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Abstract

Background: Forest trees have ecological and economic importance, and Japanese cedar has highly valued wood
attributes. Thus, studies of molecular aspects of wood formation offer practical information that may be used for
screening and forward genetics approaches to improving wood quality.

Results: After identifying expressed sequence tags in Japanese cedar tissue undergoing xylogenesis, we designed a
custom cDNA microarray to compare expression of highly regulated genes throughout a growing season. This led
to identification of candidate genes involved both in wood formation and later cessation of growth and dormancy.
Based on homology to orthologous protein groups, the genes were assigned to functional classes. A high proportion
of sequences fell into functional classes related to posttranscriptional modification and signal transduction, while
transcription factors and genes involved in the metabolism of sugars, cell-wall synthesis and lignification, and cold
hardiness were among other classes of genes identified as having a potential role in xylem formation and seasonal
wood formation.

Conclusions: We obtained 55,051 unique sequences by next-generation sequencing of a cDNA library prepared from
cambial meristem and derivative cells. Previous studies on conifers have identified unique sequences expressed in
developing xylem, but this is the first comprehensive study utilizing a collection of expressed sequence tags for expression
studies related to xylem formation in Japanese cedar, which belongs to a different lineage than the Pinaceae. Our
characterization of these sequences should allow comparative studies of genome evolution and functional genetics of
wood species.
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Background
Wood represents the main source for terrestrial biomass
production and is a major renewable resource for the
timber, paper, and bioenergy industries [1]. Genomics
approaches have been applied to explore the molecular
basis of growth and development in a few forest tree
species with economic relevance. Transcript profiling in
trees has also specifically focused on wood formation
(xylogenesis) because of the ecological significance of

forest trees and the economic importance of wood [2-4].
Wood formation begins from the cambium and gener-
ates wood as the end product of secondary vascular sys-
tem development, which proceeds from cell division to
expansion, secondary wall formation, lignification, and
finally programmed cell death [5,6]. Notably, identifica-
tion of accumulated expressed sequence tags (ESTs) and
their expression pattern during wood formation has
been achieved in target species for breeding, such as
Pinus, Populus and Picea [1,2,6-14].
Japanese cedar (Cryptomeria japonica) is an allogam-

ous coniferous species that relies on wind-mediated
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pollen and seed dispersal, and it is one of the most im-
portant forestry tree species in Japan. The Japanese
cedar tree has excellent attributes (straight bole, rapid
growth, ease of processing, and pleasant color and
scent), and it has been used for house construction, to
build wooden ships, barrels, and musical instruments,
and for many products intended for daily use for hun-
dreds of years [15]. More than 3,700 Japanese cedar trees
have been planted throughout Japan, covering an area of
4.5 million ha and accounting for 44% of Japan’s artificial
forests. Seventeen million seedlings are supplied as
planting material for forestation every year, making this
species very important for Japanese forestry today, as it
has been since ancient times [16].
Next-generation sequencing can be a more efficient ap-

proach for obtaining functional genomic information. This
type of sequencing can result in high transcriptome cover-
age depth and facilitates the de novo assembly of transcrip-
tomes from species where full genomes do not exist
[17,18]. In addition, by simultaneously measuring the
abundance of transcripts for thousands of genes with ac-
cumulated sequence information, microarray analysis pro-
mises a comprehensive understanding of regulatory gene
functions and the growth and development of plants [19].
To understand the molecular mechanisms involved in
wood formation and key targets for genetic manipulation
and selection of superior wood quality, these techniques
will be powerful and efficient tools [20]. The only molecu-
lar studies of wood formation in Japanese cedar have iden-
tified large numbers of genes that are expressed in male
strobili [21]. However, very limited genomics and func-
tional genomics resources related to wood formation are
publicly available for Japanese cedar.
The first objective of this paper was to produce an ex-

tensive collection of sequenced ESTs found in xylem and
cDNA clones to support manufacture of cDNA microar-
rays and gene discovery efforts in Japanese cedar. The
next goal was to elucidate a comprehensive expression
profile in the growing season using these microarrays.
For this purpose, we identified 55,051 unique sequences
by next-generation Roche 454 sequencing using a non-
normalized cDNA library from the cambial meristem
and its derivatives from Japanese cedar. To gain further
insight into seasonal expression patterns, a custom
cDNA microarray was designed from the cDNA library
obtained and from EST data (inner bark data on Forest-
Gen; http://forestgen.ffpri.affrc.go.jp) [22] and was used
to investigate differential gene expression in Japanese
cedar during wood formation.

Results and discussion
Microscopic observation of differentiating xylem
Based on anatomical observation of the cambial zone
and the differentiating xylem, the tissue underwent

seasonal cycles in activity of xylem formation, including
cell division, secondary wall formation and lignification,
through the growing season (Figure 1A,B). The cambial
cells were not active in samples taken on 24 March. An
average of only 4.8 cambial cells was found in each ra-
dial file, significantly fewer than found in other samples
collected in April (p < 0.01), June (p < 0.01) and August
(p < 0.05). The expanding tracheids occupied the most
space in differentiating xylem in samples taken on 27
April. The number of these tracheids was larger on this
date than in samples collected during the growing sea-
son. Thus, formation of derived tracheids was most ac-
tive in samples collected on 27 April. A few secondary
wall-forming tracheids were found in some radial files.
This indicated that secondary wall formation might have
just been reactivated around the day of sampling. The
largest number of tracheids at the stage of secondary
wall formation and lignification was observed in the 22
June samples. The number was significantly larger than
in the other samples collected (p < 0.01). Therefore, the
peak activity in xylem formation, including cell differen-
tiation and secondary wall formation, was found in the
22 June samples.
The number of expanding tracheids in each radial file

had significantly decreased from an average of 8.8 cells
in samples taken on 22 June to an average of 1.7 cells in
samples taken on 24 August (p < 0.01). This indicated
that cell division activity in the cambial zone was lower
than at earlier stages. Thus, the major activities in differ-
entiating xylem that could be observed microscopically
were secondary wall formation and lignification in the
samples collected in August and October.

EST sequencing and de novo assembly
Sequencing of cDNA libraries generated a total 308,542
raw reads, with an average length of 405.29 bp. The size
distribution of raw reads is shown in Figure 2A, and a
summary of sequencing and assembly results is pre-
sented in Table 1. After trimming the adaptors and pri-
mer sequences, 9,764 sequences were removed due to
short length, low complexity, or overall low quality
scores. This cleaning and trimming step resulted in
298,778 high-quality reads, corresponding to 96.8% of
the original raw sequence. A total of 241,696 high-
quality reads was assembled into 11,022 contiguous
sequences (contigs over 500 bp), and 40,435 reads
were identified as singletons (i.e., reads not assembled
into contigs). The size of contigs ranged from 100 to
9,656 bp, with an average length of 1,014 bp. The dis-
tribution of contig size is shown in Figure 2B. Con-
tiguous sequences were further assembled into 14,616
isotigs. Isotigs are putative transcripts constructed
using the overlapping contig reads provided as input
to Newbler cDNA assembler. The size distribution of
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isotigs ranged from 33 to over 9,656 bp, with an aver-
age length of 1,069 bp (Figure 2C). More than 99% of
the isotigs were over 100 bp and 50% of the assembled
bases were incorporated into isotigs longer than 1,261 bp
(N50 = 1,261 bp). The coverage depth for isotigs ranged
from 1 to 14, with an average of 1.7 contigs assembled
into each isotig (Figure 2D). The isotigs and singletons to-
gether resulted in 55,051 unique sequences (Additional
file 1: Figure S1).

Sequence comparison with other species
All unique sequences were searched against the sequences
in the National Center for Biotechnology Information
(NCBI) non-redundant protein database and The Arabi-
dopsis Information Resource (TAIR) using a BLASTx al-
gorithm E-value of 1e-5 (Figure 3A). A total of 12,606
isotigs (86.2% of all isotigs) and 14,688 singleton se-
quences (36.3% of all singletons) had significant BLAST
matches at NCBI, and 11,958 isotigs (81.8%) and 13,027
singletons (32.2%) had significant BLAST matches at
TAIR. When we compared our unique sequences with
EST sequences in the Japanese cedar database (ForestGen)
and libraries including xylem and cambium tissue from
The Gene Index and ForestGen_Xylem (inner bark and
sapwood) using a tBLASTx algorithm with an E-value of
1e-5, we found that 25,641 (11,278 isotigs and 14,363

singletons) had significant BLAST matches at ForestGen
and 23,524 (11,457 isotigs and 12,067 singletons) to tran-
scripts from Pinus, 24,550 (11,804 isotigs and 12,746 sin-
gletons) from Picea, and 15,945 (9,074 isotigs and 6,871
singletons) from Populus and that 13,906 (7,338 isotigs
and 6,568 singletons) sequences from ForestGen_Xylem
included similar ESTs. The largest overlap was found
for the ForestGen database based on lower E-values.
A larger overlap was found for other coniferous spe-
cies than for broadleaf species. Comparison with
BLAST results against the ForestGen and ForestGen_-
Xylem databases indicated that the unique sequences
collected in this study were also covered by ESTs pre-
viously collected from other organs of Japanese cedar
(Figure 3A). When comparing EST sequences in other
libraries involving xylem and cambium, though the smal-
lest overlap was found for ForestGen_Xylem, most of the
unique sequences overlapped those of three well-known
species undergoing xylogenesis (Figure 3B). These results
clarified that the previously accumulated Japanese cedar
xylogenesis related ESTs were incomplete, whereas our
data mostly coincided with ESTs collected from xylem
and cambium in other species.
Therefore, our data are expected to be a useful re-

source for ESTs related to xylem or cambium develop-
ment in Japanese cedar.
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Figure 1 Cross-sections of cambial zone and differentiating xylem of Cryptomeria japonica trees. A. Cross-sections viewed under an
ordinary light microscope (24 March) and pairs of ordinary (left) and polarizing (right) light microscope images for the same field (27 April, 22 June, 24
August and 7 October). B. Number of cells in cambial zone and differentiating xylem. Cells in differentiating xylem were categorized into expanding
cells, thickening cells and lignifying cells in accordance with ordinary and polarizing light microscope observations.
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Identifying protein families represented in sequences
by Pfam
The unique sequences were investigated for conserved
domains using the Pfam database [23] to predict their
function. In 55,051 unique sequences, we found that
19,887 (36.1%) of the encoded proteins were similar to
members of 4,764 Pfam protein families (E-value < 1e-
10). Overall, products of 18,915 (34.4%) of the tran-
scripts from Japanese cedar cambium tissue were similar
to members of 4,420 Pfam families when domains of un-
known function (DUFs) (317 families) and uncharacter-
ized protein families (UPFs) (27 families) were excluded.
The 20 most abundant protein families in cambium tis-
sue of Japanese cedar are shown in Table 2. The fre-
quency of occurrence of members of these families
corresponded with previous reports on Japanese cedar
male strobili and white spruce [21,24].

Identifying proteins according to clusters of orthologous
groups (COGs) from seven eukaryotic genomes
represented in sequences
The unique sequences were searched against the COG
database [25] using the BLASTx program. The sequences

that showed significant similarity (an E-value < 1e-5) with
those in the database were annotated and assigned to des-
ignated functional classes. Overall, 22,738 sequences
(41.3%) were annotated to known sequences with desig-
nated functional classifications, and 3,816 were similar to
known genes of unknown function and unassigned se-
quences in the database (Figure 4). The most frequent
functional categories for our data were “Posttranslational
modification, protein turnover, chaperones (category symbol
O)” and “general function prediction only (R),” which
agreed with previous reports [21,26-28]. On the other
hand, “signal transduction mechanisms (T)” was the next
largest category in the annotated designations of func-
tional classification, including the function unknown (and
unassigned) category. This feature differed from previous
reports, suggesting that seasonal expression of genes spe-
cific to cambial region tissues occurs.

Identification of transcription factors
Transcription factors are proteins that function in con-
trolling the expression of target genes quantitatively,
temporally, and spatially [29]. The unique sequences we
identified were annotated against the PlnTFDB [30], a
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recently developed database of transcription factor fam-
ilies for 22 plant species, using the BLASTx program.
BLASTx searches revealed 3,085 unique sequences of
Japanese cedar with matches against Arabidopsis thali-
ana and 2,735 unique sequences with matches against
Populus trichocarpa with E-values < 1e-5. Of the 82
transcription factor families, these sequences were anno-
tated to 79 in the Arabidopsis genome and 77 in the
poplar genome (Tables 3 and 4). The most abundant
transcription factor family annotated to A. thaliana was
WRKY (WRKY DNA-binding domain), with 218 unique
sequences, whereas for P. trichocarpa, it was C3H (Cys4-
His-Cys3 zinc finger), with 158 unique sequences. In
particular, unique sequences for transcription factors
associated with xylogenesis (such as the MYB, NAC
and HB transcription factors) were abundant. There-
fore, in future studies, it will be necessary to specify
which family members are associated with xylogenesis
in this species. These transcription factor features were
similar to those reported for radiata pine and white
spruce [3,24].

Comprehensive gene expression changes during
xylem formation
In Japanese cedar, physiological and anatomical alter-
ations during cambial activity have been well investi-
gated by anatomical observations [31-35], but little is
known about the molecular changes that occur. In order
to investigate expression of genes in Japanese cedar cam-
bial tissue during xylem formation more comprehen-
sively, we profiled transcripts at five time points during
the growing season using microarray analysis. As a re-
sult, we identified 10,380 targets that were differentially
regulated during xylem formation (p < 0.05, q < 0.2). The
differentially expressed genes clustered into 14 differ-
ent patterns based on their kinetics of gene expression
(Figure 5, Additional file 2). These 14 patterns were di-
vided into two expression patterns, associated with upreg-
ulation and downregulation, during xylem formation.
Overall, we identified 4,019 targets that showed differen-
tial expression during the spring reactivation and the peak
activity of xylem formation and 6,361 targets that
showed differential expression during decreasing cell
division and cessation of growth. Cluster A5 was the
most abundantly transcribed during spring reactivation
and the peak activity of xylem formation. Similarly, the
group consisting of abundant clusters B2, 6, and 7 was
notably observed during decreasing cell division/cessation
of growth. The sequences of all targets in each cluster
were also annotated against the COG database (Table 5)
using the same settings as the cDNA library. Xylogenesis
genes with well-known functions, such as in “Carbohy-
drate transport and metabolism (G),” “Cell wall/mem-
brane/envelope biogenesis (M),” and “Cytoskeleton (Z),”
were abundant categories in cluster A5, which indicated
upregulation of these genes during this period. In the
major group observed during decreasing cell division/ces-
sation of growth, expressed genes related to tolerance of
various conditions and to adjustment of cellular processes,
such as “RNA processing and modification (A),” “Signal
transduction mechanisms (T),” and “Defense mechanisms
(V),” were abundant.

Cell-cycle related genes
Druart et al [36] reported the expression of 68 homologs
of aspen trees based on 80 core cell-cycle genes that
were investigated in Arabidopsis [37]. The expression
patterns did not correspond to the increasing number of
dividing cambial cells during the early phase of cambial
cell-cycle activation, leading to the hypothesis of post-
transcriptional control of expression after cessation of
growth [36]. Similarly, we investigated the expression of
Arabidopsis core cell-cycle gene homologs in Japanese
cedar. We observed upregulation of 16 of 25 genes from
March to April, which suggested that the activation of cell
division and induction of cell-cycle genes are correlated in

Table 1 C. japonica transcriptome sequencing and
assembly summary

Sequence Bases (Mbp)

Sequencing

Raw sequencing reads 308,542 125.1

Average read length 405.29 bp

Assembly

Trashed 9764

Reads used in assembly 298,778 121.2

Average read length 405.69 bp

Contigs

All contigs

Reads assembled as contigs 241,696 98.6

Number of contigs (over 100 bp) 15,521 12.7

large contigs (over 500 bp)

Number of contigs 11,022 11.2

Average contigs size 1,014

Largest contigs length 9,656

N50 contig size 1,102

Isotigs

Number of isotigs 14,616 15.6

Average isotigs size 1,069

Largest isotigs length 9,656

N50 isotig size 1,261

Avrage contig count 1.7

Singletons 40,435

Unique sequences 55,051
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Figure 3 Sequence similarities. A) Number of transcript sequences from C. japonica cambium region similar to sequences in the NCBI, TAIR,
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Table 2 Occurrence of the 20 most common Pfam domains in the predicted proteins of unique transcripts from
cambium and differentiating xylem of C. japonica

Description of Pfam domain Number of C. japonica transcriptsa Pfam accession

Protein kinase domain 563 PF00069

NB-ARC domain 486 PF00931

Leucine-rich repeat 197 PF13855 (including PF07714)

Tyrosine kinase 174 PF07714

RNA recognition motif 173 PF00076

Cytochrome P450 171 PF00067

PPR repeat family 129 PF13041

UDP-glucoronosyl and UDP-glucosyl transferase 113 PF00201

Reverse transcriptase (RNA-dependent DNA polymerase) 110 PF00078 (including PF07727)

WD domain, G-beta repeat 102 PF00400

TIR domain 98 PF01582

DEAD/DEAH box helicase 91 PF00270

Alpha/beta hydrolase fold 82 PF12697

AAA proteins 80 PF00004

RING finger domain 78 PF13639

ATP-binding domain of ABC transporters 77 PF00005

Sugar (and other) transporter 72 PF00083

SET domain 67 PF00856

Mitochondrial carrier protein 65 PF00153

Protein phosphatase 2C 65 PF00481
aProtein families were identified by BlastX searches with E-value <1e-10 in the Pfam database.
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early activity during xylem formation (Figure 6, Additional
file 3). Our findings agreed well with data from Arabidop-
sis [37] and poplar, for which the expression of CDKB
and CYCB is regulated seasonally following a rise in
temperature [38]. Our data suggested that cambial reacti-
vation occurred in Japanese cedar between 24 March and
27 April based on anatomical observation. To prove the
hypothesis of posttranscriptional control of expression
after cessation of growth, we therefore harvested samples
during this period.

Xylogenesis genes related to phenylpropanoid
metabolism
During the development of xylem tissue, primary cell
wall biosynthesis, secondary wall deposition, and lignifi-
cation are important fundamental processes, because of
the need for maintaining biological mechanisms confer-
ring adaptability to various environments, compressive
strength and defense against pathogens. These processes
are also important determinants of wood properties.
The identification and expression profiling of gene

family members that are responsible for developmental
lignification have been reported for P. trichocarpa, Picea
abies, and Pinus teada [39-41]. In our study, the

expression of the most of these gene family members
(Phenylalanine ammonia-lyase (PAL); 4-coumarate: CoA
ligase (4CL); Cinnamate-4-hydroxylase (C4H); Hydroxy-
cinnamoyl: CoA shikimate/quinate hydroxycinnamoyl
transferase (HCT); p-coumarate-3-hydroxylase (C3H);
Caffeoyl-CoA O-methyltransferase; Cinnamyl alcohol de-
hydrogenase (CCoAOMT); Cinnamoyl-CoA reductase
(CCR); and Cinnamyl alcohol dehydrogenase (CAD)) was
induced from March to April, and then expression grad-
ually decreased from the peak activity of xylem formation
through August (Figure 7A, Additional file 3). The ex-
pression of these genes corresponded to our anatomical
observation that the number of cambial cells rapidly in-
creased from March to June (Figure 1A,B). These obser-
vations indicate that these genes are the main transcripts
in developing xylem of Japanese cedar.
Interestingly, enzymes in the early part of the mono-

lignol pathway, acting between PAL and 4CL, are also
involved in the biosynthesis of other phenylpropanoids,
like flavonoids, coumarins, and stilbene [39]. Lignans,
which are monolignol-derived dimers and oligomers in-
volved in such processes as defense reactions, are syn-
thesized through the same pathway [39]. The expression
of PAL4 (isotig 10873) and 4CL3 (isotig 11289) was

[A] RNA processing and modification [B] Chromatin structure and dynamics

[C] Energy production and conversion [D] Cell cycle control, cell division, chromosome partitioning

[E] Amino acid transport and metabolism [F] Nucleotide transport and metabolism

[G] Carbohydrate transport and metabolism [H] Coenzyme transport and metabolism

[I] Lipid transport and metabolism [J] Translation, ribosomal structure and biogenesis

[K] Transcription [L] Replication, recombination and repair

[M] Cell wall/membrane/envelope biogenesis [N] Cell motility

[O] Posttranslational modification, protein turnover, chaperones [P] Inorganic ion transport and metabolism

[Q] Secondary metabolites biosynthesis, transport and catabolism [R] General function prediction only

[S] Function unknown [T] Signal transduction mechanisms

[U] Intracellular trafficking, secretion, and vesicular transport [V] Defense mechanisms

[W] Extracellular structures [X] Unassigned

[Y] Nuclear structure [Z] Cytoskeleton
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Figure 4 Functional classification and relative levels of ESTs derived from cambium region of C. japonica. Values are shown as
percentage of unique transcripts in the pool.
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Table 3 Identification of transcripts encoding putative transcription factors in cambium and differentiating xylem in C.
japonica against Populus trichocarpa

TF family Description
vs Populus

ESTs %*

C3H Zinc finger, C-x8-C-x5-C-x3-H type 160 5.82

NAC No apical meristem (NAM) domain 157 5.71

PHD Cys4–His–Cys3 zinc finger 146 5.31

AP2-EREB PAP2 domain 139 5.06

HB Homeobox domain 126 4.58

bHLH Helix-loop-helix DNA-binding domain 123 4.47

SNF2 ATP binding/DNA binding/helicase/nucleic acid binding 116 4.22

WRKY WRKY DNA-binding domain 115 4.18

C2H2 Zinc finger, C2H2 type 113 4.11

MYB Myb-like DNA-binding domain 110 4.00

Orphans antiporter/multidrug efflux pump/transporter 107 3.89

MYB-related N-terminal myb-domain 95 3.46

ARF Auxin response factor 68 2.47

SET SET domain 61 2.22

bZIP Basic leucine zipper (bZIP) motif 59 2.15

Trihelix Trihelix DNA-binding domain 58 2.11

CCAAT NUCLEAR FACTOR Y, SUBUNIT A10 54 1.96

G2-like PRENYLATED RAB ACCEPTOR 1.G2 54 1.96

GRAS GRAS protein 54 1.96

TRAF TRAF homology domain-containing protein 48 1.75

ABI3VP1 ABI3/VP1 protein 44 1.60

MADS DNA-binding and dimaerization domain 41 1.49

FAR1 N-terminal microtubule binding motor domain 40 1.46

GNAT GCN5-related N-acetyltransferase (GNAT) family protein 39 1.42

mTERF mitochondrial transcription termination factor family protein 36 1.31

Jumonji nucleic acid binding/zinc ion binding 31 1.13

TCP ATP binding/protein binding 30 1.09

HSF Heat shock factor 26 0.95

C2C2-Dof Dof zinc finger 23 0.84

FHA Forkhead domain 23 0.84

DBP protein phosphatase 2C 22 0.80

CPP copalyl pyrophosphate (CPP) of gibberellin biosynthesis 21 0.76

zf-HD zf-HD class homeobox domain 21 0.76

LOB LATERAL ORGAN BOUNDARIES 20 0.73

SBP SBP domain 20 0.73

AUX/IAA AUX/IAA family 19 0.69

C2C2-GATA GATA zinc finger 19 0.69

ARID AT-rich interaction domain 17 0.62

HMG HMG (high mobility group) domain 17 0.62

PLATZ Plant AT-rich sequnce and zinc-binding protein1 17 0.62

LUG LEUNIG gene 16 0.58

CAMTA Calmodulin-binding transcription activators 15 0.55
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upregulated during dormancy and following cessation of
growth (Figure 7B, Additional file 3), which indicates
that these enzymes could play roles in defense, such as
responses to infection, wounding, drought stress and
temperature change.
Lignins result from the oxidative polymerization of p-

hydroxycinnamyl alcohols, which can be mediated by both
laccase and peroxidase [42]. For the 19 peroxidase super-
family proteins that we examined, the levels of 3 transcripts

(isotigs 09523, 13814, and Cj.19051_1) increased during
peak xylem formation (Figure 8A, Additional file 3), which
corresponded to anatomical observations. The peroxidases
that were induced during this period are the strongest can-
didates for involvement in lignin polymerization. The
expression of 7 peroxidase superfamily proteins was upregu-
lated during dormancy and correlated with cessation of
growth (Figure 8B, Additional file 3). In P. abies and Pinus
sylvestris, high peroxidase activities have also been measured

Table 3 Identification of transcripts encoding putative transcription factors in cambium and differentiating xylem in C.
japonica against Populus trichocarpa (Continued)

RWP-RK RWP-RK domain-containing protein 15 0.55

ARR-B Arabidopsis response regulator B 14 0.51

CSD superoxide dismutase 14 0.51

Tify JASMONATE-ZIM-DOMAIN PROTEIN 6 14 0.51

BES1 BRI1-EMS supressor 13 0.47

E2F-DP DNA binding/protein heterodimerization 13 0.47

SWI/SNF-SWI chromatin binding/protein binding 10 0.36

Alfin-like Cys4 zinc finger and His/Cys3 9 0.33

C2C2-YABBY YABBY transcription activator 9 0.33

GRF Growth regulation factor1 9 0.33

BSD BSD domain-containing protein 8 0.29

EIL Ethylene insensitivel (EIN3) 8 0.29

OFP predicted nuclear localization signal 8 0.29

Pseudo ARR-B Pseudo Arabidopsis response regulator B 8 0.29

TUB structural constituent of cytoskeleton 8 0.29

C2C2-CO-like CCT motif 7 0.25

DDT DDT domain-containing protein 7 0.25

Sigma70-like DNA binding/DNA-directed RNA polymerase 7 0.25

SWI/SNF-BAF SWIB complex BAF60b domain-containing protein 7 0.25

GeBPD NA-binding storekeeper protein-related 6 0.22

LIM LIM domain 5 0.18

TAZ TAZ zinc finger 5 0.18

VOZ VOZ domain 5 0.18

Coactivator p15 transcriptional coactivator p15 (PC4) family protein 3 0.11

IWS1 molecular_function unknown 3 0.11

BBR/BPC DNA binding 2 0.07

PBF-2-like peptidase/threonine-type endopeptidase 2 0.07

Rcd1-like RADICAL-INDUCED CELL DEATH1 2 0.07

SRS Domain unknown function 2 0.07

HRT nucleotide binding 1 0.04

MED6 RNA polymerase transcriptional regulation mediator-related 1 0.04

MED7 MED7 domain 1 0.04

RB Retinoblastoma-associated protein B domain 1 0.04

SOH1 SOH1 domain 1 0.04

ULT DNA binding 1 0.04
*% is based on the 2749 Japanese cedar unique sequences with homologs in the PlnTFDB.
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Table 4 Identification of transcripts encoding putative transcription factors in cambium and differentiating xylem in C.
japonica against Arabidopsis thaliana

TF family Description
vs Arabidopsis

ESTs %*

WRKY WRKY DNA-binding domain 218 7.07

MYB Myb-like DNA-binding domain 167 5.41

bHLH Helix-loop-helix DNA-binding domain 162 5.25

SNF2 ATP binding/DNA binding/helicase/nucleic acid binding 150 4.86

PHD Cys4–His–Cys3 zinc finger 148 4.80

Orphans antiporter/multidrug efflux pump/transporter 135 4.38

C3H Zinc finger, C-x8-C-x5-C-x3-H type 134 4.34

HB Homeobox domain 131 4.25

AP2-EREBP AP2 domain 130 4.21

C2H2 Zinc finger, C2H2 type 117 3.79

NAC No apical meristem (NAM) domain 104 3.37

MYB-related N-terminal myb-domain 83 2.69

SET SET domain 76 2.46

bZIP Basic leucine zipper (bZIP) motif 72 2.33

CCAAT NUCLEAR FACTOR Y, SUBUNIT A10 61 1.98

ARF Auxin response factor 56 1.82

G2-like PRENYLATED RAB ACCEPTOR 1.G2 51 1.65

HSF Heat shock factor 49 1.59

MADS DNA-binding and dimaerization domain 47 1.52

GRAS GRAS protein 45 1.46

C2C2-Dof Dof zinc finger 45 1.46

FHA Forkhead domain 45 1.46

ABI3VP1 ABI3/VP1 protein 43 1.39

Trihelix Trihelix DNA-binding domain 42 1.36

GNAT GCN5-related N-acetyltransferase (GNAT) family protein 39 1.26

Jumonji nucleic acid binding/zinc ion binding 39 1.26

mTERF mitochondrial transcription termination factor family protein 38 1.23

TRAF TRAF homology domain-containing protein 36 1.17

C2C2-GATA GATA zinc finger 32 1.04

LOB LATERAL ORGAN BOUNDARIES 31 1.00

AUX/IAA AUX/IAA family 25 0.81

DDT DDT domain-containing protein 25 0.81

FAR1 N-terminal microtubule binding motor domain 25 0.81

ARID AT-rich interaction domain 23 0.75

RWP-RK RWP-RK domain-containing protein 23 0.75

SBP SBP domain 23 0.75

CSD superoxide dismutase 21 0.68

ARR-B Arabidopsis response regulator B 20 0.65

DBP protein phosphatase 2C 19 0.62

TAZ TAZ zinc finger 18 0.58

zf-HD zf-HD class homeobox domain 18 0.58

BES1 BRI1-EMS supressor 16 0.52
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outside the growth period during late autumn, winter, and
early spring [43]. Some peroxidase genes generally respond
to external stimuli such as wounding, UV-irradiation, bend-
ing stress and pathogen infection [39,44]. These previous re-
ports suggest functions of these genes during the inactive
period for the cambium.

Recently, it was reported that laccase genes Lac4 and
Lac17 contribute to constitutive lignification in an A.
thaliana mutant [45]. Expression of laccase was 4–5
times higher than peroxidase in developing xylem and
young vertical xylem in P. abies [39]. The induction of
LAC17 (isotigs 04632, 06065, 08775, and 08985) and

Table 4 Identification of transcripts encoding putative transcription factors in cambium and differentiating xylem in C.
japonica against Arabidopsis thaliana (Continued)

E2F-DP DNA binding/protein heterodimerization 16 0.52

SWI/SNF-BAF60b SWIB complex BAF60b domain-containing protein 16 0.52

TUB structural constituent of cytoskeleton 16 0.52

C2C2-CO-like CCT motif 15 0.49

CPP copalyl pyrophosphate (CPP) of gibberellin biosynthesis 15 0.49

GRF Growth regulation factor1 15 0.49

SWI/SNF-SWI3 chromatin binding/protein binding 14 0.45

GeBP DNA-binding storekeeper protein-related 13 0.42

Pseudo ARR-B Pseudo Arabidopsis response regulator B 13 0.42

TCP ATP binding/protein binding 13 0.42

Tify JASMONATE-ZIM-DOMAIN PROTEIN 6 13 0.42

BSD BSD domain-containing protein 12 0.39

HMG HMG (high mobility group) domain 12 0.39

LUG LEUNIG gene 12 0.39

CAMTA Calmodulin-binding transcription activators 11 0.36

PLATZ Plant AT-rich sequnce and zinc-binding protein1 11 0.36

Alfin-like Cys4 zinc finger and His/Cys3 10 0.32

EIL Ethylene insensitivel (EIN3) 10 0.32

SRS Domain unknown function 9 0.29

IWS1 molecular_function unknown 7 0.23

OFP predicted nuclear localization signal 7 0.23

Sigma70-like DNA binding/DNA-directed RNA polymerase 6 0.19

BBR/BPC DNA binding 5 0.16

PBF-2-like peptidase/threonine-type endopeptidase 5 0.16

VOZ VOZ domain 4 0.13

LIM LIM domain 3 0.10

RB Retinoblastoma-associated protein B domain 3 0.10

Rcd1-like RADICAL-INDUCED CELL DEATH1 3 0.10

SAP STERILE APETALA domain 3 0.10

Coactivator p15 transcriptional coactivator p15 (PC4) family protein 2 0.06

C2C2-YABBY YABBY transcription activator 2 0.06

S1Fa-like DNA binding protein S1FA 2 0.06

HRT nucleotide binding 1 0.03

LFY Floricaula/Leafy protein 1 0.03

MBF1 Multiprotein bridging factor 1 1 0.03

MED6 RNA polymerase transcriptional regulation mediator-related 1 0.03

SOH1 SOH1 domain 1 0.03
*% is based on the 3085 Japanese cedar unique sequences with homologs in the PlnTFDB.
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LAC4 (isotig 04110) increased rapidly at the peak activity
of xylem formation in comparison to other lignification-
related genes (Figure 9, Additional file 3). These most
highly expressed laccases are also candidates for involve-
ment in lignin polymerization.

Xylogenesis genes related to carbohydrate, cellulose, and
hemicellulose metabolism
Cellulose is generally the main component of the plant
cell wall, and is synthesized at the plasma membrane by
a large multimeric cellulose synthase (CesA) complex
[46]. The patterns of expression for almost all expressed
Cellulose synthase and Cellulose synthase-like (Csl) genes
that were upregulated during peak activity of xylem for-
mation are shown (Figure 10 and Additional file 3). Of
these genes, CesA1 (isotig 04782), Ces4/IRX5 (isotigs
14272, 08498), CesA6 (isotig 14123), CesA7/IRX3 (isotigs

04866, 09868), and CesA8/IRX1 (isotigs 02784, 14052)
were rapidly induced from March to April, and then
their expression gradually decreased from the period
of peak xylem formation until cessation of growth
(Figure 10, Additional file 3), which corresponded with
anatomical observations. Interestingly, Ces4/IRX5, CesA7/
IRX3 and CesA8/IRX1 are required for cell-wall biosyn-
thesis in vascular tissue of Arabidopsis and rice [47,48].
Similarly, orthologs identical to these three genes are in-
volved in secondary cell-wall biosynthesis in developing
xylem of wood species such as Populus and Pinus
[14,49-53]. These findings suggest that the functional roles
of these orthologs are conserved in cell-wall synthesis
of vascular tissue in herbaceous and woody dicotyl-
deons, monocotyledons and gymnosperms [14]. Addition-
ally, a membrane-bound endoglucanase, KORRIGAN1
(KOR1), and a glycosylphosphatidylinositol-anchored
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Figure 5 Co-regulation patterns of differentially accumulated transcripts in xylem formation. A total of 10,380 transcripts differentially
accumulated in xylem formation were clustered into 14 groups using the Pearson correlation on the Subio platform. The graphs show the
average expression profile of each cluster; changes are on a log2 scale. The gene expression pattern is shown as A) upregulation and B)
downregulation during xylem formation. The description and expression profile of the individual targets are summarized in Additional file 2.
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protein, COBRA (COB), have been implicated in cellulose
biosynthesis in Arabidopsis [54,55]. Both the sequence of
the orthologs and their functional roles are reportedly
conserved in Populus and Picea [56,57]. The Japanese
cedar homologs of KOR1 and COB were upregulated dur-
ing peak xylem formation, suggesting a conserved func-
tional role (Figure 11A,B, Additional file 3).
Hemicelluloses, including glucomannans and xyloglu-

cans, are major components of the plant secondary cell
wall. Most genes related to the glucomannan/galactoman-
nan pathway (such as GDP-D-mannose 4,6-dehydratase1,
mannose-1-phosphate guanylyltransferase, phosphoman-
nomutase, mannosyltransferase family protein, galactosyl-
transferase family protein) and to synthesis of xylan (such
as UDP-glucuronic acid decarboxylase: UDP-xylose syn-
thase, β-(D)-xylosidase) and xyloglucan (such as xyloglu-
can endotransglycosylase, xyloglucan endotransglycosylase/
hydrolase) were induced during xylem formation, which
suggests that the encoded proteins play an active role in
secondary wall formation (Figure 12, Additional file 3).

Recently, a number of genes encoding putative glycosyl-
transferases required for xylan synthesis or deposition
have been identified in Arabidopsis using knockout mu-
tants [58-63]. The expression of most of these genes
(IRX7/FRA8, IRX9, IRX10-like, IRX14, and IRX15) in-
creased during xylem formation, indicating conserved
functional roles of these orthologs (Figure 13A, Additional
file 3). Xyloglucan is incorporated and modified in the
cell-wall network by xyloglucan endotransglycosylases and
hydrolases (XTHs, also known as XET/hydrolases and
XEHs) [64,65]. We observed 10 genes involved in cell-wall
biosynthesis to be upregulated at peak xylem formation;
however, the expression of 12 genes was downregulated
(Figure 13B, Additional file 3). Some XTH genes are in-
duced in dormant cambium and cold-stressed organs [65].
In Japanese cedar, these 12 genes may be candidates for
this functional role.
Sucrose synthase (Sus) catalyzes formation of UDP-

glucose, the immediate substrate for cellulose biosyn-
thesis. Members of the Sus gene family in many plant

Table 5 Number of differentially expressed genes according to their cluster and functional COG classification

A1 A2 A3 A4 A5 A6 A7 B1 B2 B3 B4 B5 B6 B7

[A] RNA processing and modification 3 0 6 3 11 21 0 3 23 9 4 15 60 123

[B] Chromatin structure and dynamics 1 0 7 0 13 2 4 8 10 1 1 5 18 78

[C] Energy production and conversion 20 0 25 26 37 29 0 8 31 18 0 6 32 10

[D] Cell cycle control, cell division, chromosome partitioning 1 0 8 4 23 5 0 3 12 3 0 2 20 21

[E] Amino acid transport and metabolism 7 2 32 11 39 28 4 10 23 16 1 7 8 53

[F] Nucleotide transport and metabolism 0 0 2 0 12 11 0 1 8 2 2 4 6 15

[G] Carbohydrate transport and metabolism 9 0 65 26 113 41 9 29 32 23 2 19 69 47

[H] Coenzyme transport and metabolism 11 0 2 7 19 7 1 1 8 2 0 1 3 5

[I] Lipid transport and metabolism 6 0 34 10 53 33 9 13 37 18 1 18 17 40

[J] Translation, ribosomal structure and biogenesis 7 0 28 1 11 8 0 35 9 5 0 4 13 42

[K] Transcription 15 2 19 7 30 23 3 12 59 24 2 20 91 98

[L] Replication, recombination and repair 0 0 8 5 8 4 2 7 16 4 1 5 18 35

[M] Cell wall/membrane/envelope biogenesis 2 1 29 9 65 17 5 11 19 3 0 3 14 38

[N] Cell motility 0 0 0 2 1 0 0 0 1 0 0 0 1 2

[O] Posttranslational modification, protein turnover, chaperones 18 0 30 37 51 84 29 21 44 33 10 20 62 110

[P] Inorganic ion transport and metabolism 9 0 24 8 11 15 5 7 8 8 1 9 12 48

[Q] Secondary metabolites biosynthesis, transport and catabolism 8 2 17 11 50 31 9 18 68 36 1 7 36 48

[R] General function prediction only 16 0 104 52 133 121 26 45 159 60 7 50 132 263

[S] Function unknown 18 0 61 23 87 39 5 22 37 50 4 33 68 69

[T] Signal transduction mechanisms 23 4 97 22 126 40 32 51 77 40 10 88 144 435

[U] Intracellular trafficking, secretion, and vesicular transport 5 0 48 26 45 17 3 20 12 6 0 8 25 28

[V] Defense mechanisms 2 0 8 8 35 19 7 19 20 15 3 55 64 227

[W] Extracellular structures 1 0 2 1 22 2 1 0 0 0 0 0 1 3

[X] Unassigned 21 2 70 25 123 67 24 19 87 36 5 43 98 146

[Y] Nuclear structure 1 0 3 0 1 0 1 5 1 0 0 3 0 9

[Z] Cytoskeleton 4 0 32 19 41 9 0 14 5 1 0 9 15 8
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species are divergent in function and differentially
expressed during plant development [66]. In Pinus and
Populus, some Sus genes showed an expression pattern
identical to that of Ces genes in developing xylem [5,14].
Similarly, the expression of Sus (isotig 12351) was upreg-
ulated from April to June, which suggested it as a robust
candidate gene for involvement in xylem formation
(Figure 14A, Additional file 3). Interestingly, all other
Sus genes were rapidly downregulated from March to
June, and then expression gradually increased through
October. Sus gene activity is considered to be associated
with environmental stresses, such as cold, drought and O2

deficiency [36,67]. We observed upregulation of these
genes in March and October, months showing markedly
low temperature, which suggested synthesis of cryoprotec-
tants and responses to cold stress (Figure 14A, Additional
file 3). Additionally, because reactivation of the cambium
in the spring occurs before any significant photosynthesis
activity, the induction of the Sus gene and various inver-
tases indicates that sucrose catabolism generates hexose
that can be metabolized via glycolysis during this period
[36]. The reaction catalyzed by sucrose phosphate syn-
thase (SPS) plays an important regulatory role in con-
trolling Sus genes in plants [68]. In hybrid poplar, an
AtSPS transgenic hybrid has altered phenology, such as

timing of leaf senescence and bud break, compared to wild
type [69]. Some invertase and SPS genes also showed an ex-
pression pattern identical to that of the Sus genes (Fig-
ure 14B,C, Additional file 3). In Japanese cedar, these
expression profiles could indicate that these genes are in-
volved in providing an alternative source of energy and
carbon skeletons in the early period of cambial reactiva-
tion in spring.

Transcription factors
Several transcription factor family members, such as
NAC, MYB, zinc finger proteins, and proteins with a
Lim domain or a homeodomain are thought to help
regulate secondary cell-wall biosynthesis [70-76]. In par-
ticular, some transcription factors of the NAC and MYB
subfamilies are master switches in the transcriptional
network for secondary cell-wall biosynthesis [75]. In
Arabidopsis, some MYB genes (AtMYB20, 43, 46, 52, 63,
83, 85, 99, 103, and 118) are significantly upregulated in
expression just when xylem vessel elements actively
form [77]. In conifers, Picea (PgMYB2, 4, 8) and Pinus
(PtMYB1, 4) MYB genes are also involved as transcrip-
tional regulators in lignin metabolism and/or wood for-
mation in stem and root [78-80]. Most of these MYB
genes are clustered in a phylogenetic tree of MYBs from
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spruce, Pinus, Arabidopsis, and the nearest sequences
from other species [78]. We found that 34 MYB genes
were upregulated during the peak activity of xylem for-
mation (Figure 15A, Additional file 3). AtMyb20 (isotig
05701) and AtMyb43 (Cj.5920_1) were expressed prefer-
entially; however, AtMyb103 (isotig 03851) was down-
regulated during this period. These findings suggest that
the functional roles of MYB20 and MYB43 orthologs
are conserved in cell-wall synthesis of vascular tissue in
Japanese cedar and other species. Recent molecular and
genetic studies have revealed that a subgroup of Arabi-
dopsis NAC domain transcription factors (SND1, NST1,
VND6, 7) are master switches regulating a cascade of
downstream transcription factors, leading to activation of
secondary wall biosynthesis [81-86]. Although among
these NAC domains, only a VND6 homolog (Cj17576_1)
was included on our array; its expression was moderately
decreased, as with 9 NAC family homologs (anac2, 8,
28, and 45) during peak xylem formation (Figure 15B,
Additional file 3). The homologs of other cell-wall
biosynthesis-related transcription factors (LIM, HB, b-
ZIP, WRKY) were induced during this time (Figure 15C,
Additional file 3), implying that these genes could be im-
portant in regulating downstream genes.

Hormonal regulation of the activity-dormancy cycle
Auxin has been implicated as a key signal regulating
cambial cell proliferation and cambial meristem identity
[12]. In the cambial region, the amount of IAA varies
seasonally, and rapid induction in cambial activity occurs
in spring to early summer [87-89]. The IAA distribution
shows a radial gradient and is most concentrated in the
cambial region [90,91]. The positive correlation observed
between the regions with high IAA levels and the num-
ber of cells in the same region suggests that the gradient
in endogenous IAA level controls the number of cambial
cells [92]. The expression of some auxin signaling and
transport component genes (Aux1, IAA16, 27, Auxin ef-
flux carrier (PIN1, 2), Auxin response factor (ARF1, 2, 4),
and SAUR-like auxin-responsive protein) was upregu-
lated in April, and then gradually decreased through
October (Figure 16A, Additional file 3). The concentra-
tion of IAA in P. sylvestris is high at the start of cambial
reactivation, declines when the number of differentiating
tracheids begins to increase, and then rises as the num-
ber of cells decreases [88]. In Japanese cedar, our results
indicate that these genes are regulated early in xylem
formation. Auxin signaling is mediated through the
ubiquitin-proteasome pathway, in which AUX/IAA
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Figure 9 Expression of laccase genes in cambial region during xylem formation. The individual targets are summarized in Additional file 3.
All expression data are presented on a log2 scale.
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proteins are degraded through SCFTIR1 complexes, com-
posed of cullin, SKP1, F-box protein, and RBX1 protein
[93,94]. We observed inverse expression of these genes
relative to the expression of some auxin signaling and
transport component genes, suggesting that auxin sig-
naling and transport component genes are repressed
during cessation of growth.
Gibberellins (GAs) act synergistically with auxin in

stimulating cambial growth [95]. The analysis of trans-
genic aspen indicated that GAs are required both in
xylogenesis, which is likely mediated by GA signaling in
the cambium, and in fiber elongation in the developing
xylem [96]. In angiosperm trees, application of GA

results in the formation of wood fibers with enhanced
thickness of the inner layers of cell walls [97,98]. We found
that a homolog of GA3-oxidase (GA3ox, Cj.17342_1),
implicated in the last step of GA biosynthesis, and the re-
ceptor gene GID1 (Cj.5192_1, isotig13598) were moder-
ately upregulated at peak xylem formation (Figure 16B,
Additional file 3). The genes encoding GA biosynthetic en-
zymes GA20-oxidase (GA20ox) and GA3ox are particu-
larly important for control of bioactive GA levels [99]. GA
signaling operates as a derepressible system that is moder-
ated by DELLA-domain proteins, which are transcriptional
regulators that repress GA responses [99]. Like DELLA-
domain proteins, the homologs of RGA (Cj 552_1, 1674_1)
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Figure 10 Expression of cellulose synthase and cellulose synthase-like genes in cambial region during xylem formation. The individual
targets are summarized in Additional file 3. All expression data are presented on a log2 scale.
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were expressed inversely to these genes (Figure 16B,
Additional file 3). These findings suggest that genes involved
in GA signaling have an important role in xylem formation.
Abscisic acid (ABA) content increases during abiotic

stress, and especially protects plant water status. In poplar
cambium, ABA levels are increased by short days and by
short days with low temperature in late autumn and dur-
ing cambial reactivation in early spring [36]. Genes related
to ABA biosynthesis and signaling, such as ABA4, NCED,
CYP707A, PP2C (HAI1, 2), SnRK2.6 (OST1), ABRE (ABI1,
5, ABF1), and PYL (1,4,10), were upregulated in March
and October (Figure 16C, Additional file 3). Most of these
genes were rapidly downregulated from March to April,
suggesting that their downregulation is coincident with re-
lease from cold hardiness and the improvement in water
deficit on cambial reactivation. The Arabidopsis CYP707A
gene family (CYP707A1, 2), involved in ABA catabolism,
controls seed dormancy [100]. Therefore, our observations
suggest that ABA is degraded during cambial reactivation
in Japanese cedar. In the apex of hybrid aspen, some
9-cis-epoxycarotenoid genes (such as NCED), which are in-
volved in ABA biosynthesis, are induced after 5 weeks of
short-day treatment, which also induces growth cessation
[101]. As seen in our data (Figure 16C, Additional file 3),
these genes (Cj13501_1, 2567_1, 8387_1) were upregu-
lated in accordance with changes in day length. Other
ABA biosynthesis-related and signaling genes were also
upregulated from August to October, indicating they may
be induced in response to several abiotic stresses (such as
cold and drought) that also lead to cessation of growth
(Figure 16C, Additional file 3).

Development of cold hardiness in activity-dormancy cycle
On 24 March, before cambial reactivation, cold hardiness
was maintained in cambial cells (Figure 1A,B). On the
other hand, the number of expanding cells and cells de-
positing secondary walls, as well as temperature and day
length, rapidly decreased from 24 August to 7 October
(Figure 1A,B, Additional file 4: Figure S2), suggesting ac-
quisition of cold hardiness on growth cessation. The tran-
scriptional regulators and modulating genes involved in
the acquisition of cold hardiness of Japanese cedar have
not been identified. In Arabidopsis, the ICE1 (inducer of
CBF expression) and CBF (C-repeat binding factor) family
transcription factors are respectively upstream and down-
stream regulators of the cold-responsive transcriptome
and freezing tolerance [102,103]. The role of the CBF fam-
ily as transcriptional activators in cold acclimation of Ara-
bidopsis has been maintained in Populus; in particular,
CFB1 and CFB3 show significant induction in Populus
stems [104]. The only ICE1 homologs presented on our
array were induced in conditions consistent with main-
taining and acquiring cold hardiness (isotigs 05865,
14021) (Figure 17, Additional file 3), so these genes are
candidates for this functional role. Druart et al. [36] listed
and clustered the expression pattern of genes involved in
cold hardiness from three data sets: 1. poplar genes in-
duced by low temperature and atCBF overexpression; 2. a
poplar homolog of an Arabidopsis gene induced by low
temperature; and 3. poplar homologs of genes involved in
the development of cold hardiness in three other tree spe-
cies [36]. We clustered the expression patterns of these
genes based on their timing of induction. Clustering of the
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Figure 11 Expression of KORRIGAN1 and COBRA in cambial region during xylem formation. A) KORRIGAN1 (KOR1). B) COBRA (COB). The
individual targets are summarized in Additional file 3. All expression data are presented on a log2 scale.
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138 homologs of these genes yielded three main groups,
two associated with autumn transition and early spring
(clusters 1, 2), and another with spring reactivation (clus-
ter 3) (Figure 18, Additional file 3). Their expression rap-
idly decreased from March to April, which suggested
repression and release of cold hardiness in cluster 1. In
cluster 2, expression (for example, of Cold regulated gene
and dehydrin family protein) was up- or downregulated in
accordance with changes in day length. In acquisition of
cold hardiness, these genes were moderately upregulated
prior to reduction in temperature (Additional file 4: Figure

S2). This finding implies that a signal other than low
temperature (such as short days) must trigger the induc-
tion of these genes in autumn under natural conditions
[36,105]. In cluster 3, some homologs were superinduced
from March to April, which corresponded to previous
findings [36]. The exact role of this superinduction is un-
clear; however, it might reflect a need to protect the very
sensitive dividing cambial cells from sudden drops in
temperature during early spring [36].
Because of limited photosynthesis in autumn, plants

must derive the energy and carbon required for the
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Figure 12 Expression of hemicellulose-related gene family in cambial region during xylem formation. The individual targets are
summarized in Additional file 3. All expression data are presented on a log2 scale.
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Figure 13 Expression of glycosyltransferase and xyloglucan endotransglycosylase in cambial region during xylem formation. A)
Glycosyltransferase. B) Xyloglucan endotransglycosylase. The individual targets are summarized in Additional file 3. All expression data are
presented on a log2 scale.
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Figure 14 Expression of sucrose synthase, invertase, and sucrose phosphate synthase in cambial region during xylem formation. A)
Sucrose synthase. B) Invertase. C) Sucrose phosphate synthase. The individual targets are summarized in Additional file 3. All expression data are
presented on a log2 scale.
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Figure 15 Expression of cell wall-related transcription factors in cambial region during xylem formation. A) MYB. B) NAC. C) Other cell
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Additional file 3. All expression data are presented on a log2 scale.
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acquisition of cold hardiness from some other source
[36]. Conversion of starch to sugar is a key metabolic
process associated with the entry into dormancy, as
starch-derived sugars serve several purposes, for ex-
ample as cryoprotectants as well as a source of energy
[12]. Transcriptional induction of a key enzyme of the
starch breakdown pathway occurs in poplar cambium in
autumn and during dormancy [12,36]. Our data showed
that most homologs involved in the process, such as
β-amylase and phosphoglucan-water dikinase, were in-
duced in March and October (Figure 19, Additional
file 3). These profiles suggested them as candidate genes
for regulating the availability of an alternative energy
and carbon source during limitations on photosynthetic
activity.

Cytoskeleton-related genes
The cytoskeleton regulates cellular polarity, morphology,
and movement through its involvement in cellular
events such as vesicular traffic, organellar movement,

abiotic and biotic stress sensing, signal transduction, and
cell wall biosynthesis [106]. Plant cell morphogenesis re-
lies on the organization and function of two polymer ar-
rays separated by the plasma membrane: the cortical
microtubule cytoskeleton and cellulose microfibrils in
the cell wall [107]. In the large S2 layer of secondary
fiber cell walls, the orientation of microfibril deposition,
which is directed by cortical microtubules, is an import-
ant trait determining wood quality and wood stiffness or
elasticity, and is referred to in trees as the micro-
fibril angle [108]. The expression of genes for α- and
β-tubulins, which comprise dynamic arrays of cortical
microtubules, appear to play a role in determining these
characteristics during xylem development in Populus
and Eucalyptus [108,109]. Our data showed that most
tubulin gene family members are highly expressed dur-
ing peak xylem formation (Figure 20A, Additional file
3). Similarly, most other cytoskeleton-related genes
such as Actin and genes encoding actin-related or
-interacting proteins (actin binding protein, actin re-
lated protein, actin depolymerization protein, villin, fi-
brin profiling, capping protein), microtubule-associated
protein (MAP), microtubule-motor family protein, micro-
tubule end binding protein, and kinesin were also induced
(Figure 20B,C,D, Additional file 3).
Actin forms microfilament structures by self-

polymerization and interactions with numerous actin-
binding proteins. In our data, the four homologs of
atACT7 (isotigs 05994, 09744, 11932, and 14133) were
upregulated during peak xylem formation, along with
actin-related/interacting protein and a gene encoding a
kinesin family protein (Figure 20B,C, Additional file 3).
The homologs clustered closely in a group with a Pinus
homolog in a phylogenetic tree of actin from Arabidop-
sis and the nearest sequences from other species [110].
atACT7 is preferentially expressed in younger, rapidly
developing tissue, such as during germination and root
growth in Arabidopsis [110,111]. These findings corres-
pond with our findings in developing xylem.
The organization and dynamics of microtubules are

regulated by MAPs [108]. Our study found a gene encod-
ing a MAP (MAP65-1: isotig 05735, 09873) that was more
strongly transcribed than other MAP genes (Figure 20D,
Additional file 3). AtMAP65-1 is able to promote tubu-
lin polymerization, enhance microtubule nucleation,
and decrease the critical concentration for tubulin
polymerization [112]; this role agrees reasonably well
with what would be expected from our expression
pattern and anatomical observations.

Validation of microarray expression of 12 selected genes
by qRT-PCR
Microarray expression data of 12 differentially tran-
scribed genes selected in this study were validated
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Figure 17 Expression of ICE1 in cambial region during xylem
formation. The individual targets are summarized in Additional file
3. All expression data are presented on a log2 scale.
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by qRT-PCR using the same RNA samples used for
the microarray experiments. Transcript accumulation
measured by qRT-PCR was fairly consistent with the
microarray results for all 12 validated genes (Figure 21),
particularly in the ranking of magnitude of expression,
indicating that the microarray experiments in this study
were sufficiently reliable for the identification of genes
that may influence xylem formation in the cambium of
Japanese cedar.

Conclusions
In this study, we obtained 55,051 unique sequences by
sequencing a non-normalized cDNA library from the
cambial meristem and derivative cells of Japanese cedar.
A custom cDNA microarray was designed based on this
library and EST data to investigate seasonal gene expres-
sion in Japanese cedar. This is the first comprehensive
study of an extensive collection of EST sequences and
expression studies related to xylem formation in Japa-
nese cedar. Because Japanese cedar belongs to a different
lineage than the Pinaceae, comparison of data could lead
to significant findings on genome evolution in coniferous
species. Our data may also be a useful resource for

forward genetics and functional genetics studies in wood
species.

Methods
Plant material
Tissue from the cambium region (including phloem and
the differentiating xylem) was taken from four 15-year-
old trees of Cryptomeria japonica plus-trees, clones
Chousui8, Iiyama9, Nisihkawa10 and Tano1, in Hitachi,
Ibaraki Prefecture for molecular analysis. The daily mini-
mum and maximum temperatures were also recorded
during the study (Additional file 4: Figure S2). The har-
vested tissues were immediately frozen in liquid nitrogen
in the field, and then stored in the laboratory at −80°C
for later RNA extraction. A square block (approximately
1 cm2) was collected for microscopy and fixed in FAA
(formalin: acetic acid: 50% alcohol, 5:5:90) in the field.
To evaluate how gene expression and morphological de-
velopment in the cambial region changed over a single
growing season, tissues from this region were collected
from different trees at the same time (around 10 AM)
on 15 different dates from 2010 to 2011: on 9 March, 9
April, 10 May, 1 June, 24 June, 16 July, 16 August, 19

-4

-3

-2

-1

0

1

2

3

4

March 24 April 27 June 22 August 24 October 7

isotig13386

Cj.463_1

isotig09152

isotig07600

isotig06530

Cj.15115_1

isotig03676

Cj.1515_1

isotig12039

isotig03440

isotig03507

isotig11658

isotig01818

isotig04706

Cj.4744_1

isotig12409

isotig03436

isotig13679

isotig08719

isotig01868

isotig01867

isotig07988

Cj.20761_1

isotig06894

Cj.5542_1

isotig12905

isotig12683

isotig09914

isotig14252

isotig07234

Cj.7127_1

Cj.11793_1

isotig13681

isotig12429

isotig08834

isotig10605

isotig07356

isotig02558

isotig02557

isotig11840

isotig05076

isotig09875

isotig10748

Cluster 1 Cluster 2 Cluster 3

R
el

at
iv

e 
ge

ne
 e

xp
re

ss
io

n 
(l

og
2)

-4

-3

-2

-1

0

1

2

3

4

g
p

(
g 2

)

-4

-3

-2

-1

0

1

2

3

4

March 24 April 27 June 22 August 24 October 7

isotig02235

isotig04680

isotig05088

isotig03396

isotig03395

Cj.1256_1

Cj.19789_1

isotig14149

isotig03282

isotig03281

isotig00586

isotig00585

isotig00584

isotig00583

isotig00582

isotig00581

Cj.25907_1

Cj.15297_2

Cj.11317_1

Cj.10608_1

isotig10908

isotig01782

isotig01781

Cj.7814_1

Cj.6472_1

isotig07946

isotig13369

Cj.100_1

isotig12021

isotig09334

Cj.2963_1

Cj.281_1

isotig05268

isotig01146

Cj.879_1

Cj.7363_1

isotig05857

Cj.4806_1

Cj.2945_1

isotig13992

Cj.7635_1

Cj.10989_1

Cj.635_1

isotig01804

isotig01803

Cj.20178_1

Cj.14402_1

isotig10299

Cj.6292_1

isotig13394

-4

-3

-2

-1

0

1

2

3

4

March 24 April 27 June 22 August 24 October 7

isotig13966

isotig08252

Cj.5418_1

Cj.11042_1

isotig07562

isotig06761

Cj.3801_1

isotig08349

isotig03911

isotig01817

isotig00306

isotig00304

isotig00288

isotig00305

isotig00303

isotig00301

isotig00299

isotig00298

isotig00296

isotig00294

isotig00291

isotig00289

isotig00287

isotig00285

isotig00283

isotig08030

isotig10795

Cj.4846_1

isotig09174

isotig03422

Cj.8815_1

Cj.8187_1

Cj.10981_1

isotig14365

isotig12764

isotig11257

isotig13814

isotig09709

Cj.5445_3

Cj.19051_1

isotig01805

isotig01138

isotig05086

Cj.2130_1

isotig07311

Figure 18 Expression of low temperature-induced genes in cambial region during xylem formation. Low temperature-induced and cold
hardiness-related genes were clustered using the Pearson correlation on the Subio platform into three main patterns of expression during the
autumn transition and early spring (clusters 1, 2) and during spring reactivation (cluster 3). The individual targets are summarized in Additional
file 3. All expression data are presented on a log2 scale.
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September, 29 September, and 29 October in 2010 for
construction of cDNA libraries and on 24 March, 27 April,
22 June, 22 August, and 7 October in 2011 for cDNA mi-
croarrays and for anatomical observation.

Anatomical observation of the cambial zone and the
differentiating xylem
Small blocks were collected from stems corresponding
to those used for microarray analysis. Thin sections were
prepared from embedded tissue in blocks of LR White
Resin (London Resin Co., Basingstoke, UK) and stained
with safranin and Alcian blue 8GX. Anatomical observa-
tions were carried out under both an ordinary light
microscope and a polarizing light microscope. The num-
ber of cells in the cambial zone and the number of
expanding tracheids, secondary wall forming tracheids
and lignified tracheids in each radial file were counted

under the microscope. The number of cells at each
growth stage was statistically compared by a Student’s t-
test between samples.

RNA extraction and pyrosequencing
Total RNA was isolated from tissue of the cambium re-
gion and differentiating xylem of plus-trees using an
RNeasy Plant Mini kit (Qiagen, Gaithersburg, MD, USA)
for Chousui8 samples from ten different dates. The qual-
ity of total RNA was assessed by measuring the ratio of
absorption at 260 nm and 280 nm via an Agilent Bioana-
lyzer 2100 (Agilent Technologies, Palo Alto, CA, USA).
cDNA synthesis from a mixture of ten RNA samples,
nebulization, adaptor ligation, emulsion PCR and se-
quencing were done at Hokkaido System Science Co.,
Ltd. (Sapporo, Hokkaido, Japan). Sequencing was per-
formed using a Roche 454 Genome Sequencer platform
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Figure 19 Expression of starch-breakdown related genes in cambial region during xylem formation. The individual targets are
summarized in Additional file 3. All expression data are presented on a log2 scale.
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Figure 20 Expression of cytoskeleton related genes in cambial region during xylem formation. A) α/β-Tubulin. B) Actin, actin-related and
actin interacting proteins. C) Kinesin gene family. D) Microtubule-associated protein gene family. The individual targets are summarized in
Additional file 3. All expression data are presented on a log2 scale.
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(Roche/454 Life Sciences, Branford, CT, USA) with FLX
or Titanium technology.

Assembly of ESTs from sequences obtained on the
454 platform
Using GS FLX pyrosequencing software, we selected
high-quality sequences (> 99.0% accuracy on single base
reads) for further processing and assembly. Trimmed
and cleaned sequences were assembled using the cDNA
assembly feature of Roche Newbler software v. 2.3
(Roche/454 Life Sciences). To obtain clean ESTs, adapter

trimming and poly(A/T) removal were performed by the
cutadapt tool [113], then short sequences (< 50 bp) were
removed and the remaining sequences evaluated using
the BLASTN algorithm against C. japonica microsatel-
lite sequences obtained from NCBI (www.ncbi.nlm.
nih.gov) [114], and Arabidopsis thaliana retrotransposon
sequences obtained from TAIR (www.arabidopsis.org)
[115]; reads with alignment length of 20 nt or more and
percent identity of 90% or more were considered “hit
reads” against these sequences. De novo assembly was
performed using GS De Novo Assembler v2.3 (provided
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Figure 21 Validation of microarray expression of 12 selected genes by qRT-PCR. A total of 12 genes were selected in the validation using
qRT-PCR: (A) Phenylalanine ammonia-lyase (PAL: isotig 10873), (B) Cinnamate-4-hydroxylase (C4H: isotig 09462), (C) 4-Coumarate:CoA ligase (4CL:
isotig 04988), (D) Hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT: isotig 10178), (E) p-Coumarate-3-hydroxylase (C3H:
isotig 02271), (F) Caffeoyl-CoA O-methyltransferase; Cinnamyl alcohol dehydrogenase (CCoAOMT: isotig 10196), (G) Cinnamoyl-CoA reductase (CCR:
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08498), (K) α-Tubulin (Tub α: isotig 02753), (L) β−Tubulin (Tub β: isotig 13384). In qRT-PCR, Ubiquitin (UBQ) was used as a reference gene, and the
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with the Roche GS FLX sequencer) with default parame-
ters (minimum overlap length of 40, minimum percent
identity of 90).

Functional annotation with the BLAST program
The assembled unique sequences putatively encoding
proteins were searched against the Arabidopsis protein
database in TAIR [115] and the NCBI non-redundant
database [114] using the BLASTx algorithm. In addition,
our transcripts were also searched against the Forest-
GEN database [22] using the tBLASTx algorithm. A
typical cutoff E-value < 1e-5 was used. To identify known
protein families, the unique sequences were also searched
for the presence of Pfam domain sequences (release
21.0) using the blastx algorithm (E-value < 1e-10) [23].
Similarities to ESTs from libraries derived form xylem
and/or cambium of Pinus, Picea, Poplar and Japanese
cedar were determined with the tBLASTx program.
We used Pinus Gene Index release 6.0 (PGI_libraries
PHJ, PHM, ONA, PJD, ERF, 2NV, CJQ, 11 F, 0TU, PJQ,
M7S, M7N, 9UQ, 72B, 0U0, 0TT-2, M7Q, M7R, M7P,
M7O, PJT, PJM, ERE, CER, PHN, NIL, ERD, BTR, CCS,
CJP, 8FB, PJR, ONB, OI1, CJS, ERB, 9NV, 5BN, 1RR, and
0TV), Spruce Gene Index release 2.0 (Sgi_libraries
KH2, H5M, H5L, FKG, KGV, EOT, PHL, EOR, KH1,
KH0, FH7, FKM, F7N, LCC, F7O, F7U, LCF, IQE, EOS,
LCD, LCN, LCM, IQG, IQD, FH9, F7V, IQF, FKL, EOQ,
and LCE), Poplar Gene Index release 3.0 (PplGI_libraries
EA1, 9BN, BMF, G26, NIQ, EA2, ASV, NL3, FKA, DRG,
F8V, F8D, 1CV, LRS, G22, G21, DRC, LRR, DRF, G27,
and DQP) from The Gene Index Project website (http://
compbio.dfci.harvard.edu/tgi/plant.html) [116], and the
ForestGen database (inner bark and sapwood data) as
EST databases [22].
PlnTFDB [30], a recently developed database of tran-

scription factor families for 22 plant species, was used to
identify putative transcription factors expressed during
Japanese cedar wood formation. Blastx searches were
performed on matches against A. thaliana and P. tricho-
carpa in the PlantTFDB with E-values < 1e-5.
The unique sequences were searched locally against a

database of clusters of orthologous groups (COGs) from
seven eukaryotic genomes [25]. The COGs are com-
prised of three databases containing orthologous pro-
teins from at least three out of seven eukaryotic species
(KOGs), proteins from two species (TWOGs), and
lineage-specific expansion groups (LSEs). Sequences
with E-values < 1e-5 were considered to have significant
homology, and were classified following the KOG func-
tional classification.
The sequences of ESTs have been submitted to the

DNA Data Bank of Japan under accession numbers
DC882454 through DC883482.

Microarray analysis
We built a custom microarray platform containing 60-
mer oligonucleotide probes designed based on 14,612
isotigs (probes to 4 isotigs could be not designed) from
all isotigsin proprietary NGS data and 3,470 EST se-
quences from the “sapwood” and “inner bark” categories
(including a full-length cDNA library) in the ForestGen
database [22]. A set of 18,082 probes was selected and
accommodated in the NimbleGen 4 × 72 K array format
(Roche-Nimblegen Inc., Waldkraiburg, Germany), which
can examine the expression levels of up to 20,000 genes
for four samples at the same time. Therefore, in this for-
mat, 18,082 probes were accommodated at least in tripli-
cate in our custom array. For microarray analysis of five
sampling dates, we used four biological replicates and
three technical replicates for each sample (Additional file
1: Figure S1). Total RNA was extracted with a Plant
RNeasy Mini Kit, and DNase was treated in-column with
an RNase-Free DNase set (Qiagen). The A260/A280 ratios
of RNA samples used for hybridization ranged from 1.7
to 2.0. An Agilent 2100 Bioanalyzer analyzed the integ-
rity of RNA samples. RNA integrity values of samples
used for hybridization ranged from 8.1 to 10.0. Double-
stranded cDNA was synthesized using a SuperScript
double-stranded cDNA synthesis kit (Invitrogen, Carlsbad,
CA, USA) with random 6-mers following the manufac-
turer’s protocol. Cy3 labeling and hybridization were
performed by NimbleGen using standard procedures.
Labeled and hybridized slides were scanned using a
NimbleGen MS 200 microarray scanner to generate
paired files.
Because there were three or four spots for each target,

the paired files contained redundant signal intensities for
all probes. We took medians as representing intensities
to avoid the effect of outliers, and loaded them into
Subio platform software (Subio Inc., http://www.subio.
jp) [117]. Intensity values were normalized at the 75th
percentile, and then transformed into log2 ratios based
on the average of the 60 samples, which were composed
of 5 time points with 12 replicates each. The data pre-
sented in this study have been deposited in NCBI’s Gene
Expression Omnibus and are accessible through GEO
Series access number GSE53034.
Of the total 18,082 target genes, 748 with raw signal

intensities not exceeding 1,000 in any samples were fil-
tered out. We calculated the averages of log2 ratios at
each time point, and excluded an additional 6,273 genes
with expression levels hardly varying over time (be-
tween −0.5 and 0.5). We tested the 11,061 genes by
ANOVA (p < 0.05 and BH-FDR < 0.2) to extract 10,380
genes with expression levels that varied for at least one
time point. Hierarchical clustering (unweighted pair group
method with arithmetic mean, Pearson correlation) was
used to identify groups of co-expressed genes. We extracted
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clusters from tree nodes (Figure 5). We additionally cre-
ated trees with gene sets manually selected based on bio-
logical knowledge.

Validation of quantitative RT-PCR
Independent verification of microarray results was car-
ried out by qRT-PCR analysis using total RNA from the
cambium region tissues used for microarray experi-
ments. Total RNA (500 ng) was reverse-transcribed
using the PrimeScript II 1st strand cDNA synthesis kit
(Takara Bio, Otsu, Shiga, Japan) with random 6-mers fol-
lowing the manufacturer’s instructions. The resulting
first-strand cDNA was diluted 1:5 in water before real-
time PCR. Primers were designed using Primer Express
software ver. 3.0 (Applied Biosystems, Foster City, CA,
USA), with a melting temperature (Tm) between 60 and
65°C, and produced amplicons between 100 and 250 bp.
Specific primer pairs were designed for each gene:
Phenylalanine ammonia-lyase (PAL) (isotig 10873: for-
ward 5′-GACCCAGGACGGGAAAGAG-3′, reverse 5′-
TAGGCTGGAGTTCAAACGGTTT-3′); 4-Coumarate:
CoA ligase (4CL) (isotig 04988: forward 5′-CAGTCG
TCGCCAACTATGACA-3′, reverse 5′-ACGGCATCT
TCCAGGTCCTT-3′) Cinnamate-4-hydroxylase (C4H) (iso-
tig 09462: forward 5′-CGTTGAGAAGCTGCCGTATCT-3′,
reverse 5′-CGTCAAGGGAGGCTTCTTCA-3′); Hydroxyci-
nnamoyl-CoA shikimate/quinate hydroxycinnamoyl transfer-
ase (HCT) (isotig 10178: forward 5′-GCCCATCCATGATG
CAGATT-3′, reverse 5′-GACTGGGCAAAATGAAACCA
A-3′); p-Coumarate-3-hydroxylase (C3H) (isotig 02271:
forward 5′-TCACATGGACCCCTCCTGAA-3′, reverse 5′-
CGGTAGAGATGCTCAGGCAAT-3′); Caffeoyl-CoA O-me-
thyltransferase; Cinnamyl alcohol dehydrogenase (CCoAOMT)
(isotig 10196: forward 5′-ACTGCAGAGGCTTCCAAGGA-
3′, reverse 5′-TCGCTCTGAAGGAGACTCTTGTG-3′); Cin-
namoyl-CoA reductase (CCR) (isotig 05079: forward 5′-CAG
GAGCGGGAGGATTTATTG-3′, reverse 5′-CCTCTGGATT
GCGAACTGTTC-3′); Cinnamyl alcohol dehydrogen-
ase (CAD)(isotig 02638: forward 5′-GCAGAGGCAG
GCAAGAGATG-3′, reverse 5′-AGTCACATGATGCCCA
AATGC-3′); Cellulose synthase (Ces) (isotig 08498: forward
5′-CATGGCCTGGGAACAACACT-3′, reverse 5′-ATGC-
GAGGCAGTTCGTTACC-3′); Sucrose synthase (Sus) (iso-
tig 12351: forward 5′-ACGACTGTTCTTGGCAAACCA
T-3′, reverse 5′-ATTGAGCGACCGGAACAAAC-3′); α-
Tubulin (Tub α) (isotig 02753: forward 5′-CATCCTTGGG
CACAACATCTC-3′, reverse 5′-TGCCTTTGAGCCTTCT
TCCAT-3′); βTubulin (Tub β) (isotig 13384: forward 5′-
TACACTGGTGAGGGCATGGA-3′, reverse 5′-GCATCC
TCATCCGCAGTTG-3′); and the endogenous control Ubi-
quitin (UBQ) (forward 5′-CGTTAAAGCCAAGATCCAG-
GACAA-3′, reverse 5′-TCCATCCTCAAGCTGTTTCCC
A-3′). For each sample, triplicate quantitative PCR assays
were performed using Power SYBR Green PCR master mix

(Applied Biosystems) with ROX reference dye according to
the manufacturer’s protocol. Amplification was carried out
with a StepOnePlus system (Applied Biosystems). After an
initial 10-min activation step at 95°C, 40 cycles (95°C for
15 s and 60°C for 1 min) were performed, and a single fluor-
escent reading was obtained after each cycle immediately fol-
lowing the annealing/elongation step at 60°C. Preliminary
quantitative PCR assays were performed to evaluate primer
pair efficiency and absence of genomic DNA contamination
using a negative control. A melting curve analysis was per-
formed at the end of cycling to ensure amplification of a sin-
gle product. For relative quantification and comparisons, we
used the delta-delta-Ct method with Ubiquitin as the
normalization internal control gene.

Additional files

Additional file 1: Figure S1. Chart of this study.

Additional file 2: Differentially expressed targets during the growing
season. A set of 10,380 C. japonica genes that were differentially expressed.
Gene order is the same as in Figure 5 cluster diagrams.

Additional file 3: Description and expression profile of the individual
targets listed for Figures 6,7,8,9,10,11,12,13,14,15,16,17,18,19, and 20.

Additional file 4: Figure S2. Daily maximum and minimum temperatures
measured at the sampling site. Sampling days are indicated: 24 March, 27
April, 22 June, 24 August and 7 October, 2011.
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