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Abstract

Background: Heat shock proteins (Hsps) perform a fundamental role in protecting plants against abiotic stresses.
Although researchers have made great efforts on the functional analysis of individual family members, Hsps have
not been fully characterized in rice (Oryza sativa L.) and little is known about their interactors.

Results: In this study, we combined orthology-based approach with expression association data to screen
rice Hsps for the expression patterns of which strongly correlated with that of heat responsive probe-sets.
Twenty-seven Hsp candidates were identified, including 12 small Hsps, six Hsp70s, three Hsp60s, three Hsp90s,
and three clpB/Hsp100s. Then, using a combination of interolog and expression profile-based methods, we
inferred 430 interactors of Hsp70s in rice, and validated the interactions by co-localization and function-based
methods. Subsequent analysis showed 13 interacting domains and 28 target motifs were over-represented in
Hsp70s interactors. Twenty-four GO terms of biological processes and five GO terms of molecular functions
were enriched in the positive interactors, whose expression levels were positively associated with Hsp70s.
Hsp70s interaction network implied that Hsp70s were involved in macromolecular translocation, carbohydrate
metabolism, innate immunity, photosystem II repair and regulation of kinase activities.

Conclusions: Twenty-seven Hsps in rice were identified and 430 interactors of Hsp70s were inferred and
validated, then the interacting network of Hsp70s was induced and the function of Hsp70s was analyzed.
Furthermore, two databases named Rice Heat Shock Proteins (RiceHsps) and Rice Gene Expression Profile
(RGEP), and one online tool named Protein-Protein Interaction Predictor (PPIP), were constructed and could be
accessed at http://bioinformatics.fafu.edu.cn/.
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Background
Plants have evolved a spectrum of molecular programs
to adapt to environmental stresses. To survive, plants
undergo dramatic changes in physiological and mole-
cular mechanisms [1]. For instance, heat shock proteins
(Hsps) are stimulated in response to a wide array of
stress conditions and perform a fundamental role in pro-
tecting plants against abiotic stresses [1,2].
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Hsps can be classified into five major categories
based on molecular mass: small heat shock protein
(sHsp) family, chaperonin (Hsp60/GroEL) family, 70-
kDa heat shock protein (Hsp70/DnaK) family, Hsp90
family and Hsp100/ClpB family [3]. In Arabidopsis, at
least 19 genes encoding sHsps, 16 chaperonins, 18
genes encoding Hsp70s, seven Hsp90s, and four
Hsp100/ClpBs have been identified through genome-
wide analysis [4-9]. Rice is the most important staple
food crop in the world and the principal model for
other monocotyledonous species [10]. In recent years,
researchers have made great efforts on the functional ana-
lysis of individual Hsp family members in rice [11-14],
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Table 1 Rice GeneChips in response to abiotic stresses

Stress Drought Salt Cold Heat

ID GSE6901 GSE6901 GSE6901 GSE14275

Platform GPL2025 GPL2025 GPL2025 GPL2025

Organism Oryza Sativa Oryza Sativa Oryza Sativa Oryza Sativa

Sample Seedling Seedling Seedling Seedling

Stress/Control 3/3 3/3 3/3 3/3

Wang et al. BMC Genomics 2014, 15:344 Page 2 of 15
http://www.biomedcentral.com/1471-2164/15/344
however Hsps still have not been fully characterized and
little is known about their interactors [14].
Furthermore, detailed studies have established that the

overexpression of Hsp70 genes enhanced the plant’s
tolerance to environmental stresses [15-17]. Transgenic
rice lines that overexpress sHsp17.7 exhibit increased
drought tolerance during the seedling stage [18]. How-
ever, the cellular mechanisms underlying Hsp function
under abiotic stress are not fully understood [3]. The
completion of the Rice Genome Sequencing Project and
high-throughput experimental methods have generated
valuable data that can be used to identify proteins that
interact with Hsps in rice, and consequently decipher
the functions of Hsps.
Many computational approaches have been proposed to

predict protein-protein interactions. In terms of test data-
set types, these approaches can be grouped into three
classes: sequence-oriented methods [19-22], gene expres-
sion profile-based methods [23] and structure-oriented
methods [24]. Interolog, a sequence-oriented method, has
been widely used to construct protein-protein interactions
(PPIs) in diverse organisms [10,25-27]. This method is
based on the principle that orthologous pairs can be de-
tected by mapping those known interactions in the source
organism onto the target organism [21]. The gene expres-
sion profile-based methods identify genes that exhibit cor-
related changes in expression over conditions, since they
tend to have similar functions or be involved in cellular
processes [23,28]. Each protein interaction mapping tech-
nique has different advantages and disadvantages [29], and
the techniques are complementary to some extent. In this
study, we integrated interolog- and gene expression
profile-based methods to identify the interactors of Hsps
in rice.
To carry out more reliable functional analysis, we first

conducted a genome-wide screening for the true Hsps in
rice using integration of orthology and expression asso-
ciation data. Then, we used interolog- and expression
profile-based methods to identify Hsp70s interactors in
rice response to abiotic stresses. Through mining the
signal behind their interactors, we further investigated
the pattern of binding sites and the interaction network
of Hsp70s in response to abiotic stresses.

Results
Gene expression in rice subjected to abiotic stresses
Four sets of gene expression data from rice seedlings
exposed to drought, salt, cold and heat treatment were
collected (Table 1) from the Gene Expression Omnibus
(GEO) [30]. The K-nearest neighbor (KNN) impute
method was used to estimate the missing values in Gene-
Chips [31]. A total of 22,707 probe-sets with detectable
expression values were selected from these GeneChips.
Within-slide normalization (Figure 1) and multiple-slide
normalization (Figure 2) were performed sequentially to
minimize systematic variations.
Then, we identified heat-responsive (HR) probe-sets

and estimated the global gene-gene pairwise relation-
ships. In this study, we applied boxplots [32,33] to iden-
tify HR probe-sets, which were defined as a group of
probe-sets that were significantly up- or down-regulated
by heat treatments. A total of 1,135 (5%) HR probe-sets
that were expressed differentially under heat stress were
detected (Figure 3). Among them, 651 probe-sets were
up-regulated, while 484 probe-sets were down-regulated.
Meanwhile, bootstrap analysis [34] was performed to es-
timate the absolute median value of Pearson Correlation
Coefficients (PCC) between any pair of genes. The boot-
strapped 95% confidence interval for the population
ranged from 0.5648 to 0.5842 (Figure 4).

Genome-wide identification of Hsps in rice
Hsps screening in the rice proteome consisted of three
steps. First, 41 candidate protein sequences, which were
annotated as Hsps and contained the characteristic do-
mains (Additional file 1: Table S1) of Hsps in Uniprot
database [35], were downloaded. These sequences in-
cluded 23 small Hsps (sHsps), eight Hsp70s, four Hsp60s,
three Hsp90s and three Hsp100/ClpBs. Second, 10 of the
41 candidate proteins, whose expression value was absent
in GSE6901 (GeneChips for drought, salt, and cold treat-
ments) or GSE14275 (GeneChip for heat treatment), were
filtered out. Third, since Hsps can stimulate a wide range
of HR genes [3,36], and those genes involved in similar
functions or cellular processes are likely to have similar
expression profiles over conditions [23]. So we supposed
the true Hsp genes should have a higher expression cor-
relation with HR probe-sets compared with other genes.
Therefore, 27 candidate genes, whose expression patterns
were similar to that of the HR probe-sets (Table 2), were
ultimately recognized as Hsps, including 12 sHsps, six
Hsp70s, three Hsp60s, three Hsp90s and three Hsp100/
ClpBs (Table 3). The average absolute value of the PCC
between them and HR probe-sets reached 0.76, which
was markedly greater than that of the global pairwise
values (0.5648-0.5842) and the value of the Ubq5/control
(0.5089).



Figure 1 Within-slide normalization of rice GeneChips. M was the log intensity ratio and A was the average log intensity for a dot in the plot.
Each point represented the expression pattern of a probe-set in the plot. The horizontal red lines represented the theoretical median of the
global M-values. The continuous blue curves indicated the global trend line, as estimated by LOWESS regression. (Left) MA-plot before within-
slide normalization; (Right) MA-plot after within-slide normalization.

Wang et al. BMC Genomics 2014, 15:344 Page 3 of 15
http://www.biomedcentral.com/1471-2164/15/344
Genome-wide identification of the interactors of Hsps in
rice, with a focus on Hsp70s
Using the interolog method, 9,132 potential PPIs related
to Hsps in rice (Additional file 1: Table S3) were
mapped from the experimentally identified PPI in yeast
[37]. The predicted PPIs corresponding to 6 Hsp70s
accounted for nearly 45% of the total interactions (4,091
out of 9,132). Therefore, in this paper, Hsp70s were se-
lected as a case study.
Figure 2 Multiple-slide normalization among rice GeneChips. Black bo
before multiple-slide normalization. The array for cold treatment had a mu
represented the spread of M-values in the same four arrays after multiple-s
Each of 6 Hsp70s sequences was used as a query to
search its interactors in rice based on interlog method.
After that, we applied an expression profile-based me-
thod to reduce the false-positive rate of Hsp70s PPIs
predicted by interolog. The expression relationship
between each interacting partner was further measured
by Pearson Correlation Coefficients (PCCs). We found
that the absolute PCC of 1,072 PPIs related to Hsp70s,
including 430 interactors, were greater than 0.90
xplots (left) showed the spread of M-values in four kinds of GeneChips
ch narrower spread compared with the others. Gray boxplots (right)
lide normalization.



Figure 3 Boxplot of M-values in response to heat stress.
Q1 (−0.392) and Q3 (0.432) represented the lower quartile and the
upper quartile, respectively. The interval equaled 1.5× the
interquartile range (IQR). The upper fence lay at Q3 + 1.5×IQR (1.668),
while the lower fence lay at Q1-1.5×IQR (−1.628). The outliers
represented observations that fell beyond the upper and
lower fences.

Figure 4 Bootstrap distribution of the estimated median
absolute PCC value between the expression value of any two
probe-sets in the GeneChips. Ten thousand non-redundant probe
pairs were randomly selected, and the absolute PCC value between
each pair was computed. Based on these 10,000 PCC values, 100,000
bootstrap samples were built by sampling with replacement, and
the 95% confidence interval of the global median absolute PCC
value was determined as ranging from 0.5648 to 0.5842.
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(Additional file 2: Supplemental Data 1A). Upon exposure
to abiotic stresses, the expression of 166 interactors
showed a positive relationship with that of Hsp70s, while
the expression of 264 interactors was negatively correlated
with that of Hsp70s (Table 4).

Assessment of the PPIs of Hsp70s in rice
Two computational methods were used to evaluate the
overall quality of the above prediction. Randomized PPIs
were generated and used as a control.
First, the co-localization method was applied to assess

the Hsp70 PPIs. This method is based on the principle
that interacting proteins are more likely to localize to
the same cellular compartment than randomized pairs
[38]. The subcellular localization annotation of each
protein in rice was obtained from WoLF PSORT [39], a
stringent protein localization predictor based on experi-
mental data. All of the predicted Hsp70s interactors con-
tained subcellular localization annotations (Additional
file 2: Supplemental Data 1B). We found that 582 PPIs
(54% of 1,072 predicted PPIs) localized in common cel-
lular compartments. In contrast, the maximum number
of PPIs localized in the same subcellular compartment
in 1,000 randomly repeated networks was 553 (51% of
1,072 randomized PPIs) (Figure 5), which was sig-
nificantly lower than that of the predicted Hsp70 PPIs
(empirical p-value < 0.001).
Second, we used the co-function method to test the

overall quality of predicted Hsp70s PPIs. This method is
based on the assumption that interacting partners tend to
participate in the same cellular processes or share similar
functions [22,39]. The 6 Hsp70s contained four different
GO terms (GO:0044260, GO:0005524, GO:0051082 and
GO:0006457) in biological processes (BPs) or molecular
functions (MFs). The result showed that 385 of 430 pre-
dicted Hsp70 interactors had GO annotations (Additional
file 2: Supplemental Data 1B), and 300 of these interactors
(78%) shared at least one common GO term with Hsp70s.



Table 2 PCC between Hsps and heat responsive probe-sets in rice in response to abiotic stresses

Uniprot MSU-ID Family |PCC| with UP* |PCC| with DP* Average

Q6Z7B0 LOC_Os02g02410 Hsp70 0.8035 0.8622 0.8328

Q75GT3 LOC_Os03g31300 Hsp100/ClpB 0.8019 0.8614 0.8316

Q943E6 LOC_Os01g04380 sHsp 0.8016 0.8546 0.8281

Q10SR3 LOC_Os03g02260 Hsp70 0.7914 0.8579 0.8246

Q6K7E9 LOC_Os02g54140 sHsp 0.7871 0.8610 0.8241

Q0E3C8 LOC_Os02g08490 Hsp100/ClpB 0.7817 0.8551 0.8184

Q84J50 LOC_Os03g16040 sHsp 0.7956 0.8404 0.8180

Q10PW8 LOC_Os03g11910 Hsp70 0.7956 0.8401 0.8179

Q5Z9N8 LOC_Os06g50300 Hsp90 0.7755 0.8410 0.8082

Q6F2Y7 LOC_Os05g44340 Hsp100/ClpB 0.7590 0.8367 0.7978

Q8H903 LOC_Os10g32550 Hsp60 0.7810 0.8117 0.7963

P27777 LOC_Os01g04370 sHsp 0.7770 0.8101 0.7936

Q0E4A8 LOC_Os02g03570 sHsp 0.7541 0.8209 0.7875

Q67X83 LOC_Os06g11610 sHsp 0.7316 0.8028 0.7672

B7EZJ7 LOC_Os02g10710 sHsp 0.7341 0.7828 0.7585

Q6Z7V2 LOC_Os02g52150 sHsp 0.7264 0.7902 0.7583

Q9AQZ5 LOC_Os01g08560 Hsp70 0.7181 0.7938 0.7560

Q2QV45 LOC_Os12g14070 Hsp70 0.7471 0.7504 0.7488

Q84Q72 LOC_Os03g16030 sHsp 0.7313 0.7655 0.7484

Q10RW9 LOC_Os03g04970 Hsp60 0.7375 0.7393 0.7384

Q9LWT6 LOC_Os06g02380 Hsp60 0.7329 0.7338 0.7333

Q84Q77 LOC_Os03g15960 sHsp 0.6815 0.7351 0.7083

Q943K7 LOC_Os05g38530 Hsp70 0.6785 0.7363 0.7074

P31673 LOC_Os03g16020 sHsp 0.6464 0.6942 0.6703

Q0J4P2 LOC_Os08g39140 Hsp90 0.6045 0.6558 0.6301

Q7EZ57 LOC_Os07g33350 sHsp 0.6393 0.5777 0.6085

Q69QQ6 LOC_Os09g30418 Hsp90 0.5857 0.6165 0.6011

\ Global |PCC| CI_upper** \ \ 0.5842

\ Global |PCC| CI_lower** \ \ 0.5648

P0C031 LOC_Os06g44080 Ubq5/control 0.5547 0.4631 0.5089

Q943E9 LOC_Os01g04350 sHsp 0.4685 0.5228 0.4957

Q7X9A7 LOC_Os03g64210 Hsp60 0.5258 0.4232 0.4745

Q6AUW3 LOC_Os05g42120 sHsp 0.4727 0.3719 0.4223

Q10NA9 LOC_Os03g16860 Hsp70 0.4162 0.3292 0.3727

*UP: Probe-sets that were significantly up-regulated by heat treatments; DP: Probe-sets that were significantly down-regulated by heat treatments.
**CI_upper: upper bound of bootstrapped 95% confidence interval for global pairwise |PCC|; CI_lower: lower bound of bootstrapped 95% confidence interval.
Controls shown in BOLD.
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The proportion of predicted interactors sharing the
term GO:0044260, GO:0005524, GO:0051082 and
GO:0006457 were 243 (63%), 267 (69%), 22 (6%) and 30
(8%), respectively, significantly higher than that of 1,000
repeats of randomized Hsp70 interactors (empirical
p-value < 0.001) (Figure 6).
Identification of the binding sites of Hsp70s in rice
The above assessments provided strong support for the
reliability of the Hsp70 interactors predicted in this
paper. Therefore, we used these interactors as the posi-
tive dataset, and constructed a negative dataset com-
posed of 10,158 proteins that were less likely to interact



Figure 5 Number of predicted interaction pairs localized in the
same subcellular organelle. Black dots showed the number of
pairs localized to a common cellular compartment in the predicted
PPIs. Boxplot and scatter plots represented the distribution of the
number in 1,000 randomly repeated PPIs.

Table 3 Numbers of Hsps identified in this paper

Families sHsp Hsp60 Hsp70 Hsp90 Hsp100 Total

First step 23 4 8 3 3 41

Second step 14 4 7 3 3 31

Third step 12 3 6 3 3 27

First step: Proteins that were annotated as heat shock proteins and contained
the specific domains of heat shock proteins were downloaded from Uniprot
database; Second step: Hsp candidates, whose expression value was absent in
GSE6901 or GSE14275, were filtered out; Third step: Candidates, whose
expression patterns were strongly correlated with the patterns of the HR
probe-sets, were ultimately recognized as heat shock proteins.
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with Hsp70s. Since binding sites tend to occur more fre-
quently in interacting proteins than in non-interacting
proteins [40], we sought to detect over-represented do-
mains or motifs by comparing their frequency of occur-
rence in the two different datasets.
The annotations of rice protein domains were obtained

from Pfam [41]. We identified 102 domains of 397 proteins
in the positive dataset (Additional file 2: Supplemental
Data 1B), and 2,628 domains of 7,746 proteins in the
negative dataset. The number of negative samples was
much greater than that of positive samples (20:1). To
reduce this bias, we implemented one-tailed Fisher’s exact
test [42] to detect the over-represented domains in the
coordinated datasets (i.e., 397 positive samples versus 794
samples in the negative dataset; a ratio of 1:2), and used
the Benjamini and Hochberg (BH) method [43] to control
the false discovery rate (FDR). In addition, the above pro-
cedure was repeated 10 times by randomly changing the
negative samples. Finally, 13 domains were detected with
p-value lower than 0.05 in the 10 replicas (Additional file
3: Supplemental Data 2A). Similarly, we analyzed the
binding motifs of Hsp70s in rice. The motif annotations
were acquired from PROSITE [44,45]. There were 113
motifs in 404 proteins among the positive samples
(Additional file 2: Supplemental Data 1B), while there
were 1,071 motifs in 10,081 proteins among the negative
samples. Twenty-eight overrepresented motifs were
ultimately investigated (Additional file 3: Supplemental
Data 2B).

Functional analysis of Hsp70s in rice
It is expected that the functions of proteins can be de-
duced from their interactors. As mentioned above, among
the 430 interactors of Hsp70s, 385 have BP or MF GO
annotations (Additional file 2: Supplemental Data 1B).
Table 4 Number of Hsp70s interactors predicted by
Interolog and co-expression methods

+/− correlated with Hsp70s Interactors Interaction

Positively correlated 166 393

Negatively correlated 264 679

Total 430 1072
Furthermore, 147 interactors, whose expression levels
positively correlated with that of Hsp70s, contained 109
GO annotations. In contrast, the 238 interactors, whose
expression levels negatively correlated with Hsp70s, had
90 different GO annotations. The two distinct groups
were defined as Positively Correlated Interactors (PCIs)
and Negatively Correlated Interactors (NCIs). Using GO
enrichment analysis, we found that 24 BP GO terms and
five MF GO terms with p-values less than 0.05, were
enriched in the PCIs compared with that in NCIs
(Additional file 4: Supplemental Data 3A), suggesting that
these biological processes or functions would be induced



Figure 6 Percentage of interactors that had the same GO annotation as Hsp70s. Black dots represented the percentage of predicted
interactors that shared the same GO annotations as Hsp70s. The boxplot showed the distribution of that in 1,000 randomized repeats of
Hsp70s interactors.
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with the up-regulation of Hsp70s. Meanwhile, 23 BP GO
terms and 16 MF GO terms with p-values less than 0.05
were over-represented in the NCIs compared with that in
the PCIs (Additional file 4: Supplemental Data 3B), indi-
cating that these biological processes or functions would
be induced as Hsp70s down-regulation.

Construction of tools and riceHsp database
We constructed two databases, named Rice Heat Shock
Proteins (RiceHsps) and Rice Gene Expression Profile
(RGEP), and one online tool, named Protein-Protein
Interaction Predictor (PPIP). The RiceHsps was built to
store and show our predicted results in this paper. The
RGEP was constructed to store the integrated gene
expression data for rice subjected to abiotic stresses,
including drought, salt, cold and high temperature. It
also provided a function for identifier conversion among
Michigan State University Osa1 Rice Locus (MSU ID),
Rice Annotation Project Locus (RAP ID) and Affymetrix
Rice Genome Probe-set (Affymetrix ID) (Figure 7). The
tool PPIP was developed based on the interolog method.
Once the user uploads at least two protein sequences in
FASTA format into the text area, or a sequence file less
than 2 Mb, the corresponding orthologous protein pairs,
whose interaction has been verified by biochemical ex-
periments in the selected model organism, will be re-
trieved (Figure 8). These online databases and tool can
be accessible at http://bioinformatics.fafu.edu.cn.
Discussion
Heat shock proteins (Hsps) in rice
Using a combination of orthology and expression associ-
ation data, we identified 27 heat shock proteins, including
12 sHsps, 6 Hsp70s, 3 Hsp60s, 3 Hsp90s and 3 Hsp100/
ClpBs. Using an orthology-based strategy, Sarkar et al.
(2009) identified 23 sHsps in rice [11], 12 of which were
confirmed in this paper and showed a strong relationship
with HR probe-sets under abiotic stresses. According to
orthology- and expression level-based data, Singh et al.
(2010) discovered three Hsp100/ClpB proteins in rice
[12], which were consistent with the result of this paper.
We further noted that the expression pattern of the three
Hsp100/ClpBs closely resembled that of HR probe-sets
under abiotic stresses. Recently, Sarkar et al. (2013) iden-
tified 32 Hsp70 genes through sequence analysis and
orthology-based method [13], including all the six Hsp70s
in this paper. However, in this study, we not only
adopted the sequence and orthology information, but
also the gene expression association information to
identify true Hsps in rice. Given that similar proteins in
different species may have different functions, one has
to take into account that an orthology-based strategy
alone is not adequate to identify true Hsps in rice.
Furthermore, it is not reliable to screen Hsps for eva-
luating the gene expression levels of candidates in rice
in response to high-temperature stress, because some
Hsps express constitutively [3]. Therefore, we used a

http://bioinformatics.fafu.edu.cn


Figure 8 Screenshot of the PPIP website. (A) PPIP homepage. (B) The predicted result provided by PPIP.

Figure 7 Screenshot of the RGEP database. (A) The RGEP homepage. (B) Sample search result provided by RGEP.
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combination of orthology and expression association
data to identify a highly reliable Hsps in rice.

Binding sites of Hsp70s in rice
Investigating the binding sites of Hsp70s will provide
insight into the activity of those proteins and improve our
ability to predict the potential risks of a particular muta-
tion. In this study, we identified 13 domains and 28 motifs
that occurred more frequently in the positive dataset than
in the negative dataset, suggesting that these sequences
are potential target sites for Hsp70s in rice. The results
were partially supported by biochemical experiments con-
ducted in previous studies. For instance, our results
showed that the J-domain (PF00226, PS50076) of DnaJ/
Hsp40 was the binding site for DnaK/Hsp70. By point
mutation analysis, Wall et al. (1994) demonstrated that
the J-domain interacted with DnaK and regulated DnaK
activity [46]. Suh et al. (1998) found that the ATPase do-
main of DnaK was a binding pocket for the J-domain [47].
Horne et al. (2010) suggested that the fusion of the J-
domain with p5 (Jdp5) could dramatically stimulate ATP
hydrolysis by DnaK, and NMR studies on Jdp5 further in-
dicated that the peptide tethered the J-domain to the
ATPase domain of DnaK [48].
Figure 9 PPI network of Hsp70s in rice. (A) Sub-network A: Macromolec
(C) Sub-network C: Innate Immunity. ETI, effector - triggered immunity proc
Photosystem II repair. (E) Sub-network E: Protein kinase activities. Red curve
indicated potential interactions detected in this paper.
Therefore, the results of this study provided useful
clues for experimental biologists in further analyzing the
function of Hsp70s.
The Hsp70 interaction network in rice
The Hsp70s network was shown in Figure 9, and de-
scribed in the following sections. We classified the inter-
action network into five sub-networks.
Sub-network A: Macromolecular translocation
Our results showed that the small GTPase Ran (LOC_
Os01g42530), importin α (LOC_Os01g14950, LOC_Os05g
06350) and importin β (LOC_Os05g28510) could bind to
Hsp70s. Hsp70 and importin β were previously identified
as Ran-interacting proteins (Rips) [49]. The results of this
study indicated that the Ras family domain (PF00071) and
ATP/GTP-binding site motif A (P-loop) (PS00017) of the
small GTPase Ran were potential interacting sites of
Hsp70s. Furthermore, the expression of Ran and importin
proteins was strongly correlated with that of Hsp70s
(PCC > 0.90) under abiotic stresses (Additional file 5:
Figure S1; Additional file 1: Table S5). We then construc-
ted a protein-protein interaction network consisting of
ule localization. (B) Sub-network B: Carbohydrate metabolism.
ess; PTI, PAMP-triggered immunity process. (D) Sub-network D:
s indicated known and published interactions, whereas blue curves
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Hsp70s, GTPase Ran and importin proteins in rice
(Figure 9A).
Importin α recognizes the nuclear localization signal

(NLS) of nuclear proteins in the cytoplasm, forming a
stable complex termed the nuclear pore-targeting com-
plex (PTAC) [50,51]. Importin β docks the PTAC to the
cytoplasmic face of the nuclear pore complex (NPC) [52],
a channel for macromolecules into the nucleus [53]. In
addition, the hydrolysis of GTP by the small GTPase Ran
has been shown to be essential for the translocation of
docked PATC into the nucleus [54]. Therefore, the inter-
action network between Hsp70s, GTPase Ran and impor-
tin proteins in rice might be involved in translocation of
macromolecules. Shulga et al. (1996) stated that Hsp70
could act as a molecular chaperone to promote the
formation and stability of the nuclear localization signal-
containing complex during both targeting and transloca-
tion phases of nuclear transport [55].

Sub-network B: Plant carbohydrate metabolism
The results of this study revealed that Hsp70s interac-
ted with enolase (LOC_Os09g20820), fumaratehydratase
(LOC_Os03g21950), malate dehydrogenase (LOC_Os07
g43700, LOC_Os01g61380, LOC_Os05g49880) and citrate
synthase (LOC_Os02g10070), which were constructed in
sub-network B (Figure 9B). Most of these potential inter-
actions have been partly validated by previous studies. In
vitro studies indicated that Hsp70 might assist in trans-
porting fumaratehydratase between the cytosol and mito-
chondria [56]. Furthermore, it has been reported that the
Hsp70 complex significantly increased the spontaneous
rate of refolding of denatured mitochondrial malate
dehydrogenase [57]. Hsp70s have also been demonstrated
to reduce the aggregation of citrate synthase under heat
stress [58]. Recently, through co-immunoprecipitation
(CoIP) assays, Luo et al. (2011) further confirmed that
Hsp70 could directly interact with α-enolase [59].
Our results indicated that the expression levels of

Hsp70s were positively and strongly correlated with that
of enolase, fumaratehydratase, malate dehydrogenase
and citrate synthase in response to abiotic stresses
(Additional file 5: Figure S2; Additional file 1: Table S6),
implying that Hsp70s might have essential functions in
stimulating carbohydrate metabolism by regulating the
activity of those key enzymes. In a metabolomics study,
Kaplan et al. (2004) also found that carbohydrate
metabolism was affected by heat shock in Arabidopsis
[60]. The amount of pyruvate and oxaloacetate in-
creased coordinately upon heat shock, while the fumar-
ate and malate (oxaloacetate precursors) contents were
similarly elevated, suggesting that the Embden-
Meyerhof-Parnas (EMP) pathway and tricarboxylic acid
cycle (TCA) cycle would be enhanced by abiotic
stresses.
Sub-network C: plant innate immunity
In this study, we found that Hsp70s might cooperate with
members of the small GTPaseRac family (LOC_Os01
g12900, LOC_Os02g02840, LOC_Os02g20850), Hsp90
(LOC_Os06g50300, LOC_Os08g39140), SKP1 (LOC_Os
09g36830) and MAPK6 (LOC_Os06g06090), as shown in
Figure 9C. Hsp70, Hsp90 and RAR1 have been docu-
mented as the components of Rac1 complex in rice, based
on CoIP experiments [61]. Moreover, multiple lines of
evidence have shown that Hsp70 was a negative regulator
of ASK1/MAP3K, and overexpression of Hsp70 inhibited
the MAPK signaling cascade, which was associated with
apoptosis [62-64]. Consistent with previous studies, our
results further illustrated that the expression level of
Hsp70s was positively correlated with that of Rac, Hsp90
and SKP1, and negatively correlated with that of MAPK6
in response to abiotic stresses (Additional file 5: Figure S3;
Additional file 1: Table S7). Furthermore, in addition to
Rac (PF00071 and PS00017, PS51420), MAPK6 (PF00069
and PS50011, PS00108, PS00107, PS01351) also contained
potential binding sites for Hsp70s.
Previous reports have shown that Hsp90 and two co-

chaperone-like molecules, RAR1 and SGT1, performed a
key role in effector-triggered immunity (ETI), the second
line of the plant defense system [61,65,66]. Additionally,
in vitro studies have indicated that SGT1 can interact with
SKP1 and link it to the Hsp90 co-chaperone complexes
[67]. Further research found that the SKP1-CULLIN1-F-
box (SCF) complex regulated the stability of resistance (R)
proteins [68], suggesting that SKP1 might also be involved
in the ETI response. In addition, the small GTPase
Rac could function as a critical switch downstream of
two types of innate immunity: PAMP-triggered immunity
(PTI) and effector-triggered immunity (ETI) [66]. This
finding was recently supported by Jung et al. (2013). They
found that the OsctHsp70-1 had a functional association
with Ras/Raf-mediated MAPK kinase cascades [14].

Sub-network D: photosystem II repair
Sub-network D showed that Hsp70s might interact with
FtsH families (LOC_Os06g51029, LOC_Os01g62500 and
LOC_Os01g43150) (Figure 9D). Indeed, this interaction
has been previously confirmed by Shen and colleagues
[69]. In this study, we found that there was a close posi-
tive correlation (PCC > 0.90) between the expression of
Hsp70s and FtsH families in rice subjected to abiotic
stresses (Additional file 5: Figure S4; Additional file 1:
Table S8). The AAA-protein family signatures (PF00004,
PS00674) of FtsH proteins were identified as potential
target sites for Hsp70s. Previous showed that FtsH fa-
mily members played an important role in the D1 repair
cycle of PSII [70-72]. Using native gel electrophoresis,
Yokthongwattana et al. (2001) revealed that Hsp70s
could form a complex with intact D1 protein and also
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with D2 and CP47 [73], suggesting Hsp70s have a func-
tion in the photosystem II (PSII) repair cycle.

Sub-network E: protein kinase activities
In this study, we found that nearly 46% of the Hsp70 inter-
actors (197 out of 430) contained protein kinase domains,
including protein kinase C (PKC), protein kinase A (PKA),
apoptosis signal-regulating kinase/mitogen-activated pro-
tein kinase kinasekinase (ASK/MAP3K), mitogen-acti-
vated protein kinase kinase (MAP2K), mitogen-activated
protein kinase (MAPK), cyclin-dependent kinase (CDK),
Ca2+-dependent protein kinase (CDPK), CBL-interacting
protein kinase (CIPK), osmotic stress/abscisic acid-acti-
vated protein kinase (SAPK) and wall-associated kinase
(WAK) family members. Furthermore, our results showed
that the expression level of approximately 81% of those
protein kinases (159 out of 197) had a strong negative
correlation (PCC < −0.90) with that of Hsp70s. This was
consistent with previous studies. Hsp70s were reported
to directly interact with PKC, ASK/MAP3K and CDK
[63,74,75], and inhibit the activities of jun amino-
terminal kinase (JNK), ASK/MAP3K, MAPK and CDK
[3,63,74-76]. Ding et al. (1998) have shown that over-
expression of Hsp70 significantly suppressed the en-
zymatic activities of PKA and PKC [77]. Therefore, it is
likely that Hsp70s indiscriminately down-regulate the
activity of various protein kinases.

Conclusions
By integrating orthology and functional association data,
we identified 27 Hsps in rice, including 12 sHsps, 6
Hsp70s, 3 Hsp60s, 3 Hsp90s and 3 Hsp100/ClpBs. Then,
using Hsp70s as a case study, we identified 430 interactors
of Hsp70s in rice by combining interolog- and expression
profile-based methods. According to the interactors of
Hsp70s, we investigated the potential binding sites of
Hsp70s, and analyzed the interacting network of Hsp70s
in rice. Finally, we constructed two online databases and
one tool, which could be accessed at http://bioinformatics.
fafu.edu.cn/.

Methods
Data sources
Rice sequence data
Rice proteome sequences were obtained from the Rice
Genome Annotation Project (RGAP version 6.0; http://
rice.plantbiology.msu.edu/) [78].

Yeast interaction data
Eight hundred and thirty-seven experimentally verified
protein-protein interaction (PPI) pairs related to Hsps in
yeast (Additional file 1: Table S2) were manually selected
from the Database of Interaction Proteins (DIPs version
20101010; http://dip.doe-mbi.ucla.edu/dip/).
Microarray dataset
Gene expression data for rice subjected to drought, salt,
cold or heat treatments were downloaded from GEO (ac-
cession number GSE6901 for drought, salt and cold treat-
ments, and GSE14275 for heat treatment). All data were
obtained using the same microarray platform (Affymetrix
GeneChip Rice Genome Array; platform accession num-
ber GPL2025) and rice seedling samples (Table 1).

Microarray analysis
Preprocessing of microarray data
The impute package (version 1.22.0) [31,79] in Bioconduc-
tor [80] was used to estimate missing expression data. In
addition, probe-sets, whose expression value was absent in
GSE6901 or GSE14275, were filtered out. Furthermore, a
robust scatterplot smoother (LOWESS) [81] in R software
(version 2.10.1) [82] was used to perform intensity-
dependent within-slide normalization [83]. The Limma
package (version 3.2.0) was implemented to scale mul-
tiple-slide normalization [84].

Heat-responsive probe-sets detection
Boxplot [32,33] in R was implemented to identify heat-
responsive (HR) probe-sets. Probe-sets with M-values
(log ratios) located beyond the upper or lower fence of
the boxplot were considered as HR gene probe-sets.

Estimation of the global median absolute value of Pearson
Correlation Coefficient (PCC)
The bootstrap method [34] was used to evaluate the me-
dian absolute value of PCCs between the expression levels
of any two probe-sets among GeneChips. First, 10,000
non-redundant probe pairs were randomly selected, and
the absolute PCC between each pair was computed. Based
on these 10,000 PCC values, 100,000 bootstrap samples
were built by sampling with replacement to measure the
95% confidence interval of the global median absolute
value of PCC.

Identification of rice Hsps
Rice candidate Hsps were selected from the Uniprot data-
base. These sequences satisfied the following criteria: (1)
they possessed the conserved domains of Hsps (Additional
file 1: Table S1); (2) they were functionally annotated as
Hsps or involved in similar biological processes; (3) the se-
quence length was in agreement with the molecular mass
of different Hsp family members; (4) Evidence at RNA or
protein expression level; and (5) they were identified as
Hsps in the MSU Rice Genome Annotation Project. After
that, their corresponding Affymetrix IDs were retrieved
from Ricechip.org (http://www.ricechip.org/). R software
was used to calculate the PCC values between expression
data of each candidate Hsp and HR gene probe-set.

http://bioinformatics.fafu.edu.cn/
http://bioinformatics.fafu.edu.cn/
http://rice.plantbiology.msu.edu/
http://rice.plantbiology.msu.edu/
http://dip.doe-mbi.ucla.edu/dip/
http://www.ricechip.org/
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Prediction of proteins interacting with Hsp70s in rice
Interolog approach
For each experimentally verified PPI of Hsps, the pair-
wise amino acid sequence was locally run through
BLASTP (version 2.2.23+) [85] against the entire rice
proteome in an effort to identify orthologs in rice. The
E-value cutoff, identity and alignment coverage were set
at 10−10, 30% and 40%, respectively. Based on the core
principle of interolog [19,21], corresponding orthologous
pairs in rice were predicted to interact with each other.
Briefly, if two interacting proteins, A and B, in yeast had
the corresponding orthologs A’ and B’ in rice, respec-
tively, A’ might interact with B’.

Expression profile-based method
For each PPI predicted by interolog, we determined the
absolute value of PCC between the corresponding gene
expression data. R software was used to calculate the
PCC values. Generally, the PCC values ranged from −1
to 1. A value of 1 indicated that the gene expression
level of protein A would increase as that of protein B in-
creased. In contrast, a value of −1 implied that the gene
expression level of protein A would decrease as that of
protein B increased. A value of 0 implied that there was
no linear correlation between the expressions of these
two genes. If the absolute value was less than 0.90, the
PPI was filtered out.In addition, t-test was utilized to
evaluate whether the paired PCC value was significantly
greater or less than 0.

Assessment of PPIs of Hsp70s in rice
Protein localization method
Subcellular localization information of proteins in rice
was obtained from WoLF PSORT [39]. In addition,
1,000 randomized networks, in which the interacting
partners of Hsp70s were randomly replaced by other
proteins containing meaningful subcellular localization
annotations in the rice proteome, were used as a control.
The above process was repeated 1,000 times.

Function similarity method
The GO annotations of proteins in rice were downloaded
from agriGO (http://bioinfo.cau.edu.cn/agriGO/download.
php) [86]. Furthermore, 1,000 randomized repeats of
Hsp70 interactors were generated. The predicted interac-
tors of Hsp70s were randomly replaced by other proteins
possessing GO annotations in the rice proteome. The
above procedure was repeated 1,000 times.

Identification of binding sites of Hsp70s in rice
Non-interactors dataset
Non-interactors of Hsp70s were used as negative con-
trols. These proteins were collected from the rice pro-
teome, and satisfied the following conditions: first, they
could not interact with Hsp70s, based on the interolog
prediction; and second, the absolute PCC value between
the expression level of the non-interactor and that of
any Hsp70 should be less than 0.40.
Domain assignment
The domain information of rice proteins was obtained
from Pfam (http://pfam.sanger.ac.uk/) [41]. Because of
the large number of sequences, we ran the PfamScan
program (version 091007) [41] and HMMER package
(version 3.0b3) [87] locally. Rice protein sequences were
searched against Pfam-A domains in PfamScan data-
bases (version 24.0) with an E-value cutoff of 0.0001.
Motif assignment
The motif annotations of proteins in rice were acquired
from PROSITE (http://prosite.expasy.org/) [45]. The Scan-
Prosite tool [44] was downloaded and applied locally to
scan protein sequences against the PROSITE database
(version 20.67).
Fisher’s exact test
A one-tailed Fisher’s exact test was used to detect the
over-represented domains and motifs among the Hsp70s
interactors in rice compared with the negative interac-
tors. For each domain or motif annotation, a 2 × 2 con-
tingency table was constructed, as shown in Additional
file 1: Table S4. Then, R software was used to calculate
the p-value to measure the significance level.
Multiple testing
To limit the false-positive error rate associated with mul-
tiple statistical tests, R software was further used to alter
each p-value into the corresponding adjusted p-value
based on the BH method [43]. Ultimately, the adjusted
p-value was used to determine the potential binding sites.
A cutoff value of 0.05 was used in this work.
Hsp70 network in rice
GO enrichment
The GO information of the predicted Hsp70 interactors
in rice was obtained from agriGO (http://bioinfo.cau.
edu.cn/agriGO/). For each GO term, all parent nodes
were retrieved according to the archive of the GO data-
base, and the minimum distance from the root (depth)
was determined. Only terms beyond the fourth depth
were considered. After that, fisher’s exact test was con-
ducted to reveal the over-represented GO terms in the
opposite dataset, and the BH method was used to con-
trol the false discovery rate (FDR). The Hsp70 network
was generated using Cytoscape (http://www.cytoscape.
org/) [88].

http://bioinfo.cau.edu.cn/agriGO/download.php
http://bioinfo.cau.edu.cn/agriGO/download.php
http://pfam.sanger.ac.uk/
http://prosite.expasy.org/
http://bioinfo.cau.edu.cn/agriGO/
http://bioinfo.cau.edu.cn/agriGO/
http://www.cytoscape.org/)
http://www.cytoscape.org/)
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Construction of tools and the rice Hsps database
The web tools and rice Hsps database were constructed on
a LAMP (Linux, Apache, MySQL and PHP) platform. RGEP
visualization was developed using two types of open source
software, Open Flash Chart (http://teethgrinder.co.uk/open-
flash-chart/) and Google Chart Tools (https://developers.
google.com/chart/).
Additional files
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