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Abstract

Background: V(D)J recombinations in lymphocytes are essential for immunological diversity. They are also useful
markers of pathologies. In leukemia, they are used to quantify the minimal residual disease during patient follow-up.
However, the full breadth of lymphocyte diversity is not fully understood.

Results: We propose new algorithms that process high-throughput sequencing (HTS) data to extract unnamed V(D)J
junctions and gather them into clones for quantification. This analysis is based on a seed heuristic and is fast and
scalable because in the first phase, no alignment is performed with germline database sequences. The algorithms
were applied to TRγ HTS data from a patient with acute lymphoblastic leukemia, and also on data simulating
hypermutations. Our methods identified the main clone, as well as additional clones that were not identified with
standard protocols.

Conclusions: The proposed algorithms provide new insight into the analysis of high-throughput sequencing data
for leukemia, and also to the quantitative assessment of any immunological profile. The methods described here are
implemented in a C++ open-source program called Vidjil.

Keywords: Sequence analysis, High-throughput sequencing, V(D)J recombinations, Repertoire sequencing,
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Background
V(D)J recombinations. V(D)J recombinations in lympho-
cytes are essential for immunological diversity because
they influence the production of antibodies and antigen
receptors [1,2]. VDJ recombinations occur in B-cell heavy
chains (IgH) and T-cell β and δ chains (TRβ and δ),
whereas VJ recombinations occur in B-cell light chains κ

(Igκ) and λ (Igλ), and T-cell α and γ chains (TRα and γ ).
The total repertoire of immunoglobulin (Ig) and T-cell

receptor (TR) molecules is estimated to include nearly
1012 molecules, resulting from combinatorics of V(D)J
recombinations, somatic mutations, deletions at junction
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sites, and the addition of N-diversity regions between the
rearranged genes [3] (see Figure 1). A study found at least
one million recombinations among the T cells in a single
blood sample from one patient [4].
Acute lymphoblastic leukemia (ALL). Acute lym-

phoblastic leukemia is a lymphoid malignancy mainly
affecting children. In more than 90% of cases, a recom-
bined Ig or TR junction fingerprint of the blastic cells
can be identified easily at diagnosis. This clonality marker
is used during patient follow-up to quantify the minimal
residual disease [3,5].
The survival rate of ALL patients has improved in

recent decades thanks to its accurate diagnosis and better
therapeutic stratification according to prognostic factors.
These prognostic factors can be determined at the time
of diagnosis, but also throughout the follow-up period
when the minimal residual disease is monitored after
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Figure 1 An V(D)J recombination in a lymphocyte derives from
two (or three) germline V, (D), and J genes that may have been
truncated or mutated. The N-diversity regions correspond to
random nucleotides inserted between the rearranged genes. Typical
V genes are between 250 and 310 bp, D genes between 10 and 35
bp, and J genes between 40 and 70 bp.

therapy. Monitoring requires the analysis of both lym-
phoid cells (lymphoblasts) and normal lymphocytes in the
peripheral blood, and these cells are counted according
to their V(D)J recombinations. For better follow-up effi-
cacy, clonal recombinations must be detected at lower
concentrations than are possible with current techniques
(Biomed-2 and qRT-PCR [3], or flow cytometry [6]). More
importantly, current techniques are not adapted to follow
populations of various clones [7]. Consequently, they are
unable to detect a relapse attributable to a clone other than
the one identified at diagnosis.
Software for V(D)J recombination analysis. The inter-

national ImMunoGeneTics information system (IMGT®)
has developed several tools for the in-depth analysis of
V(D)J recombinations [8-12]. Many software focuses on
V(D)J segmentation, identifying the V, D, and J regions
in a sequence. The available V(D)J segmenters per-
form sequence alignments against full germline databases
(JoinSolver [13], V-QUEST [9], HighV-QUEST [11]),
possibly with some alignment heuristic ([14], IgBlast
[15]), models such as hidden Markov models (HMMs)
(iHMMune-align [16], SoDA2 [17]), or maximum-
likelihood-based techniques (VDJSolver [18]). A short
benchmark of some of these tools has been published [19],
but there is the need for more complete and independent
evaluation.
V(D)J analysis of high-throughput sequencing data. Since

2009, several studies have investigated V(D)J repertoires
with high-throughput sequencing, in animals [20-22] and
humans, to explore repertoire diversity [4,14,23] or in
leukemia patients at follow-up [24-28].
Several of those studies used 454 pyrosequencers, which

produce long reads but with a lower throughput than
some other sequencers. Recently, the study [29] estimated
clonal diversity with a pipeline involving IMGT/HighV-
QUEST [11], gathering into a “IMGT clonotype (AA)”
sequences following a unique V(D)J rearrangement and a
unique junction sequence.
Studies that have taken advantage of the higher through-

puts available with some Illumina sequencers, such as
[4,30,31], had to deal with incomplete short reads that

did not contain the whole recombination. Several short
reads had to be assembled to obtain longer reads cov-
ering the whole recombination, requiring that the reads
were sufficiently redundant. One recent study that used
Illumina sequencing [26] focused on leukemia follow-up
on the human immunoglobulin heavy chain. The study
[26] accommodated the short reads by sequencing 115
bp from J to V and then 95 bp inside the V region. It is
unclear whether such a strategy can be extended to all Igs
or TRs. Moreover, these researchers did not provide any
software.Wu et al focused on T cells to assess theminimal
residual disease in leukemia patients, using an Illumina
Hi-seq [32].
Advances in high-throughput sequencing will allow the

detection of clones at lower concentrations than is pos-
sible with conventional techniques in the study of V(D)J
repertoires. More importantly, it will allow multiclone
follow-up and the detection of emerging subclones at
diagnostic concentrations far below that of the main
clone identified at diagnosis, as well as full repertoire
analysis [33-35]. However, these advances in “repertoire
sequencing” (Rep-Seq) make the development of algo-
rithms and software that can accommodate gigabytes of
data imperative [36]. The need for dedicated software is
all the more necessary because standard HTS read map-
ping tools are useless in this context. They cannot deal with
reads containing recombinations, somatic mutations, or
large insertions, and therefore a large amount of data —
the most useful! — is lost. Finally, the results expected of
such an analysis are not the raw V(D)J segmentations of
millions of reads; these sequences must be clustered for
clone quantification. Again, generic clustering tools can-
not be used, because sequences with very small differences
can be derived from different clones, especially if these
differences occur in N-diversity regions.
A solution is to cluster sequences taking advantage

of the V(D)J segmentation. On immunoglobulin heavy
chains, Chen et al proposed a clustering based on the
results of iHMMune-align, implemented in the Clon-
alRelate software [37]. The clustering is based on a
Levenshtein distance between CDR3 sequences that fur-
ther takes into account the VJ assignation produced by
iHMMune-align. The complete method has a quadratic
time complexity in the input size. In another study,
Laserson et al followed the dynamics of the immune
response after vaccination, by partitioning the reads on
the VJ recombinations (obtained with IMGT/V-QUEST),
and by using a sequence-based clustering [38].
Our contribution. The tools cited above were primar-

ily designed to study a few V(D)J sequences, and some
of them take several hours to process millions of reads.
We argue that full V(D)J segmentation on these quan-
tities of reads is unnecessary, and that a better strategy
for clonality studies is to first cluster the reads derived
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from the same clone before the time-consuming V(D)J
segmentation.
Therefore, we propose a two-stage strategy. We first use

an ultra-fast window prediction, where a heuristic analysis
outputs a window overlapping the third complementarity-
determining region (CDR3) with the V(D)J junction. We
then produce a clustering of the clones, based on the simi-
larity of their windows, and then compute a representative
sequence for each clone. This sequence can be further
processed, possibly with existing analysis software, to
obtain its full V(D)J segmentation and other noteworthy
information.
This strategy is implemented in an open-source soft-

ware called Vidjil. Not computing the complete segmenta-
tion on each read allows huge time gains. Vidjil processes
datasets with 100,000 reads in less than 1 minute on a lap-
top computer, including the de novo quantification of all
themain clones.We also show that the predicted windows
are specific enough for individual VJ recombinations to
be safely clustered. They ensure a high-qualitymulticlonal
analysis: We provide evidence for this quality on TRγ

chains. We further test simulated data with additional
mutations. Indeed, extracting such windows corresponds
to what is done with conventional PCR primers specif-
ically designed for one recombination. The method is
independent of the number of reads, but the more reads
that are sequenced, the lower the detection threshold
will be.
Note also that the read length from a high-throughput

sequencer with sufficient throughput for studying V(D)J
diversity does not always cover the full V(D)J rearrange-
ment (more than 400 bp). This problem might be cir-
cumvented by randomly fragmenting full-length DNA
segments. Our method allows us to analyze randomly
fragmented PCR products by focusing on windows rather
than on the full read length.

Methods
Dataset preparation and sequencing
Bone-marrow samples taken from a patient at diagno-
sis and after treatment were obtained from the tissue
bank “Tumorothèque du Centre de Référence Régional en
Cancérologie de Lille (CRRC)” which certified cell cryop-
reservation quality. Approval for this study was obtained
from the Institutional Review Board of CHRU of Lille
(CSTMT093) and was in accordance with the Declaration
of Helsinki regarding the informed consent of patients.
A written informed consent was obtained from the
patient.

DNA extraction and PCR
We sequenced the bone-marrow samples taken from a
patient with B-cell acute lymphoblastic leukemia (B-ALL)

showing a TRγ rearrangement. The samples were taken
at diagnosis and at three different points during the
therapeutic follow-up: Fu-1 (35 days), Fu-2 (122 days) and
Fu-4 (207 days). Mononuclear cells were isolated from
the bone marrow with a Ficoll system, and the genomic
DNA was extracted from the lymphoblastic cells with
the QIAamp® Mini Kit. DNA was quantified with the
NanoDrop 2000 system®. We also constructed a dilution
scale, starting with the sample taken at diagnosis and
serially diluting it 10-fold five times. The PCR used was
based on the Biomed-2 guidelines [3]. The IgH, Igκ , and
TRγ and δ recombinations were explored with multiplex
PCR (but not the Igλ or TRα and β recombinations).
Because the TRγ PCR Vg1-10 was positive at diagno-
sis, we used the primer set {Vg1, Vg10, J1J2, JP1/2} for
this study (Vg1 5’-GGAAGGCCCCACAGCRTCTT-3’, Vg10
5’-AGCATGGGTAAGACAAGCAA-3’, J1J2 5’-GTGTTGTTCC
ACTGCCAAAGAG-3’, JP1/2 5’-TTACCAGGCGAAGTTACTA
TGAGC-3’). 500 ng of DNA was used for the amplifica-
tion of each target in a 96-well GeneAmp® PCR System
9700 thermocycler controlled by agarose gel electrophore-
sis. The PCR products ranged in size from 100 bp
to 390 bp.

Library preparation
The amplicons were first purified with Qiagen PCR
MinElute. We then applied the Amplicon Concatenation
Protocol 03/2012 from Life Technologies included with
the SOLiD Fragment Library Construction Kit. We end-
repaired 300 ng of each amplicon, and then purified them
with the SOLiD Library Column Purification Kit. The
amplicons were then ligated with T4 ligase and puri-
fied with the SOLiD Library Column Purification Kit.
The concatenated amplicons (100 ng) were then sonicated
with the Covaris system (six cycles, 10% duty cycles, inten-
sity 5, 100 cycles per burst, time 60 s). The fragmented
DNA was then processed with the Ion Xpress Plus gDNA
and Amplicon Library (01/31/2012), with slight modifi-
cations. The SizeSelect Gel (from Life Technologies) was
cut at 330 bp and the amplification step was performed
with eight cycles. Independent samples were pooled in dif-
ferent amounts to achieve different sensitivities and then
processed with PCR on the OneTouch system from Life
Technologies. The libraries were sequenced on a Ion Per-
sonal Genome Machine (PGM) system with 200-bp kit
chemistry.

Primary analysis
The raw Ion Torrent flow was transformed to demul-
tiplexed sequences with the Torrent Server from Life
Technologies. As PCR Biomed-2 PCR fragments were
concatenated by ligation, each sequence was then split
into subfragments based on the identification of a known
multiplex PCR primer.
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Algorithm overview
To quantify the clonotype abundances starting from a set
of reads, the method proceeds through the following two
stages:

• the ultrafast prediction of short zones called
w-windows, which are regions of length w
overlapping the third complementarity-determining
region (CDR3); this prediction is based on substrings
(“k-words”);

• the identification and clusterization of the clones
(relying solely on these w-windows), followed by a
refined V(D)J segmentation on a representative read
inside each clone.

Note that the “sequence assignment” of [14] also used
a step based on substrings. However, in that study, the
authors eventually computed a full alignment of each gene
to the corresponding germline database.

Ultrafast CDR3 prediction
The purpose of this heuristic analysis is to extract from
a read a sequence of length w, called the w-window,
that overlaps the actual CDR3. Our goal is to center the
w-window as much as possible on the junction region,
predicting a window that also contains the 3’ extremity of
the V region and the 5’ extremity of the J region.
This analysis is performed in two steps. The first con-

sists of indexing the germline V and J gene databases, and
the second is performed on each read and extracts the w-
window using the information stored in the index. This
analysis is very fast and scalable, because no alignment
with germline sequences is required.

Indexing step
This index is built once at runtime. It could be precom-
puted and loaded from disk when necessary. Because the
germline databases are very small (a few hundred thou-
sand base pairs, at most), it is not difficult to recompute
them, and takes only a few seconds.
The index is built on subsequences of length k, called “k-

words”. Every k-word from the germline genes is indexed
with a specific label: either V (or J), when the k-word is
unique to the V (or J) germline (possibly occurring in dis-
tinct sequences from the same germline), or ambiguous
when the k-word is common to both V and J germline
genes. The value of k is chosen so that such ambiguous
words are very rare; by default, k is between 10 and 13,
depending on the germline. For these small values of k, the
index can be stored as a flat table of size 4k . Therefore, the
index creation runs in time O(r + 4k), where r is the total
size of the germline database. For larger values of k, the
index is stored as a hash table.

Prediction step
During the second step, each read is considered sep-
arately (see Figure 2). We start with the first k-word
from the read and using the index, we retrieve the value
corresponding to that k-word and to its reverse comple-
ment. We do so for each k-word in the read, determin-
ing whether the k-word is in the V germline, in the J
germline, in both, or in neither of them, and on which
strand.
At this point, we discard any reads that show an ambigu-

ity, namely reads containing many k-words from forward
and reverse strands, or reads whose k-words are on the
forward strand but where V k-words appear after J k-
words (and conversely for the reverse strand). To work
properly, this rule requires that the V and J germline
genes do not share any k-words. Hence this constraints
the choice of k. We must also discard reads for which we
have insufficient information: reads that do not have k-
words found in both the V and J germline genes (Figure 2,
lower middle).
Finally, the w-window must lie between the last V k-

word and the first J k-word (Figure 2, top and middle).
Therefore, we extract a w-length region centered on that
position. The length of the extracted region is a parameter
that can be modified by the user. It is set at 40 by default
for VJ recombinations. Altogether, the w-window predic-
tion step extracts a window in a time that is proportional
to the size of the read.

Spaced seeds
A further optimization strategy involves using spaced
k-words, which improve the sensitivity for a fixed
specificity [39]. For example, in the spaced 10-word
#####-#####, the dash corresponds to a don’t-care sym-
bol. When extracting a subsequence of length k + 1 =
11, the middle letter is ignored to form a sequence of
length k = 10. This spaced 10-wordminimizes the predic-
tion error in the center of the window when there is one
substitution (Figure 2, bottom).

Read clusterization usingw-windows
Clonal windows clusterization
The prediction step extracts one w-window per read, at
most. If there is no sequencing error, all the extracted w-
windows for the same clone are strictly identical (Figure 2,
top). However, they may not be exactly centered on the
actual V(D)J recombination if there are some variants
compared with the germline database.
The extracted w-windows are then sorted and counted.

The relative abundance of each clonotype is then esti-
mated using the number of reads with the same w-
window. The most abundant clones are kept for detailed
analysis.



Giraud et al. BMC Genomics 2014, 15:409 Page 5 of 12
http://www.biomedcentral.com/1471-2164/15/409

V V V V V V

kPredicted V
×

Substitution

V V V V V J J J J J J J J J J J
Predicted JExtracted window

w

V V V V V V V V V V V V V
Predicted V

×

Substitution

J J J J J J J J J J J
Predicted JExtracted window

< k

V V V V V V V V V V V V V V V V V V V V V
Predicted V

× ×
Substitutions

No predicted J

V V V V V V V V V V V V V V V V V V V V
Predicted V

×J ×
Substitutions

Predicted JExtracted window

Figure 2 Heuristic finding aw-window on the forward strand from a scan of k-words in VJ recombinations. Detection on the reverse strand
is done in a similar way, and detection in VDJ recombinations is also based on the V and J genes. The labels V and J indicate the beginning of
matching k-words in the index. (Top). The window is correctly centered on the N region (which is between the actual V and the actual J regions).
There is one mutation (or sequencing error), denoted by ×, far from the 3’ end of the V region. (Upper middle). A mutation or an error in the k
rightmost base pairs from the V region leads to a small error in the w-window prediction. However, the end of the V region is predicted with an error
that is less than or equal to k. Because we use large values of w, parts of the V and J regions are still contained within the extracted w-window.
(Lower middle). When there are too many errors compared with the size of the germline gene, the heuristic is unable to predict a w-window. This
may happen particularly with the J gene, which is shorter than the V gene. For this to occur, mutations must be separated from each other by less
than k bp. (Bottom). Spaced seeds improve the sensitivity of the heuristic. The spaced 10-word #####-##### leads to the recognition of k-words
as soon as the mutations are separated by at least k/2 bp.

Additional clusterization
Sequencing errors may lead to different w-windows that
should be gathered in a unique clone (Figure 2, top and
upper middle). We recommend the manual inspection
of the most abundant clones, because it is then possi-
ble to specify in the software pairs of similar windows
that must be gathered for analysis. We also provide, as
an option, automatic clustering, where two junctions are
considered similar if their edit distance is bounded by
some parameters.

Computation of representative sequences
The previous steps identified clones as a set of reads
sharing the samew-window (or similarw-windows if addi-
tional clusterization has been used). We then select one
representative sequence per clone, and thus compute only
one V(D)J segmentation per clone. Because this segmen-
tation will be used to label all the reads of the clone, we
must select the representative sequence carefully.
To do so, we start by counting all the k-mers of reads

belonging to a given clone. This is done using a hash
table. We call any subsequence of a read whose k-mers are
present above a relative threshold (e.g. 50% of the number
of sequences in the clone) a representative region. Reads
are considered one by one, and we output the longest rep-
resentative region among all the clone’s reads. Obviously,
this representative region must overlap the w-window
that has been formerly detected. This computation is lin-
ear time in the number of nucleotides in the sequences

belonging to that clone. Therefore the bigger the clone,
the more time it will take. Computing this region further
allows us to check the consistency of the reads assigned to
the same clone.

Refined V(D)J segmentation
The representative sequence identified for each clone
can be segmented into V(D)J regions using any avail-
able segmenter [9,11,13,15-18]. To give a first hint on the
V(D)J segmentation, we also implemented a basic seg-
menter using dynamic programming against a database of
germline genes. This segmentation runs, for each repre-
sentative sequence of length �, in O(�r) time, where r is
the size of the database of the germline gene. This seg-
mentation is not at the core of the read clusterization and
is provided only for convenience.

Time complexity
The prediction of junctions is in linear time, so the whole
algorithm is very scalable because there are often very
few w-windows of interest that are left to the most time
consuming steps – the computation of the representative
sequence and the full V(D)J segmentation.

Software
The algorithms were implemented in C++ in an open-
source software called Vidjil. The software can be down-
loaded from http://www.vidjil.org. The software takes as
the input a set of reads and a database of germline genes.

http://www.vidjil.org
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In all our experiments, we used the IMGT/GENE-DB
database [40] downloaded from http://www.imgt.org.
Vidjil outputs the list of w-windows detected and the

most frequent clones. As explained above, the detec-
tion of w-windows is based on spaced k-mers extracted
with seeds. By default the seed used for TRγ germline
is #####-##### of weight 10. On this germline, there
is no spaced k-word with this seed common to both V
and J genes: There is thus very few chances to falsely dis-
card reads. Depending on the receptor, there can be more
overlap between k-mers of V and J genes. In this case, or
when there are more mutations or errors in the dataset,
longer seeds should be used to improve the ratio of w-
windows detected. By default, Vidjil uses a seed of weight
12 for TRβ and IgH and a seed of weight 13 for TRα. The
user can also specify his own seed, or any value of k for a
contiguous seed.
Vidjil will output the 20most abundant clones with their

representative sequence and their refined V(D)J segmen-
tation. It will not process clones with less than 10 reads.
These parameters can be changed by the user. The user
can also follow other clones, even if they are not among
the most frequent ones, by specifying their w-window.
The user can define the maximum number of sub-

stitutions, indels, and homopolymer errors that can be
accepted between two similar windows. By default, we tol-
erate none. These parameters should be set depending on
the sequencer used and should be very conservative to
prevent any false clustering of different clones.
Table 1 compares the running times of Vidjil and other

programs. Vidjil is very fast and further produces clusters
whereas other methods output information at the read
level. Note that it is also possible to launch the programs
on a set of unique reads (between 61% and 81% of the
reads in our samples). In this case, the running times of the
three programs stay in the same proportions, Vidjil still
being the fastest.

Results
Dataset
The bone-marrow samples were obtained from a patient
with B-ALL showing a TRγ rearrangement. The sam-
ples were taken at diagnosis (Diag) and at three follow-up

Table 1 Running times of the different programs on a test
set of 100,000 reads

Vidjil HighV-QUEST IgBlast

time 18s 1 hour 3m 50s

availability standalone website website, standalone

Vidjil (version 2013.10) and IgBlast (version 1.2.0) were launched on a laptop
with a 2 GHz processor (1 core used) and 8 GB of memory. IMGT/HighV-QUEST
(version 3.2.31) was launched on the IMGT web server. The web server of
IMGT/HighV-QUEST is limited to 500,000 sequences.

points (Fu-1, Fu-2, and Fu-4, collected at 35, 122, and 207
days after diagnosis, respectively). A standard curve was
established from serial dilutions of the diagnosis samples
in a peripheral blood lymphocyte (PBL) solution mixed
from five healthy donors, producing samples Scale-10−2,
Scale-10−3, Scale-10−4, and Scale-10−5.
Those eight samples were sequenced as described in

methods and can be accessed at http://www.vidjil.org/
data. In Additional file 1: Table S1, we provide statis-
tics on these samples. We recall that on the TRγ chain,
recombinations are in the VJ form. The number of reads
differed for each dataset because the same coverage was
not required for each of them for validation purpose. For
instance, we need better coverage for the 10−5 dilution
than for the diagnosis sample, where the majority of the
sequences are expected to correspond to one clone. The
DNA fragments were previously concatenated and ran-
domly fragmented. Note that the goal of this sequencing
is to assess the speed and robustness of Vidjil and not
to achieve the lowest possible detection threshold, which
depends on the number of reads and the sequencing
protocol used.

Evaluation of the window prediction
The window prediction phase is a heuristic that does
not rely on dynamic programming and may therefore be
less accurate than a more time-consuming algorithm. We
assess the accuracy of the Vidjil heuristic on our datasets
by comparing the location of the detected w-window
with the ones predicted by IMGT/HighV-QUEST [11] and
IgBlast [15]. Our goal is not to assess the IMGT/HighV-
QUEST and IgBlast software, but to verify that the Vidjil’s
heuristic is sufficiently accurate. Even if ClonalRelate [37]
is of interest we could not compare to it since it builds
upon results provided by iHMMuneAlign, that is specifi-
cally dedicated to immunoglobulin heavy chain analysis.
We selected two datasets for this comparison: Diag,

which contains high redundancy and a lower number of
reads; and Scale-10−5, which is supposed to have much
greater diversity.
IgBlast (version 1.2.0) was launched in its stand-alone

version. We launched IgBlast using the TRγ germline
database downloaded from IMGT/GENE-DB [40]. The
other parameters were left at the default settings.
Only the “top segmentation” returned by IgBlast was
kept, consisting of the top V and J gene matches.
IMGT/HighV-QUEST was launched by specifying the
organism (Human) and the locus (TRγ ); by specifying
that the sequences originate from a single individual; and
by allowing indels. The other parameters were left at the
default settings.
What was compared among these three tools was the

position of the center of the window. IMGT/HighV-
QUEST and IgBlast do not give this position, but it can be

http://www.imgt.org
http://www.vidjil.org/data
http://www.vidjil.org/data
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computed easily from the 3’ position of the V region and
the 5’ position of the J region, which are given.

• The results for the actually sequenced dataset (see
Figure 3) show that the center of the window
predicted by Vidjil differed from those predicted by
IMGT/HighV-QUEST and IgBlast by less than 10
positions in more than 97% of cases, and by less than
15 positions in about 99% of cases. Vidjil shows a
greater concordance with IgBlast than with
IMGT/HighV-QUEST. The reason may be that
IMGT/HighV-QUEST is conceived for longer
sequences. Our dataset may contain short sequences
that Vidjil is also able to process.

• As B cells are subject to somatic hypermutations, it is
more difficult to segment their sequences. We can
assess the robustness of the method against
mutations by adding substitutions to our sequenced
dataset. In the literature, estimates of the rate of
sequence substitutions arising from somatic
hypermutation are around 2% [41,42]. Arnaout et al
empirically estimated hypermutations in humans to
be about 5% to 8% [14]. We generated datasets with
2%, 4%, 6% and 9% random substitutions along each
read. Those datasets can be accessed at http://www.
vidjil.org/data. Note that those substitutions are
added to the errors that may have been produced by
the sequencers. The results for the mutated datasets

(see Figure 4) show that on reads with 6% additional
mutations, the center of the window predicted by
Vidjil differed from that predicted by the other
programs by less than 15 positions in about 99.4% of
the cases. Vidjil shows again a greater concordance
with IgBlast than with IMGT/HighV-QUEST.

For VJ recombinations, such as in TRγ , a positional
inaccuracy of up to 14 bp is not a problem because we are
using 40 bp w-windows. The predicted window will still
contain the N-diversity region, allowing the correct iden-
tification of the clones. However, a window lying only in
a V region or a J region would be problematic. In that
case, the window would be overrepresented and would
lead to the detection of false clones. For VDJ recombi-
nations, Vidjil predicts 60 bp windows to ensure that the
complete N-diversity regions are included in the detected
w-window.
Therefore, the window prediction accuracy of Vidjil is

such that just a small fraction of sequences may have a
wrong window. It is noteworthy that when IMGT/HighV-
QUEST and IgBlast are compared, the difference between
them is similar to the difference between them and the
prediction heuristic of Vidjil.

Evaluation of Vidjil sensitivity
Note that the detection threshold depends directly on
the number of reads actually sequenced. A recent study,

Figure 3 Comparison of the predictions of the center of the windowmade with IgBlast, IMGT/HighV-QUEST, and the heuristic of Vidjil, on
the 100,000 first reads of a diagnosis sample (Diag, top) of a patient with ALL and on a dilution (Scale-10−5, lower table and graph). For
each pair of programs, the number shows the distance between the predictions of the center of the window overlapping the CDR3. These values
show that Vidjil successfully predicted the center of the windows. Note that the two other tools provided much more information, with alignments
to the germline databases, and in the case of IMGT/HighV-QUEST, further analysis of the junction sequence.

http://www.vidjil.org/data
http://www.vidjil.org/data
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Figure 4 Comparison of the predictions of the center of the window overlapping the CDR3made with IgBlast, IMGT/HighV-QUEST, and
the heuristic of Vidjil, on the 100,000 first reads on a dilution (Scale-10−5). Additional mutations (2%, 4%, 6%, 9%) are added by simulation.
Even with 6% mutations, the heuristic of Vidjil locates almost all the junction centers within 15 bp of the center found by other programs (99.4% of
the commonly segmented reads).

using a higher-throughput sequencer, reported a detec-
tion threshold of 10−6 [27,28]. Our goal is not to achieve
the lowest possible threshold, but to show that Vidjil
can correctly estimate the relative concentrations of the
clones.
Figure 5 shows the relative concentrations of the most

abundant clones in each sample. We launched Vidjil on
each of those eight samples, retrieving the five most abun-
dant w-windows in each sample, and manually reviewed
those windows to cluster them into clones. The plots rep-
resent the concentration ratios of those clones in any of
the samples.
Clones at diagnosis. Table 2 details the two most abun-

dant clones at diagnosis (Diag). The most abundant clone,
labeled #01, is the one with recombination TRGV5*
01 -5/CC/0 TRGJ1*02. This clone is exactly the one
that was followed in this patient with standard tech-
niques, and was observed by fluorescent multiplex PCR
analysis (Figure 6, top). As expected, this clone is most
abundant.

The second most abundant clone (#02), at approxi-
mately 1%, was identified as TRGV10*02 -5/AGAC/-3
TRGJP1*01. It was not initially detected at diagnosis with
standard procedures, and was consequently not followed
in this patient. A further fluorescent simplex PCR analy-
sis with specific primers showed several peaks, including
a major peak at 183 bp (Figure 6, bottom), similar in size
to that of clone #02 detected with Vidjil (182 bp).
The Table 2 also shows that the predictions made by

Vidjil are coherent with the ones made by IMGT/HighV-
QUEST or IgBlast. Note that Vidjil process slightly
less sequences that IgBlast: The main reason is that
IgBlast can provide J gene affectation with very few
nucleotides in the J gene, while Vidjil needs at least k con-
served nucleotides. Concerning quantification estimation,
IMGT/HighV-QUEST and IgBlast do not provide the raw
result of clone quantification but it can be easily com-
puted by gathering sequences with the same junction. We
emphasize on the fact that IMGT/HighV-QUEST works
better when processing longer sequences (e.g. reads from
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1 %
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Figure 5 Evolution of the main TRγ clones from a patient with ALL, starting at diagnosis and diluted to decreasing concentrations of
10−2, 10−3, 10−4, and 10−5 (left part of the plot); and when the patient is followed at three time points (Fu1, Fu2, and Fu4, right part).
Clones #01 and #02 are the two most abundant clones detected at diagnosis, and the other clones are among the five most abundant clones, for at
least one sample. Clones D-1 to D-6 are found in at least two of the dilutions, but are never found in any sample that is not a dilution. The black and
gray boxes below each point indicate the maximum resolution, depending on the number of reads of each sample (black: 1 read, absolute detection
threshold; gray: 5 reads, detection threshold to consider that the clone is significant). A sequencing with more reads will improve these thresholds.
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Table 2 Twomost abundant TRγ clones detected in 100,000 sequences fromdiagnosis sample (Diag) of a patientwith ALL

Vidjil IMGT/V-QUEST IgBlast

Clone #01 TRGV5*01 −5/CC/0 TRGJ1*02 9 204 reads 7 376 reads 11 319 reads

... GTGCCACCTGGG CC TTATTATAAGAA ... (31.9%) (42.1%) (36.3%)

Clone #02 TRGV10*02 −5/AGAC/−3 TRGJP1*01 253 reads 175 reads 353 reads

... TGTGCTGCGTGG AGAC CCACTGGTTGGT ... (0.88%) (0.80%) (1.1%)

In this sample, 28 809 reads have been segmented by Vidjil, 29 039 by IMGT/HighV-QUEST (and 21 876 when taking into account IMGT/JunctionAnalysis results) and 31
147 by IgBlast. For each method, the number of associated reads is given. The VJ segmentation proposed by Vidjil was manually checked against the analysis provided
by IMGT/V-QUEST and IgBlast. Clone #01 has the recombination TRGV5*01 -5/CC/0 TRGJ1*02, which means that the V gene is TRGV5*01, according to the IMGT
nomenclature, and its last five nucleotides have been deleted. The N-diversity region is composed of two inserted Cs, and the J gene is TRGJ1*02, which has no deletion.

454 sequencer). The two main clones are found at the
same level by the three softwares even if the number of
segmented sequences differ among them. Vidjil’s quick
heuristic does not prevent it from correctly clustering
reads coming from a same clone.
Dilution clones. The dilution samples (samples Scale-

10−2 to Scale-10−5) are composed from 99% to 99.999% of
the same PBL solution. It is thus meaningful that in these
samples, the concentration ratios of the most abundant
clones remain remarkably stable throughout the dilutions.
These clones should be specific to the PBL, and not to the
patient.
Generally, Vidjil can distinguish clones that are differ-

ent with great accuracy by focusing on the w-windows.
When there is no further window clusterization, the
reads reported to belong to the same clone share exactly
the same w-window. However, some clones were found
at similar concentration ratios in both the PBL and
patient samples, such as clone #15, identified as TRGV10*
02 -4//0 TRGJP1*01. This clone could be either

what was called a “public sequence” by [43], that is
a recombination being shared by different people or a
random recombination. There may be also some PCR
artifacts. Note that TRγ does not show great diversity
(18 distinct V genes and six distinct J genes according
to the IMGT germline databases) and this clone has no
inserted N-diversity region.
Follow-up points. The concentration of clone #01, mea-

sured with standard procedures (compared with the total
number of cells), was 94% for Diag, 0.5% for Fu-1, 0.05%
for Fu-2, and ≤ 0.5% for Fu-4. The ratios of the rear-
ranged TRγ sequences show a similar evolution, even if
there is some bias, which could be corrected with a better
calibration of the wet-lab protocol.

Discussion
High-throughput sequencers will eventually raise the
detection threshold, as already reported by several stud-
ies. They will also provide full insight into the whole

Figure 6 Fluorescent PCR of the diagnosis sample (Diag) of a patient with ALL. (Top) A 208-bp peak is detected with multiplex PCR of TRγ
Vg1-10, corresponding to the main #01 clone TRGV5*01 -5/CC/0 TRGJ1*02. (Bottom) A Vg10-JP1/2-specific PCR shows a 183 bp peak,
similar in size to clone #02 (185 bp) detected by Vidjil on the high-throughput sequencing data.
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population of lymphocytes, with multiclonal analyses of
such populations.We believe that these analyses will bring
a better understanding of lymphoid malignancies, and
more generally, of immunology. However, they require
specifically adapted mapping and clustering tools.
We have proposed new algorithms designed for data

from high-throughput sequencers. We have not focused
on the analysis of individual reads, but have instead based
themethod on the ultrafast detection of windows contain-
ing the actual recombination junctions. As a consequence,
the Vidjil program can process large datasets in a fewmin-
utes, outperforming other methods that are more adapted
to the full analysis of individual sequences. The method
applies to any number of reads: The more reads that are
sequenced, the lower the detection threshold will be.
Our window definition, used to define a clone, dif-

fers from what can be found elsewhere in the literature
[4,29,38] in that we do not rely on the VJ gene names
and we focus on the DNA sequence at the junction (while
some use the amino acids) without allowing any mis-
match by default (while others allow mismatches). Hence
we think that our definition appears to be more strin-
gent. Our belief is that we should avoid putting together
sequences that should not be together. On the other hand
our definition may split sequences that should be together
but if one wants to allow more errors the sequences can
be further clustered.
Our results for sequenced and artificially mutated data

show that the window prediction, clusterization, and rep-
resentative sequence selection are accurate enough for
clone tracking. This was confirmed both for raw TRγ

data and for mutated data, showing that the method can
gather clones with a dissimilarity of up to 6%, arising from
random mutations mimicking hypermutations. We tested
Vidjil on TRγ which is less diverse than other loci. Hence
if Vidjil had a lack of reliability, we would have been able
to identify it. On the contrary we observed that the results
are consistent both with conventional methods and with
software focusing on a more in-depth analysis.
As the Vidjil heuristic is fast and reliable, it could be

used as a pre-processing for other programs. Indeed the
purpose of Vidjil is not to provide detailed information on
a given sequence. Several software are designed for that
purpose: For example, one may launch IMGT/V-QUEST,
IgBlast, or, for IgH clones, iHMMune-align for an in-
depth analysis of the clones identified by Vidjil. Starting
from Vidjil strict definition of clones, one could also use
software such as ClonalRelate [37] to further gather these
clones and to study their relationship.
Note that all the ratios were computed by taking the

number of segmented reads as a reference, which ideally
corresponds to the number of rearranged T or B cells
in the studied system. This differs from the proportion
of the total cells used in current protocols, which also

include other mononucleic cells, such as precursor cells.
The inclusion of a standard of known concentration could
be used to calibrate these different ratios.

Conclusions
When used tomonitorminimal residual disease, Vidjil can
successfully follow the variations in the main clone. It also
identifies other stable clones that could be investigated
to determine whether they are pathological or physiolog-
ical. Given samples taken at different times, the method
enables to track the evolution of a population of clones
and to check the emergence of new clones. The method
could also be used for other immunological studies to
quantify more precisely the adaptive immune response
and the long-term immunological memory.
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