteins. The
MHC alleles are ordered according to their decreasing
number of predicted epitopes. The first five MHC alleles
are human and represent 52.32% of all predicted epitopes,
the first 15 represent 80.83%, and the last 24 MHC alleles
only represent 2.58% of the overall NetMHC epitope
prediction.

Control datasets
In the Figure 2, the control groups were divided in panels
exhibiting protein quantity, percentage regarding this
quantity and the average MED score. The horizontal axis
of all three panels states the predicted sub-cellular location
(cytoplasmic, membrane bound, PSE or secreted) for three
groups of proteins: the Doytchinova et al. (2007) control
groups (positive and negative control groups represented
by Dplus and Dminus, respectively) and an M¢tb positive
control group (Mtbplus) taken from the AntigenDB. The
vertical axis displays the data (from top to bottom): num-
ber of proteins, the percentage represented by the number
of proteins and the average MED score for each control
group. The number of proteins (top panel) and percentage
(middle panel) predicted as cytoplasmic represent the
majority for both Dminus and Mtbplus groups, while the
Dplus group has more predicted exported proteins. Cur-
iously, the Mtbplus group has the majority of cytoplasmic
predicted proteins, which is surprising as it was expected
that the majority of antigenic proteins would be exported
to the extracellular milieu, as observed in the Dplus group
that contains several pathogenic organisms.

Two results should be noted in the bottom panel.
Firstly, the average MED scores were very similar
among the three control groups, showing that MED is
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not necessarily a binary statistic classifier for targets but
also a continuous statistic measure capable of defining
the preferable targets; however, when significant differ-
ences between MED scores are shown, it can be used
just like a binary classifier. This procedure was assessed
in the evidence dataset shown in the next section.
Secondly, the average MED score for proteins predicted
as membrane-integral were shown to be twice as great
as in the other sub-cellular compartments. This result
agrees with other work in which signal peptides and
trans-membrane domains were found to have exception-
ally high CD8+ T cell epitope densities [17].

Evidence dataset

Figure 3 shows a histogram representing the distribution
of MED scores for all 553 Mtb exported proteins. As
seen in Table 1, MED scores range from 15.67 to 27.00
nM/mer, with the highest MED score data set repre-
sented on the far right side of Figure 3. These values
strongly contrast with MED scores of Table 2, which
are between 0.00 and 3.19 nM/mer, with the lowest
MED score dataset represented on the far left side of
Figure 3. As mentioned in the previous section, the
MED score is not a binary classifier but is also capable
of analyzing proteins scored within these extremely dif-
ferent ranges, allowing us to develop evidence for the
general importance of MED scores.

MED score limitations

Figure 4 is useful to understand the main limitation of
MED scores. It shows two pair of box plots, each pair
representing a numerator (predicted epitopes) and a
denominator (possibilities or chances for epitopes) that

are used in Equation 1. The first pair of boxes show
data from the numerator and denominator from the 30
lowest MED scored proteins from the Mtb exported
proteins, shown at the far left side of Figure 3; the sec-
ond pair of boxes show data from the 30 highest MED
scored proteins from the Mtb exported proteins, shown
at the far right side of Figure 3. The numerators and
denominators were investigated to determine how pro-
tein length can influence the MED score. The number
of epitopes predicted in the highest-scored subset is
more than twice as high as the lowest-scored subset.
This result was expected because there is evidence that
the highest-scored subset is composed of proteins
related to antigenicity or contributing to the bacterial
pathogenicity while the majority of the lowest-scored
subset is not. The number of possibilities for linear epi-
topes in the lowest-scored subset is almost three times
higher when compared to the highest-scored subset.
This numerical difference in the denominators is the
major limitation for the MED score strategy, especially
for data above the average. Quartiles Q3 and Q4, among
those with lowest chances, include half (7/14) the evi-
dence, in contrast to our hypothesis of an existing rela-
tion between MED and promising reverse vaccinology
targets. These quartiles include denominators between
537 and 1,860 (just one greater than 1,498). Thus,
according to the data, MED scores tend to indicate false
positives when there is a difference factor of at least five
between the number of predictions and the number of
epitope possibilities located in the mature amino acid
sequence portion. No false positives were observed when
this factor was less than two. An interesting result is that
the two biggest control groups from Figure 2, Dplus and
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Figure 3 MED scores from M. tuberculosis. MED score histogram for Mtb H37Rv exported proteins. Data in Tables 1 and 2 are situated in the

Dminus, had average factors (fold) of 3.22 and 2.82,
respectively.

MED score sensitivity

Among the 30 proteins that were lowest scored by MED,
14 showed contrary evidence and just four favorable evi-
dence to the MED score concept. Among the 30 highest
scored proteins, there was favorable evidence for 21 pro-
teins based on the MED score and no protein with con-
trary evidence. Among the lowest and highest scored
remainders, none showed favorable or contrary evidence
related to MED scores. These results were used to create
Figure 5 with a ROC curve graph that calculated sensitiv-
ities of 84% for MED scores with 7% false positives.

Novel probable putative Mtb antigens

The Mtb H37rv proteins Rv0235¢, Rv0492A and Rv1004c
were predicted to have some of the highest MED scores:
17.78, 20.31 and 18.58 nM/mer, respectively. The former
two were predicted to be potentially exposed on the bac-
terial surface, and the latter was predicted to be secreted.
Respectively, there are 78, 43 and 228 predicted epitopes
against 138, 73 and 386 epitope chances for these proteins.
This is the first published indication of their roles in bac-
terial antigenicity; MED scoring results suggest these pro-
teins as useful putative targets for future investigations.

Discussion

Allele frequency

The available methods for MHC epitope prediction take
into account allele frequency in the selection of poten-
tial candidates [18,19]. Some alleles are extremely rare;
others are specific to some population or widespread
[20]. The tools applied here to search for epitopes are
not novel, but the way the results are read from stan-
dard software tools can be considered a novelty. We
proposed to interpret not only epitope prediction from
some specific MHC alleles, but from all available alleles.
This proposition has a rationale: the idea of assessing
the immunogenic potential of a protein, independent of
alleles, helps to avoid excluding a protein from a list of
in silico candidates just because the suitable allele for a
specific population was not selected. For example, there
are pathogenic organisms that cause different diseases in
different hosts, including humans, caprines, ovines,
equines, bovines and buffaloes [21-29]. In such cases, it
is not reasonable to exclude a single allele from the cur-
rent limited number available in software tools.

Control datasets

Even within the Dminus group, the average MED scores
were similar to those from the Dplus and Mtbplus groups.
Because of this, we focused on predicted exported proteins
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Genome N d MED Local Evidence Unique publication identifier

Locus (nM/mer)

Rv2452c 14 18 27,00 SEC favorable 10.1046/}.1365-2958.1999.01593 .x

Rv1811 66 108 21,34 PSE favorable PMID:10760138

Rv3018c 145 234 20,72 PSE favorable 10.1099/jmm.0.47565-0, 10.1046/j.1365-2958.1999.01593.x, 10.1016/j.vaccine.2004.08.046
Rv1489 37 63 20,36 PSE favorable 10.1186/1471-2180-10-132, 10.1021/pr0500049, 10.1016/j.tube.2008.01.003
Rv0847 58 98 19,89 SEC favorable 10.1016/j.tube.2006.01.014, 10.1016/j.tube.2006.01.014
Rv0436c 78 123 19,14 PSE favorable 10.1074/jbc.M004658200

Rv0116c 17 214 17,61 SEC favorable 10.1099/mic.0.024802-0

Rv1841c 167 308 17,33 PSE favorable 10.1128/jb.184.4.1112-1120.2002

Rv2339 224 437 17,25 PSE favorable 10.1093/molbev/msm111

Rv0589 195 364 17,10 PSE favorable 10.1007/511010-011-0733-5

Rv1158c 107 189 17,07 SEC favorable 10.1016/j.tube.2004.09.005

Rv0286 129 242 17,04 PSE favorable 10.1128/1A1.70.12.6996-7003.2002

Rv3497¢ 161 314 16,87 SEC favorable 10.1073/pnas. 1631248100

Rv1967 151 305 16,53 SEC favorable 10.1111/).1574-695X.2010.00677 x

Rv1620c 156 311 16,52 PSE favorable 10.1073/pnas. 1003219107, 20090285847

Rv3000 86 167 16,04 PSE favorable 10.1016/j.tube.2006.01.014

Rv2690c 64 126 16,03 PSE favorable Patent 7393540

Rv0804 87 175 1585 SEC favorable 10.1107/51744309108031679

Rv0598c 58 104 1585 SEC favorable PMID:12657046

Rv3693 203 404 15,69 SEC favorable 10.4049/jimmunol.1002212, 10.1002/pmic.200600853
Rv2262c 100 206 15,69 PSE favorable PMID:12368431

Table 1 lists 21 of the 30 highest MED scored-proteins from the Mtb H37Rv exported proteins. Each protein is accompanied by at least a unique publication
identifier, which can be doi, Pubmed id or a patent number. A protein can be cited twice or thrice by different publications; some publications cite several
proteins. The first columns show the protein locus tags, followed by the number of predicted epitopes (n) and epitope probability as a function of its proportion
in the mature protein (d). The MED score is calculated as n divided by d. Evidence can be favorable or contrary based on publication results and the expectation

indicated by the MED score.

to create a priority list of targets for the Mtb genome,
which is a reasonable strategy because one of the main dif-
ferences between the Dminus and the Dplus groups are
the number of predicted cytoplasmic versus exported pro-
teins: 111 and 10 for Dminus versus 35 and 72 for Dplus,
respectively. It is more likely that exported proteins inter-
act with the host cells than membrane and cytoplasmic
proteins [6,9,10,30]. However, it is important not to
neglect proteins that could be exported via non-classical
mechanisms. This conclusion can also be drawn out by
analyzing the middle panel of Figure 2, where the majority
of Mtbplus proteins are classified as cytoplasmic. Medpipe
allows the prediction of cytoplasmic targets, but this is the
major part of any bacterial genome; medpipe still does not
allow differentiating between cytoplasmic proteins without
classical exportation motifs and those exported via non-
classical pathways.

In addition, it is quite difficult to compare MED
scores with previous trained software for antigenic fea-
tures as such programs tend to be binary classifiers
[31-33]. For instance, two control datasets used here
were split into training sets (75 proteins) and test sets

(25 proteins). Such division does not make sense for
MED score because it does not depend on training
steps; instead, the MED technique searches for immuno-
logical features based on a probable immunological
memory concerning epitopes from known pathogens. In
this regard, the results obtained with the evidence data-
set is more informative because they represent experi-
mental evidence of predictive strengthens or weaknesses
of the method.

Evidence dataset

An extensive literature search for proteins from the
well-studied Mtb organism gave experimental indication
to validate our hypothesis that promising proteins for
reverse vaccinology can be revealed based on the overall
set of predicted epitopes. When searching for literature
evidence, regarding the proteins within the evidence
dataset, experimental results of other proteins were also
found but not included in this work. This approach was
chosen because it is not possible to determine a mean
value for MED scores in order to use it as a binary clas-
sifier because the number of epitopes predicted per
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Table 2 MED lowest-scored proteins.
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Genome N d MED Local Evidence Unique publication identifier

Locus (nM/mer)

Rv0532 59 555 3,19 SEC contrary 10.1021/pr1005108

Rv0746 77 741 3,11 SEC contrary 10.1186/1471-2148-6-95, 10.1016/j.micinf.2006.03.015
Rv1468c 37 328 3,03 SEC contrary 10.1021/pr1005108

Rv3590c 48 542 296 SEC favorable 10.1016/51672-0229(08)60039-X

Rv3511 66 678 291 SEC favorable 10.1186/1471-2148-6-95

Rv1100 20 160 2,88 PSE contrary 10.1099/mic.0.27204-0

Rv3312A 4 64 2,69 SEC contrary 10.1073/pnas.0602304104

Rv3595¢ 34 400 2,51 SEC contrary 10.1186/1471-2148-6-95

Rv1091 60 814 240 SEC contrary 10.1186/1471-2148-6-95

Rv3706¢ 4 50 2,32 PSE contrary 10.3389/fmicb.2010.00121

Rv3345c 98 1498 2,05 SEC favorable 10.1186/1471-2148-6-95, 10.1099/mic.0.26660-0
Rv0559¢ 4 78 2,05 SEC contrary 10.1371/journal.pone.0007615

Rv3388 44 690 2,03 SEC contrary 10.1016/j.tube.2003.12.014

Rv0833 52 689 1,75 PSE favorable 10.1186/1471-2148-6-95

Rv2487¢c 28 655 1,15 SEC contrary Patent EP2207035

Rv3514 43 1448 093 SEC contrary 10.1111/}.1365-2567.2010.03383 x

Rv3508 40 1860 0,71 SEC contrary 10.1371/journal.pone.0002375, 10.1002/prot.10586
Rv3655¢ 0 0 0 PSE contrary 10.1371/journal.pone.0010474

Table 2 lists 18 of the 30 MED lowest-scored proteins from the Mtb H37Rv exported proteins. Each protein is accompanied by at least a unique publication
identifier, which can be doi, Pubmed id or a patent number. A protein can be cited twice or thrice by different publications; some publications cite several
proteins. The first columns in Tables 1 and 2 show the protein locus tags, followed by the number of predicted epitopes (n) and epitope probability as a function
of its proportion in the mature protein (d). The MED score is calculated as n divided by d. Evidence can be favorable or contrary based on publication results and

the expectation indicated by the MED score.

protein can vary significantly. This limitation was less
difficult to work with when considering only 60 pro-
teins: the 30 higher and the 30 lowest MED scored pro-
teins out of 553 Mtb’s predicted exported proteins
(Figure 3).

NetMHC version

The newest NetMHC software (version 3.2) offers the abil-
ity to predict epitopes for 57 MHC alleles (http://www.cbs.
dtu.dk/services/NetMHC/), but there is not yet a stand-
alone version available to download. The NetMHC version
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Figure 4 MED score limitation. Boxplot of pairs of numerators and denominators within the 60 lowest and highest MED scores from the Mtb
H37Rv exported proteins. “Predicted” stands for epitope predictions and “Chances” stands for possible 9mers windows in an amino acid
sequence’s mature portion; both are used in Equation 1. This graph illustrates the major limitation of MED scores: a factor greater than five
between the numerator and denominator of a MED score calculation can cover an antigenic protein creating a false negative.
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Figure 5 MED score ROC curve. Receiver operating characteristic (ROC) curve from the Mature Epitope Density (MED) score calculated for 39
Mtb H37Rv exported proteins with favorable or contrary evidence to the MED concept.

(3.0) used here is the previous version and offers the possi-
bility to predict epitopes for 55 MHC alleles [34]. How-
ever, the changes in version 3.2, compared to version 3.0,
include a small increment in the number of MHC alleles
and the possibility to predict epitopes of lengths ranging
from 8 to 14mers. The authors of version 3.2 advise that
predictions of peptides longer than 11mers have not been
extensively validated. They also advise caution regarding
predictions involving 8mers, as some alleles might not
bind 8mers to any significant extent (http://www.cbs.dtu.
dk/services/NetMHC/). Moreover, most MHCs prefer
peptides of 9mers and the alleles’ set from the version 3.0
are still present in version 3.2 [18]. Therefore, epitope pre-
dictions based on version 3.0 are still valid to answer rele-
vant biological queries.

Are these pathogenic proteins?

The method presented here was initially conceived to pre-
dict antigenic proteins. Our approach is based on the fact
that both antigenic and pathogenic proteins can be useful
for vaccines and diagnosis and such targets can be
revealed by the overall set of predicted epitopes and their
concentrations in mature proteins. As related in the meth-
ods section, the in silico predicted exoproteins were
ordered by decreasing MED score values. Following this

sorting, the literature was searched for evidence proving
or denying the contribution for the bacterial pathogenicity
of each protein. The majority of the true positives pre-
sented here (Table 1) showed pathogenic instead of anti-
genic evidence (16 out 21 true positives), as detailed in the
additional file 1. One protein (Rv3018c) has evidence for
both antigenicity and pathogenicity simultaneously. In the
same way, this criterion was also applied to the true nega-
tives (Table 2), where seven out of 14 contrary cases fit
into the pathogenic class instead of the antigenic one.
Could these apparently unexpected results have a ratio-
nale? Could pathogenomics explain these findings? Patho-
genomics is defined as the analysis, at genomic level, of
the processes involved in bacterial pathogenesis caused by
the interaction of pathogenic microbes and their hosts
[35]. The identification of mutants showing altered pathol-
ogy may be a useful framework to understand tuberculo-
sis, but it is not clear how these phenotypes relate to the
human disease [36]. Here, we presented evidence that Mtb
pathogenic proteins have some of the highest MED scores
within the Mtb genome.

Conclusions
The search for new vaccine targets against prokaryotic
microorganisms has been aided by extensive use of
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software motif recognition in sequences; nevertheless,
considerable experimental effort is necessary to filter
out the most promising candidates. The method pre-
sented here and the software available online can help
to minimize experimental efforts by indicating promis-
ing prokaryotic proteins for target selection. The pro-
posed method was called MED score and exhibits a
strong relation to proteins proved to be important in
the M. tuberculosis pathogenesis.

Methods

Genome data

The complete genome of Mtb H37Rv was obtained
from the GenBank database under the NCBI identifier
NC_000962. All coding sequences were selected and
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exported as amino acids in FASTA format using the
annotation software ARTEMIS from the Sanger Institute.

Prediction schema

Our software environment for MED predictions inte-
grates SurfG+ [37], TMHMM [38] and NetMHC [18]. As
seen in Figure 6, an amino acid MULTIFASTA file is
first processed by SurfG+ to filter sequences predicted to
be secreted (SEC) or potentially surface exposed (PSE).
The SEC sequences have then their signal peptide inter-
vals removed from the original sequence, maintaining
only the predicted mature protein sequences for further
processing. This step is also performed for PSE predicted
sequences; however, another TMHMM prediction step is
used on these sequences as SurfG+ does not store the
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Figure 6 Medpipe prediction schema. Computational pipeline for MED score prediction.
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TMHMM results concerning the mature portion of the
sequences. These steps result in the creation of an artifi-
cial amino acid sequence from each original amino acid
sequence predicted as SEC and PSE, containing only the
concatenated original amino acid sequence portions that
were predicted as the mature portions. The artificial
amino acid sequences are then submitted to NetMHC,
configured to predict all 55 possible MHC alleles within
the software (version 3.0), and only the predicted strongly
binding peptides are filtered for further processing.
Finally, the MED score is calculated for each amino acid
sequence according to Equation 1.

Predictions _ Predicted epitopes % (50 — Average (MHC Affinity)) 1)

MED = =

Chances Aminoacids length — Epitope length + 1

Equation 1 divides the number of linear predicted epi-
topes from each amino acid sequence by the number, for
instance, of possible 9mers peptides overlapping win-
dows. To ensure qualitative differentiation for this ratio
calculation, the epitopes’ MHC binding affinity average is
also multiplied, after being normalized according to the
maximum MHC strong binding affinity (50 nM). This
calculation returns the Mature Epitope Density (MED), a
number measured in nanomolar per mer (nM/mer)
units. All amino acid sequences are ordered by descend-
ing MED score and presented as the final result. The pre-
diction schema was implemented using a Linux shell
script. The web server is hosted on Ubuntu OS, release
11.10 and the whole processing takes approximately
90 minutes for Mtb H37Rv amino acid sequences using a
standard personal desktop computer.

Control datasets

100 antigen and 100 non-antigen swissprot identifiers were
obtained from a previous work [31]. These protein identi-
fiers were retrieved from the Uniprot database [39], culmi-
nating in 107 and 121 amino acid sequences used as
positive (Dplus) and negative (Dminus) control groups,
respectively. To enrich our tests, a set of 38 Mtb’s proteins
(Mtbplus) were similarly retrieved from the AntigenDB [40]
and from Uniprot. The Mtbplus control group was obtained
selecting the antigenic proteins from M. tuberculosis and
filtering for those known as eliciting immune cellular
responses.

Evidence dataset

Sixty proteins out of the 553 in silico predicted as
exported were chosen for detailed investigation of
experimental proof concerning their capacity to induce
cellular responses. In this regard, based on MED, 30 out
of 60 proteins were designated as the lowest scored, and
the other 30 were designated as the highest scored. An
extensive literature search was carried out to look for
evidence concerning whether these proteins were related
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to antigenicity or contribute to the bacterial pathogeni-
city. Supporting evidence for 39 out of 60 proteins was
found, depending on whether a protein induces a cellu-
lar response, has evidence of frame shifts, has evidence
of differential expression, is part of a known pathogenic
protein family or has a cloning experiment that has
failed. The complete evidence dataset and corresponding
published evidence can be found in the additional file 1.

Additional material

Additional file 1: A spreadsheet enumerating the complete list of
supporting or contradicting evidence to the MED score hypothesis.
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