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Abstract

Background: Many computational programs have been developed to identify enriched regions for a single biological
ChIP-seq sample. Given that many biological questions are often asked to compare the difference between two
different conditions, it is important to develop new programs that address the comparison of two biological ChIP-seq
samples. Despite several programs designed to address this question, these programs suffer from some drawbacks,
such as inability to distinguish whether the identified differential enriched regions are indeed significantly enriched, lack
of distinguishing binding patterns, and neglect of the normalization between samples.

Results: In this study, we developed a novel quantitative method for comparing two biological ChIP-seq samples,
called QChIPat. Our method employs a new global normalization method: nonparametric empirical Bayes (NEB)
correction normalization, utilizes pre-defined enriched regions identified from single-sample peak calling programs,
uses statistical methods to define differential enriched regions, then defines binding (histone modification) pattern
information for those differential enriched regions. Our program was tested on a benchmark data: histone
modifications data used by ChIPDiffs. It was then applied on two study cases: one to identify differential histone
modification sites for ChIP-seq of H3K27me3 and H3K9me2 data in AKT1-transfected MCF10A cells; the other to
identify differential binding sites for ChIP-seq of TCF7L2 data in MCF7 and PANC1 cells.

Conclusions: Several advantages of our program include: 1) it considers a control (or input) experiment; 2) it
incorporates a novel global normalization strategy: nonparametric empirical Bayes correction normalization; 3) it
provides the binding pattern information among different enriched regions. QChIPat is implemented in R, Perl and
C++, and has been tested under Linux. The R package is available at http://motif.bmi.ohio-state.edu/QChIPat.

Background
ChIP-seq (chromatin immunoprecipitation (ChIP) cou-
pling with DNA sequencing) is widely used to precisely
map the location of transcription factor (TF) binding or
histone modification sites at a genome-wide scale [1-5].
Other related sequencing-based techniques DNase-seq [6],

FAIRE-seq [6] are often used to define the open chromatin
regions and identify accessible regulatory regions. Many
computational programs [4,7-9] have been developed to
identify enriched regions (referring to either binding sites
or histone modification sites) for the ChIP-seq data. How-
ever, a majority of these programs were developed for a
single ChIP-seq sample data. Given that many biological
questions are often asked to compare the enriched regions
under two different conditions, such as before and after
using drugs, with and without chemical or hormone treat-
ment, binding patterns of different transcription factors, or
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one transcription factor binding information in two cell
types, it is critical to develop new programs to meet this
need and to quantitatively compare two biological ChIP-
seq samples. In our recent study [10], we found following
TGFb stimulation of the A2780 epithelial ovarian cancer
cell line, ChIP-seq identified SMAD4 binding loci were
classified into four distinct binding patterns: 1) Basal; 2)
Shifted; 3) Stimulated Only; 4) Unstimulated Only, indi-
cating that TGFb stimulation alters SMAD4 binding pat-
terns in epithelial ovarian cancer cells. However, the
binding patterns were measured on a qualitative basis.
Therefore, it is essential to develop a quantitative method
to address this increasingly generalized biological question.
A study from Xu et al [11] employed a Hidden Markov

Model (HMM) to identify the differential binding enrich-
ments from two ChIP-seq samples (ChIPDiff), which was
tested on three histone modifications data in two different
cell types. However, the ChIPDiff program suffers from
some shortcomings. Firstly, the HMM-based algorithm
itself cannot distinguish whether those identified differen-
tial enriched regions are indeed significantly enriched or
not. This is because in many cases a more enriched region
in sample A comparing to sample B isn’t necessarily an
enriched region in sample A itself and vice versa. There-
fore, the program tends to detect many false positive mod-
ification sites. Secondly, this program directly uses the
samples’ sequencing reads to perform the comparison
without considering the information in the control experi-
ment of each sample. However, as noted by Zhang et al.
[9], the control sample is critical for modeling the sequen-
cing and mapping biases. Thirdly, it is questionable
whether this program is suitable for narrow peaks compar-
ison since the program sets the bin size at least 1 kb. For
example, the peak width for a typical TF binding site is
around 300-500 bp. Fourthly, it fails to define a binding
pattern for each identified differential binding site after
comparing two samples. A few other studies have made
the same efforts to develop programs, DBChIP [12], DIME
[13], to detect differential binding sites in two samples, but
these programs suffer from the same drawbacks either
lacking distinguishing binding patterns or neglecting the
normalization between samples.
In this study, we developed a novel quantitative method

for comparing two biological ChIP-seq samples, called
QChIPat, not only to detect the differential binding sites
but also to classify them into distinct binding patterns.
Our method employs a new global normalization method
(nonparametric empirical Bayes correction normalization)
[14-17], utilizes pre-defined enriched regions identified
from single-sample enriched regions identification pro-
grams, uses statistical methods to define differential
enriched regions, then defines binding pattern information
for those differential enriched regions. Our program was
tested on a benchmark data, histone modifications data

[18] used by ChIPDiffs [11]. It was then applied on two
study cases: one to identify differential histone modifica-
tion sites for ChIP-seq of H3K27me3 and H3K9me2 data
in AKT1-transfected MCF10A cells; the other to identify
differential binding sites for ChIP-seq of TCF7L2 data in
MCF7 and PANC1 cells.

Results
Evaluation of QChIPat with benchmark data
A benchmark testing data, the ChIP-seq of histone mod-
ification data from Mikkelsen et al [18], including
H3K27me3 (K27), H3K4me3 (K4) and H3K36me3
(K36), was used for evaluating our program. The reason
for choosing this data for the evaluation is the following:
1) it was used by ChIPDiff [11] and is easily compared
to our program; and 2) differential histone modification
sites have been validated in the same study [18]. A sum-
mary of the results for comparing different methods are
shown in Table 1. We found that compared with ChIP-
Diff, QChIPat identified fewer differential histone modifi-
cation sites (DHMSs). Two possible reasons may account
for this: 1) the peak calling program BELT used in QChI-
Pat identified a more stringent set of initial enriched
regions compared with the one in ChIPDiff; and 2) the
Wilcoxon rank test used in QChIPat removed less signifi-
cantly different enriched regions. In order to minimize the
bias from peak calling programs, other programs MACS
[9] and FindPeaks [7] were also used for a comparison
(Additional file 1 - Supplemental Table S1). Both pro-
grams identified even fewer DHMSs than BELT did. In
addition, BELT was able to detect more DHMSs with
“Only” patterns and “Shift” patterns compared with
MACS and FindPeaks.

Comparison of different normalization methods
ChIP-seq samples performed in different conditions and
time usually have different numbers of raw sequencing
reads due to the number of sequencing lanes conducted
for each sample (sequencing depth) and multiple-matched
or non-matched matched reads in the sample. Before
comparing two samples, it is necessary to normalize the
read counts to eliminate system errors and minimize
sequencing depth difference between two samples. In our
program, we employed three normalization methods
including linear normalization, nonparametric empirical
Bayes correction normalization and quantile normaliza-
tion, which are based on different assumptions of the data
distribution. A comparative summary of the three different
normalization methods is shown in Table 1. The results of
the method without using any normalization methods
were also reported. The results of ChIPDiff were used as a
baseline to gauge the performance of each different nor-
malization method. For each method, the percentage of
DHMSs overlapping with ChIPDiff results is shown in
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parentheses. The results showed that the DHMSs identi-
fied by quantile and NEB normalization methods highly
overlap with those predicted by ChIPDiff, while the linear
normalization method and non-normalization method
have fewer overlapping DHMSs with ChIPDiff. For all the
three data, the overlapping percentage between quantile
and ChIPDiff is the highest one among all the three nor-
malization methods in ESC, while NEB method achieves
the highest overlapping percentage in NPC. Furthermore,
the NEB method identifies more DHMSs than the quantile
method in ESC and a similar number of DHMSs as that of
the quantile method in NPC. Therefore, the overall perfor-
mance of the NEB is better than that of other normaliza-
tion methods on the three data. The results are not
surprising since NEB normalization has two advantages
compared with other normalization methods. Firstly, NEB
estimates the proportion of the reads as p0=n1/S, where n1
is the frequency of the read with count 1 and S is the
sequencing depth of the ChIP-Seq data. Secondly, NEB
adjusts read counts based on both the observed read
counts and the nature of the frequency distribution of the
read counts.

Optimization of the NEB-based method
In order to further optimize the NEB-based method, we
tested the bin size parameter used in Wilcoxon rank
test in our QChIPat program, to determine how this
parameter would affect the number of the enriched
regions and the types of binding patterns identified by
our program. To optimize bin size and determine how
its variance would affect the results, we first tested a
range of different bin sizes from 5 to 60 bp for each bin,
in which each enriched region was divided into equal
length bins (see Methods). We found that the number
of DHMSs for each sample didn’t significantly change
with different bin size tested (Figure 1A) when the NEB
normalization method was used. However, when the bin
size is higher than 10 bp, the number of identified
DHMSs is very similar, suggesting that the optimal bin
size for the NEB method may be between 20 and 40 bp.
The binding pattern results show the same trend. The
number of differential binding patterns remained stable
when the bin size is higher than 10 bp (Figure 1B).

Application to K9 and K27 datasets
To further test the performance and efficiency of QChI-
Pat, we applied it to a study case, ChIP-seq of H3K27me3
and H3K9me2 in AKT1-tranfected MCF10A vs vehicle
control, conducted in our laboratory. Many studies have
shown that among many types of histone modifications,
H3K27me3 and H3K9me2, two repressive marks are cri-
tical for normal and aberrant differentiation of stem and
progenitor cells [19] as well as in the development of
cancers [20]. Our previous study also demonstrated that
epigenetic silencing of a set of AKT1-mediated genes
[21]. AKT1 kinase is a key downstream effector of the
phosphoinositide 3-kinase (PI3K) signaling pathway that
regulates diverse cellular functions, including growth,
proliferation, survival, metabolism, motility, angiogenesis,
and vesicle trafficking [22,23]. Therefore, it is important
to determine AKT1-mediated genome-wide histone
modification patterns for H3K27me3 and H3K9me2 and
its subsequent influence on downstream target genes. We
chose the NEB normalization method since it performed
best on the benchmark data H3K27me3, H3K4me3 and
H3K36me3 compared to other three methods (see section
Comparison of different normalization methods).
We have identified a total of 10,067 DHMSs for

H3K27me3 in AKT1-transfected MCF10A cells. Of these,
a majority of them (80.7%) were classified into “Only” or
“Shift” binding patterns for AKT1-tranfected MCF10A
cells. For H3K9me2 mark, of 2,532 DHMSs in AKT1-
transfected MCF10A cells, 87.9% were either “Only” or
“Shift” binding patterns (Table 2). The detailed informa-
tion of the DHMSs is in Additional file 2, 3. Our results
suggests that AKT1 signalling may trigger the switching
of H3K27me3 or H3K9me2 modification sites, i.e. modi-
fying different sets of nucleosomes on the genome, result-
ing in marking a totally different set of target genes in the
case of “Only” binding. We further correlated the genes
with DHMSs with a set of 2,893 AKT1-mediated differen-
tially expressed genes in MCF10A cells, found that 661
genes have at least one DHMS for H3K27me3 or
H3K9me2 marks (Figure 2A). Interestingly, we found that
the DHMSs for H3K27me3 generally showed higher
enrichment than those of H3K9me2. However, there was
no significant difference in DHMSs’ enrichments for

Table 1 A summary of comparing for the benchmark data with a bin size of 30 bp.

Methods H3K4me3 H3K36me3 H3K27me3

ESC enriched NPC enriched ESC enriched NPC enriched ESC enriched NPC enriched

Linear normalization 5738 (87.9%)* 913 (61.4%) 779 (29.9%) 1403 (58.7%) 3483 (77.2%) 495 (50.9%)

NEB normalization 6912 (78.2%) 621 (71.3%) 951(25.6%) 1080 (70.8%) 3664 (72.3%) 428 (55.1%)

Quantile normalization 3918 (98.3%) 2611 (31.3%) 526 (43.3%) 1952 (35.9%) 2875 ( 85.8%) 793 (38.8%)

Non-normalization 6959 (78.2%) 680 (70.3%) 741 (31.4%) 1409 (58.5%) 3266 (79.7%) 519 (49.3%)

ChIPDiff 12975 1767 1157 1227 3832 888

*Values in parentheses are percentage of DHMSs overlapping with ChIPDiff.
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AKT1-mediated up- or down-regulated genes. We further
performed GO analysis on the sets of genes enriched for
both H3K27me3 and H3K9me2 marks (Figure 2B and
2C). We defined two kinds of enriched genes: positive and
negative enriched genes. Positive enriched genes are genes
that are more enriched with either of two histone marks

compared to the vehicle control (Figure 2B, common posi-
tive enriched genes between two datasets K9 and K27);
while negative enriched genes less enriched with neither
marks than the vehicle control (Figure 2C, common nega-
tive enriched genes between two datasets K9 and K27).
Interestingly, the positive genes that are enriched in both
the histone marks are highly enriched in the categories of
tissue specific cellular functions, such as endocrine system
disorders, gastrointestinal disease (Figure 2B). In contrast,
the common negative enriched genes which lack these
two histone marks are more enriched in cancer related
genes (Figure 2C). The function of both groups of genes
are epigenetically silenced by the presence of these histone
modifications, while cancer related genes might be acti-
vated due to the loss of the epigenetic effect, which is

Figure 1 The optimization of NEB-based method. (A) The total number of DHMSs detected by the NEB normalization method with varying
bin sizes. (B) The number of binding patterns identified with varying bin sizes.

Table 2 The binding patterns identified for the K9 and
K27 datasets.

Sample (MCF10A) Num. of DHMSs Only Shift

H3K27me3 (AKT1-transfected) 10,067 6,799 1333

H3K27me3 (vehicle control) 1,126 463 438

H3K9m2 (AKT1-transfected) 2,532 1346 879

H3K9m2 (vehicle control) 6,508 4507 1155
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consistent with the stem cell-like characteristics of tumour
cells [24-26]. Next, we wanted to examine if there is func-
tional difference between these two sets of genes that are
marked by the two different histone modifications. Not
surprisingly, genes which are positive with either mark in
the AKT1-transfected cells show more tissue specificity.
However, genes lacking H3K27me3 in AKT1-transfected
cells are realted to cell death whereas the genes without
H3K9me2 are more enriched in cancer genes.

Application to TCF7L2 in MCF7 and PANC1 cells
In order to evaluate the performance of QChIPat on a par-
ticular transcription factor, we further tested QChIPat on
ChIP-seq of the TCF7L2 in MCF7 and PANC1 cells.
Using a set of parameters in which a bin size was 30 bp,
p-value was less than 0.05, ratio was 1.2, difference was
0.8, BELT threshold was 0.91 for TCF7L2 in MCF7, and
BELT threshold was 0.92 for TCF7L2 in PANC1, QChIPat
identified 1,838 “MCF7 Only,” 89 “MCF7 Shift,” 27,163
“MCF7 Unchanged,” 1,341 “PANC1 Only,” 91 “PANC1
Shift,” and 24,882 “PANC1 Unchanged” binding sites.
Screenshots of examples for each type of binding pattern
are shown in Figure 3A. We then examined the accuracy

by correlating those “Only” binding pattern with their
associated genes’ expression levels. As expected, we found
that genes associated TCF7L2 “MCF7 Only” have higher
expression values in MCF7 cells than in PANC1 cells
while genes associated TCF7L2 “PANC1 Only” have
higher expression values in PANC1 cells than in MCF7
cells (Figure 3B). This result strongly demonstrated the
accuracy of QChIPat.
We next performed IPA analysis on genes associated

with MCF7 and PANC1 “Only” TCF7L2 binding sites
(Figure 3C). Interestingly, we found that the genes asso-
ciated with “MCF7 Only” binding sites differed signifi-
cantly from the genes associated with “PANC1 Only”
binding sites in terms of the three IPA categories of net-
work functions, physiological system development and
function, and canonical pathways. For all three gene
expression categories, only cancer and post-translational
modification (network functions) showed up for both
cases of genes. This functional difference between genes
associated with “MCF7 Only” TCF7L2 binding sites com-
pared to genes associated with “PANC1 Only” TCF7L2
binding sites is expected, because the genes are differen-
tially regulated by definition of the “Only” binding

Figure 2 Application of QChIPat on K27 and K9 datasets. (A) Heatmap showing AKT1-mediated differential genes with enriched K27 and K9
marks. (B) GO analysis on common genes with both K9 and K27 marks showing high enrichment in the categories of tissue specific cellular
functions. (C) GO analysis on common genes that lack either of two histone marks showing enriched in cancer related genes.
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pattern: genes associated with “Only” differential
enriched regions (TCF7L2 binding sites in this case) in
one sample are not associated with any differential
enriched regions in the other sample, Therefore, the sig-
nificant difference in function of the two groups of genes
supports the accuracy of QChIPat’s “Only” pattern
detection.

Discussion and conclusions
In this study, we developed a quantitative method, QChI-
Pat, to identify distinct binding patterns for two biologi-
cal ChIP-seq samples, and the program is implemented
in R, Perl and C++, and run in Linux system. Using a
benchmarking test data, histone modifications data [18],
we compared the performance of three different normali-
zation methods on identification of DHMSs, including
linear normalization, NEB correction normalization and
quantile normalization, then compared it with ChIPDiffs
program [11]. Although each normalization method has
its own advantages, we found that NEB correction nor-
malization is a more suitable normalization method in
our QChIPat. Two notable advantages of NEB correction

normalization are: 1) NEB estimates the proportion of
the reads using the frequency of the read against the
sequencing depth, which avoids both underestimating
the proportion of highly abundant reads and overestimat-
ing the proportion of low and intermediate abundance
reads, and 2) NEB adjusts read counts based on both the
observed read counts and the nature of the frequency
distribution of the read counts. This is able to correct
abundant reads among high and low regions. Therefore,
the enriched regions can be correctly identified. In addi-
tion, QChIPat has implemented a novel feature: categor-
izing binding (or modification) sites into three distinct
binding patterns. This novel feature implementation is
very important since quantitatively associating each of
the differential binding sites with one of two samples is
essential to reveal key biological functions. For example,
Once we identify “Only” binding of genes in Sample A
and Sample B, we are able to perform GO or other path-
way analyses on these genes and may identify some inter-
esting biological functions. This was demonstrated in our
two study cases (Figures 2 and 3). Thus, compared to
other similar programs, ChIPDiffs [11], DBChIP [12], and

Figure 3 Application of QChIPat to TCF7L2 datasets. (A) Visualizations of read counts per bin and genomic locations of various different
TCF7L2 binding patterns in MCF7 and PANC1. (B) Four boxplots of log2(FPKM) gene expression values. Before taking the log2 of the FPKM
values, FPKMs equal to zero were removed and FPKMs between 0 and 1 were changed to 1. I) The boxplot of the MCF7 log2(FPKM) gene
expression values for the genes associated with “MCF7 Only” TCF7L2 binding sites. II) The boxplot of the PANC1 log2(FPKM) gene expression
values for the genes associated with “MCF7 Only” TCF7L2 binding sites. III) The boxplot of the PANC1 log2(FPKM) gene expression values for the
genes associated with “PANC1 Only” TCF7L2 binding sites. IV) The boxplot of the MCF7 log2(FPKM) gene expression values for the genes
associated with “PANC1 Only” TCF7L2 binding sites. (C) IPA analysis of genes associated with TCF7L2 “MCF7 Only” and “PANC1 Only” binding
sites respectively.
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DIME [13], QChIPat is able to not only identify differen-
tial enriched binding regions between two samples but
also to further classify these regions into distinct binding
patterns associated with each sample.
Our QChIPat was further tested and validated on two

study cases, ChIP-seq of H3K27me3 and H3K9me2 in
AKT1-tranfected MCF10A vs. vehicle control, and ChIP-
seq of TCF7L2 in MCF7 vs. PANC1 cells, both from our
previous studies. Interestingly, both H3K37me3 and
H3K9me2 marks showed two major binding patterns
“Only” or “Shift” binding at AKT1-tranfected MCF10A
cells (Table 2). Although our previous study has shown
[21] AKT signaling can be a trigger of the epigenetic silen-
cing at many downstream target genes through the cross-
talk between DNA methylation and H3K27me3, it didn’t
show the relationship between H3K37me3 and H3K9me2.
Nevertheless, it is a little bit surprising that both AKT1-
mediated up- and down-regulated genes have at least one
differential binding site for H3K27me3 or H3K9me2
marks but there is no significant difference in enrichments
since both histone marks are recognized as repressive
marks. It is possibly that activated AKT signaling may trig-
ger downstream key transcription factors and further
dynamically regulate epigenetic processes for the interplay
of these two histone modifications. A more thorough
underlying mechanism for this epigenetic process needs to
be elucidated in an experimental study in the future. The
test of QChIPat on ChIP-seq of TCF7L2 in MCF7 and
PANC1 cells was used to evaluate its accuracy in detecting
binding patterns of a particular transcription factor.
The correlation between gene expression levels with
the detected MCF7 and PANC1 “Only” TCF7L2 binding
sites demonstrated that QChIPat is also applicable to com-
pare narrow peaks in two ChIP-seq samples such as TFs
in addition to broad peaks such as repressive histone
modifications.
Several notable advantages of QChIPat include: 1) this

software is able to make use of the information in control
experiment; 2) this software incorporates a novel global
normalization strategy: nonparametric empirical Bayes
correction normalization; and 3) this software provides the
binding pattern information among different enriched
regions.
Nevertheless, there are several limitations. First, although

three binding patterns were presented in this study,
another binding pattern that may be interesting is where
there is a sharp enriched region in one ChIP-seq sample,
while a broad enriched region in the other ChIP-seq sam-
ple, but the total number of mapped reads are approxi-
mately the same. We look forward to deeper investigations
on this binding pattern and will consider this pattern in
the updated version of QChIPat in the future. Second, in
this study, we only focus on comparing two biological
ChIP-seq samples and identifying their differential binding

patterns. Another interesting task is to identify differential
binding patterns from two groups of ChIP-seq samples,
which requires the comparison of more than two samples.
We are studying new mathematical and statistical models
for quantitatively identifying binding patterns from two
groups of ChIP-seq samples in future work.

Methods
Program description
The flowchart of the quantitative method QChIPat is
shown in Figure 4A. Given two biological ChIP-seq sam-
ples, the first step is to normalize the two sample data in
order to eliminate system errors and minimize sequencing
depth difference. Three different statistical normalization
methods are incorporated into the program, including lin-
ear normalization [27], nonparametric empirical Bayes
correction normalization (NEB) [14] and quantile normali-
zation [28]. The second step is to identify enriched regions
by peak-calling programs. Three programs, including
BELT1.0 [29] developed in our laboratory, MACS1.4.0beta
[9] and FindPeaks4.0 [7] being widely used in the commu-
nity, are currently employed in our QChIPat program.
The third step is to distinguish the significantly differential
enriched regions (DERs) between two ChIP-seq samples
by using Wilcoxon rank test. The last step is to classify
these DERs into three distinct binding patterns based on
annotated genes information. Three distinct binding pat-
terns are defined in our program: 1) “Unchanged” binding;
2) “Shift” binding; and 3) “Only” binding (Figure 4B). The
program is implemented in R. BELT1.0 (the default peak
calling program in the R package) is a program previously
developed by our group. The parameter precision is used
to specify threshold percentage number, followed by dou-
bles [0.5, 1), indicating the threshold percentage number
that will be used to calculate the threshold enrichment
level. This parameter can be used to adjust FDR. Usage of
this program requires installation of Java. A detailed
description of the selection of optimal parameters for
these programs is in Additional file 1.

Normalization methods
Three optional normalization methods are provided in
QChIPat, including linear normalization, nonparametric
empirical Bayes correction normalization and Quantile
normalization, which are based on different assumptions
of the data distribution.
1) Linear normalization [27]: Linear normalization is the

simplest and most straightforward way to normalize ChIP-
seq data by scaling the total number of reads of different
ChIP-seq samples into the same level. This normalization
method is reasonable if the total number of reads in the
two samples is roughly the same. In our program, linear
normalization is used, in which all reads in a sample is
divided by the total number of reads in the sample so that
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the reads in two samples are in the same scale. This can be
formulated as p = x/n, where x is the number of reads in
each bin (in order to calculate the distribution of the data,
the whole genome is divided into small fixed size regions
which are called bins in this study, and then the total
number of reads in each bin is counted), proportion p is
the normalized reads number in a given bin and n is the
total number of reads of the ChIP-Seq data.
2) Nonparametric empirical Bayes correction normali-

zation (NEB) [14]: The drawback of the linear normali-
zation is that the proportion p of the missing reads
(because the sequencing depth is not enough, some
reads would be missing) from the data is assigned to be
zero, which underestimates the p of highly abundant
reads and overestimates the p of low and intermediate
abundance reads. Therefore, the nonparametric empiri-
cal Bayes correction normalization (NEB) is used to
solve this problem. The nonparametric empirical Bayes
correction normalization has been successfully applied
to normalize the different SAGE libraries with different
sequencing depth [9]. In this study, the Good-Turing
estimator (SGT) [30] is used to implement the empirical
Bayes. Given a sample with total number of reads of S,
the aim of empirical Bayes estimation is to estimate the
true proportion of read i (Pi) from the data. The
observed read count c is estimated as:

c∗ =
cnc+1 + nc+1

nc
(1)

Where nc is the number of reads with count c. The
proportion of undetected reads P0 is estimated as:

p0 =
n1
S

(2)

Where S is the sequencing depth (S = n1+n2+...). The
empirical Bayes estimator for proportion of a read with
count c (Pc*) is renormalized as:

p∗
c =

n∗ − p0n∗

S∗ (3)

Where S* is the corrected total read count after SGT:

S∗ =
∑

ncc
∗ (4)

3) Quantile normalization [28]: If the distribution of the
two samples is assumed to be the same, quantile normali-
zation can be applied to the ChIP-seq data for further
comparison. In this package, the read number distribution
of the first sample is used as the reference distribution and
the second sample is transformed to make sure that the
distribution of the two samples is the same. The transfor-
mation can be formulated as xnorm,2 = F−1

1 (F2(x)).F1 is

Figure 4 Flowchart of QChIPat and an example. (A) The flowchart of QChIPat depicts the steps to identify distinct binding patterns for two
ChIP-seq samples. (B) This figure shows the comparison between two ChIP-seq samples: ESC H3K36me3 and NPC H3K36me3. The top subfigure
displays two ESC “Only” H3K36me3 peaks compared zero NPC H3K36me3 peaks. The bottom subfigure shows an NPC “Shift/Unchanged”
H36Kme3 peak compared with two ESC H3K36me3 peaks: one “Shift” (left) and the other “Unchanged” (right). The NPC H3K36me3 peak is
labelled “Shift/Unchanged” because it corresponds both as a “Shift” peak in comparison with the left-hand ESC H3K36me3 peak and as an
“Unchanged’ peak in comparison with the right-hand ESC H3K36me3 peak.
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the distribution of the first sample and F2 is the distribu-
tion of the second sample. Since the Wilcoxon rank test
only makes use of the rank of the read number, choosing
either the first or second sample does not affect the final
comparison results.

Comparison of enriched regions
In order to reduce the number of false positive enriched
regions and make use of the samples obtained by control
experiments, three optional publicly available enriched
region identification programs are included in our
method, including BELT [29], MACS [9] and FindPeaks
[7]. The users are able to select one based on their data-
sets and interests. After identifying the enriched regions
in each sample, each enriched region is divided into
equal length bins. The number of bins in each enriched
region is a parameter, which needs to be optimized based
on the experiments. If the length of the enriched region
is less than the bin number, the bin number is automati-
cally set to the length of the enriched region. Since the
length of enriched regions may be different from each
other, the length of bin may vary for different peaks.
After the normalized read number is counted, the num-
ber of reads in each bin in the corresponding location in
the comparing sample is also calculated, and then the
two groups of reads number can be used for Wilcoxon
rank test.

Wilcoxon rank test
There are two options of Wilcoxon rank tests: Wilcoxon
signed rank test and Wilcoxon rank sum test. If it is
believed that the read number of the two ChIP-Seq data
is paired, Wilcoxon signed rank test should be used (wil.
paired=TRUE). Let Zi = Xi - Yi for i = 1, ... bn, and
assume that the Zi is independent; each Zi comes from
a same continuous population and is symmetric about
its median θ. If not paired, Wilcoxon rank sum test
should be used (wil.pair=FALSE). Let F denotes the dis-
tribution of X, the read enrichment of Sample A, and G
denotes the distribution of Y, the read enrichment of
Sample B. Assume that F and G have the same shape
and they differ only by median: G(t)=F(t-θ) [31].
H0: θ=0. (The read enrichment difference between

Sample A and B is not significant);
H1: θ>0 (Sample A has more significant read enrichment);
H2: θ<0 (Sample B has more significant read

enrichment).
For signed rank test, let Ri represents the rank of each

ordered |Zi| and �i denote whether Zi is positive. When
Zi is positive, �i is 1. Otherwise, it is -1. The Wilcoxon

signed rank statistic T+ is calculated as T+ =
∑bn

i=1
Riϕi.

For the rank sum test, all × and Y are put together and
the pooled data is ranked. Let Sj denotes the rank of Ys,

and then the Wilcoxon rank sum statistics is the sum of

all Sj (W =
∑bn

j=1
Sj). Then, by checking the correspond-

ing table, p-value can be calculated.

Determination of differential enriched regions
Once a p-value from Wilcoxon rank test and read ratio

(r =
∑bn

i=1
x1,i/

∑bn

j=1
x2,j, x1,i stands for the reads num-

ber in each bin of sample A and x2,j stands for the reads
number in each bin of sample B) and difference

(d =

∣∣∣∣
∑bn

i=1
x1,i −

∑bn

j=1
x2,j

∣∣∣∣) have been calculated, a set

of significant differential enriched regions in each sam-
ple are determined based on the user defined cutoffs.

Definition of distinct binding patterns
Each differential enriched region, identified from compari-
son of a sample A with a sample B, is classified into one of
the following three distinct binding patterns: 1) Sample
A/B “Unchanged” - one of two corresponding differential
enriched regions in separate samples that are associated
with the same annotated gene and are within 1 kb distance
of each other; 2) Sample A/B “Shift"- one of two corre-
sponding differential enriched regions in separate samples
that are associated with the same gene, but are more than
1 kb apart from one another; and 3) Sample A/B “Only” -
a differential enriched region associated with a gene in one
sample, but no differential enriched regions are associated
with that gene in the other sample. Note that the program,
by default, associates a gene with a differential enriched
region if they are within 100 kb of each other.

Benchmark data
The ChIP-seq of histone modification data from Mikkel-
sen et al [18] (the raw data can be downloaded at ftp://
ftp.broad.mit.edu/pub/papers/chipseq/Mikkelsen2007/
alignments/) including H3K27me3 (K27), H3K4me3
(K4) and H3K36me3 (K36) were used for the bench-
marking test to evaluate the performance of our pro-
gram QChIPat.

Data output
QChIPat provides comprehensive output information
including a summary report, differential enriched
regions in each sample with BED format and UCSC web
browser and Affymetrix Integrated Genome Browser
compatible wiggle (.wig) for the visualization, as well as
the assigned binding pattern of differential enriched
regions.

Data sets for two study cases
ChIP-seq of H3K27me3 and H3K9me2 in AKT1-tranfected
MCF710A cells is obtained from our previous study [21].

Liu et al. BMC Genomics 2013, 14(Suppl 8):S3
http://www.biomedcentral.com/1471-2164/14/S8/S3

Page 9 of 11



The ChIP-seq of TCF7L2 in MCF7 and PANC1 cells were
obtained from our previous study [32].

Additional material

Additional file 1

Additional file 2

Additional file 3: Table S1. Number of DHMSs identified by different
programs for identifying enriched regions.
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