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Abstract

Background: The chicken (Gallus gallus) is an important model organism that bridges the evolutionary gap
between mammals and other vertebrates. Copy number variations (CNVs) are a form of genomic structural variation
widely distributed in the genome. CNV analysis has recently gained greater attention and momentum, as the
identification of CNVs can contribute to a better understanding of traits important to both humans and other
animals. To detect chicken CNVs, we genotyped 475 animals derived from two broiler chicken lines divergently
selected for abdominal fat content using chicken 60 K SNP array, which is a high-throughput method widely used
in chicken genomics studies.

Results: Using PennCNV algorithm, we detected 438 and 291 CNVs in the lean and fat lines, respectively,
corresponding to 271 and 188 CNV regions (CNVRs), which were obtained by merging overlapping CNVs. Out of
these CNVRs, 99% were confirmed also by the CNVPartition program. These CNVRs covered 40.26 and 30.60 Mb of
the chicken genome in the lean and fat lines, respectively. Moreover, CNVRs included 176 loss, 68 gain and 27 both
(i.e. loss and gain within the same region) events in the lean line, and 143 loss, 25 gain and 20 both events in the
fat line. Ten CNVRs were chosen for the validation experiment using qPCR method, and all of them were confirmed
in at least one qPCR assay. We found a total of 886 genes located within these CNVRs, and Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed they could play various roles in
a number of biological processes. Integrating the results of CNVRs, known quantitative trait loci (QTL) and selective
sweeps for abdominal fat content suggested that some genes (including SLC9A3, GNAL, SPOCK3, ANXA10, HELIOS,
MYLK, CCDC14, SPAG9, SOX5, VSNL1, SMC6, GEN1, MSGN1 and ZPAX) may be important for abdominal fat deposition
in the chicken.

Conclusions: Our study provided a genome-wide CNVR map of the chicken genome, thereby contributing to our
understanding of genomic structural variations and their potential roles in abdominal fat content in the chicken.
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Background
Recently, genome-wide association studies (GWAS) have
been successfully used in uncovering key genes or markers
associated with complex diseases in humans and econom-
ically important traits in domestic animals [1,2]. Based on
genotyping data collected from high-throughput SNP chips,
new genomic structural variations have been found in the
human genome [3]. Copy number variations (CNVs) are a
form of genomic structural variation, defined by DNA seg-
ments ranging from kilobases (kb) to megabses (Mb) in
size, exhibiting differences in copy numbers when compar-
ing two or more genomes [3,4]. This type of variation in-
cludes submicroscopic insertions, deletions and segmental
duplications, as well as inversions and translocations [4-6].
CNV detection methods include the use of comparative

genomic hybridization (CGH) arrays, SNP arrays, and
next-generation sequencing (NGS), and efficient algorithms
and softwares are developed to analyze the generated
large-scale data. SNP array genotyping offers a number of
advantages, low cost, dense coverage and high throughput,
therefore, many studies have focused on designing efficient
algorithms and softwares to detect reliable CNVs using
SNP array data [7,8], including CNVPartition (http://www.
illumina.com), QuantiSNP [9], PennCNV [10], Birdsuite
[11], Cokgen [12], Gada [13], and CONAN [14]. These pro-
grams have their own strengths and weaknesses [15,16].
PennCNV distinguishes itself from other algorithms by in-
corporating multiple information sources (allele frequency,
signal intensity, allelic intensity ratio, and distances between
SNPs), and by fitting regression models with GC content,
it can also overcome the issue of “genomic waves” [17,18].
CNV can affect gene expression levels, since it contains

or disrupts multiple gene coding regions or regulatory
elements, which could then lead to phenotypic variation
[19]. Not only have CNV studies been performed in
humans [19-21], but also in domestic animals, including
dogs [22-26], cattle [27-31], swine [32-36], sheep [37-39]
and goats [40,41]. In humans, CNV studies focus mainly
on disease development [20], and a multi-allelic CNV
encompassing the salivary amylase gene (AMY1) was
found to be significantly associated with body mass index
(BMI) and obesity [21]. In dogs, detection of CNVs
responsible for infertility found two genomic regions har-
boring two important genes for spermatogenesis, DNM2
and TEKT1 [26]. However, in domestic animals, most
studies were limited on the identification of CNVs and the
construction of CNV maps [27-31,35].
Chicken (Gallus gallus) is a classical avian model, and

an economically important farm animal, too. The chicken
is the first livestock species to have its genome sequenced,
and a large number of SNPs have been identified since
then. Besides these SNPs, other genomic structural varia-
tions are also detected in the chicken genome, such as
CNVs. The pea-comb phenotype is caused by a CNV in
intron 1 of SOX5 on chicken chromosome 1 (GGA1)
[42]; the late feathering locus includes a partial dupli-
cation of the PRLR and SPEF2 genes on GGAZ [43]; and
the dark brown plumage color on GGA1 [44] and the der-
mal hyperpigmentation on GGA20 [45] are also associated
with CNVs. Additional large number of CNVs had been
detected in the chicken using CGH array, SNP chip and
genome sequencing. Using CGH arrays, Wang et al. ex-
amined ten birds and identified 96 CNVs corresponding
to approximately 1.3% of the chicken genome [46]; an-
other study detected 130 CNVRs in four chicken breeds
(Cobb broiler, White Leghorn, Chinese Dou and Chinese
Dehong) [47]; and Crooijmans et al. detected 3,154 CNVs,
grouped into 1,556 CNVRs in a variety of chicken breeds
[48]. Using the SNP chip, Jia et al. identified 209 CNVRs
in two distinct chicken lines (White Leghorn and dwarf)
[49]. Using the sequencing method, Fan et al. identified
8,839 CNVs in two domestic chickens (Silkie and the
Taiwanese native chicken L2) [50]. Two other papers re-
ported several CNVs putatively associated with chicken
diseases [51,52]. As in other domestic animals, CNV stud-
ies in chickens are also limited in their power. Majority of
CNVs detected are relatively large in size, of low reso-
lution, and could contain a high amount of false positives.
Genome-wide analysis of CNVs in chicken populations
from different genetic backgrounds could help validate
CNV regions detected in various studies.
In the present study, the chicken 60 k SNP chip was used

to perform genome-wide CNV detection in a population of
475 birds from two broiler lines divergently selected for ab-
dominal fat content (lean and fat lines) [53]. The two lines
were selected for more than ten generations and abdominal
fat percentage of the lean and fat lines was significantly
different from the 4th generation and onwards. We used
two methods, PennCNV and CNVPartition, to carry out
CNV analysis. Our study provided a comprehensive map of
CNVs, which is helpful in understanding genomic variation
in the chicken genome, validating CNVs detected in previ-
ous studies, and providing preliminary data for investigating
the association between CNVs and various phenotypes of
economical importance, e.g. abdominal fat content.

Methods
Ethics statement
All animal work was conducted according to the guidelines
for the Care and Use of Experimental Animals established
by the Ministry of Science and Technology of the People’s
Republic of China (approval number: 2006–398), and ap-
proved by the Laboratory Animal Management Committee
of Northeast Agricultural University.

Animals
In total, 475 birds (203 and 272 individuals from the
lean and fat lines, respectively) from the 11th generation
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population of Northeast Agricultural University broiler
lines divergently selected for abdominal fat content
(NEAUHLF) were used. Detailed information regarding
NEAUHLF has been published previously [53]. Briefly,
after 11 generations of divergent selection for abdominal
fatness, the abdominal fat percentage of the fat broiler line
at 7 weeks of age was 3.59 times more than that of the
lean line. All birds were kept in similar environmental
conditions and had free access to feed and water.

Genotyping and quality control
Genomic DNA samples were extracted from blood using a
standard phenol/chloroform method, and DNA sample
quality was determined using spectrophotometry and agar-
ose gel electrophoresis. The Illumina chicken 60 k SNP chip
[54] containing 57,636 SNPs was used, and genotyping data
were generated using BeadStudio (Version 3.2.2). Quality
control was performed using the following default cutoffs:
LRR standard deviation, 0.30; BAF drift, 0.01; and waviness
factor, 0.05 [47]. After having removed SNPs of low quality,
a total of 475 birds, and 48,035 SNPs on 28 autosomes and
the Z sex chromosome were kept for CNV detection.

Identification of chicken CNVs using PennCNV
PennCNV software [33] was used to identify chicken CNVs.
The PennCNV algorithm incorporates multiple informa-
tion sources, including LRR and BAF of each SNP marker,
and the population frequency of B allele (PFB). Both LRR
and BAF were exported from BeadStudio using default
clustering files for each SNP. PFB was calculated based on
the BAF of each marker. Furthermore, PennCNV integrates
a computational approach, by fitting regression models
with GC content to overcome the issue of “genomic
waves”. Chicken gcmodel files were generated by calculat-
ing the GC content of 1 Mb genomic regions surrounding
each marker (500 kb on each side), and genomic waves
were then adjusted using the option -gcmodel. CNV was
chosen based on two criteria: first, it must contain three
or more consecutive SNPs, and second, it must be present
in at least one animal. CNV regions (CNVRs) were deter-
mined by combining overlapping CNVs.

CNV calling using CNVPartition
The CNVPartition software [55] was employed to analyze
the same data set, with the confidence score threshold set
at 35, in order to verify CNVs detected by PennCNV. In
addition, the CNVRs detected by both CNVPartition and
PennCNV were cross-checked.

Validation of CNVR by qPCR
The quantitative real-time PCR (qPCR) method was
used to validate ten CNVRs identified by both PennCNV
and CNVPartition. For each of the ten CNVRs, we
selected animals predicted by PennCNV to have
different status of CNVs (loss, gain or both) for the va-
lidation experiment. Together with three other birds
predicted by PennCNV to be normal, a total of 65 birds
were used. All qPCR experiments were conducted on an
ABI Prism 7500 sequence detection system (Applied
Biosystems), using SYBR green chemistry in three repli-
cates. Each reaction was performed with a volume of
10 μl. Primers were designed using Primer premier 5.0
and Oligo 6.0, by limiting product sizes in a range from
100 to 200 bp (Additional file 1: Table S1). The vimentin
(VIM) gene, with a single copy in the chicken genome,
was chosen as the reference [56]. For every CNVR, three
samples without CNVRs were used as negative controls.
The condition for thermal cycle was as follows: 2 min at
50°C, 10 min at 95°C and 40 cycles of 15 s at 95°C and
1 min at 60°C. The 2-ΔΔCt method was used to calculate
the copy numbers [57].

Gene detection and functional annotation
Genes located in the identified CNVRs were retrieved
from Ensembl (http://www.ensembl.org) (Galgal4). Func-
tional annotation of genes was performed using DAVID
bioinformatics resources 6.7 (http://david.abcc.ncifcrf.gov/
summary.jsp) [58] for Gene Ontology (GO) terms [59] and
Kyoto Encyclopedia of Genes and Genomes (KEGG) [60]
pathway analysis. Statistical significance was determined
using a P-value < 0.05.

Results
Genome-wide identification of CNVs
Using 28 autosomal chromosome and the Z sex chromo-
some, PennCNV identified 438 and 291 CNVs in the lean
and fat lines, respectively. Among these CNVs, 17 were
common to both lean and fat lines. Combining overlap-
ping CNVs, we identified a total of 271 and 188 CNVRs
across the whole genome, covering 40.26 and 30.60 Mb
(3.92% and 2.98% of whole genome length) in the lean and
fat lines, respectively (Figure 1). Among CNVRs in the lean
line, there were 177 loss, 68 gain and 27 both (i.e. loss and
gain within the same region) events, while in the fat line,
there were 143 loss, 25 gain and 20 both events. In the lean
line, the length of CNVRs ranged from 6.23 to 932.14 kb
with a mean of 148.77 kb and median of 107.81 kb. In the
fat line, CNVRs ranged from 0.33 to 1442.99 kb, with a
mean of 163.43 kb and median of 99.81 kb. CNVR loca-
tions and characteristics across all 28 autosomal and the Z
sex chromosomes were summarized (Figure 1, Additional
file 2: Table S2, Additional file 3: Table S3). It is apparent
that CNVRs are not uniformly distributed across different
chromosomes. No CNVRs were detected on chromosomes
16 and 19 in the lean line, and on chromosomes 15, 16, 19,
20, 23 and 24 in the fat line. Chromosome 1 harbored the
largest number of CNVRs, with 53 and 35 in the lean and
fat lines, respectively.
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Figure 1 Distribution of CNVRs identified in the lean and fat lines.
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The CNVPartition program implemented in Illumina
GenomeStudio software was also used to verify the CNVRs
detected by PennCNV. There were only 4 and 3 CNVRs,
out of 271 and 188 CNVRs in the lean and fat lines re-
spectively, missed by CNVPartition (Additional file 2:
Table S2, Additional file 3: Table S3). When compared the
results obtained from the PennCNV and CNVPartition
programs, we saw that most of the CNVRs identified by
the CNVPartition were larger in size, and can contain mul-
tiple CNVRs identified by PennCNV.

CNV validation by quantitative PCR
The quantitative real-time PCR experiments were per-
formed to validate the CNVRs detected in the current
study. Ten putative CNVRs were selected, and represented
Table 1 QPCR validation results

CNVR no. Position Val

CNVR1 chr1: 68169551-68304034 Yes

CNVR2 chr1: 18444585-19186283 Yes

CNVR3 chrZ: 62739744-62787579 Yes

CNVR4 chr5: 33373065-33628432 Yes

CNVR5 chrZ: 9933957-10124452 Yes

CNVR6 chr17: 11092462-11179187 Yes

CNVR7 chr2: 149276922-149301687 Yes

CNVR8 chr11: 3196613-3453273 Yes

CNVR9 chr10: 7945101-7980528 Yes

CNVR10 chr12: 1112437-1143728 Yes
different status of copy numbers (predicted to be from
gain, loss, or both events) (Table 1). We performed 333
qPCR assays in 65 animals. Out of the 333 qPCR assays,
204 (61%) were in agreement with the CNV prediction
made by PennCNV. Direct counting of the CNVRs con-
firmed that all 10 CNVRs had copy number variations in
at least one qPCR assay (Figure 2, Table 1).

Genes located in CNVRs
Within the 271 CNVRs identified in the lean line, 204
(75.3%) CNVRs contained 626 genes retrieved from
Ensembl, and the remaining 67 CNVRs did not contain
any annotated genes. Within the 188 CNVRs identified
in the fat line, 140 (74.5%) CNVRs had 374 genes, and
no annotated genes located in the other 48 CNVRs,
idated Validated type Detected type

Loss Loss

Loss and gain Loss and gain

Loss and gain Gain

Loss and gain Loss and gain

Loss and gain Gain

Loss and gain Loss and gain

Loss and gain Loss

Loss and gain Loss and gain

Gain Gain

Gain Gain



Figure 2 (See legend on next page.)
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Figure 2 Verification of 10 detected CNVRs by qPCR. CNVR1-10 represents 10 CNVRs selected for qPCR validation. X-axis shows the individuals
used in the validation experiment. Y-axis shows the relative quantification (RQ) values obtained by qPCR. Different shapes denote samples with
different RQ values. Asterisk: samples with RQ values about 1 denote normal individuals (two copies); Box: samples with RQ values below 0.59
(ln1.5) denote copy number loss individuals; Triangle: samples with RQ values about 1.59 (ln3) or more denote copy number gain individuals
(>three copies) [61].
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either. There were 114 common genes detected in both
chicken lines. Therefore, a total of 886 genes were iden-
tified within the detected CNVRs.
Functional enrichment analyses found that a total of

1744 GO terms for the 886 genes, with eight GO terms
statistically significant (P < 0.05) (Table 2). Significant
GO terms were mainly involved in interleukin-1 bind-
ing, interleukin-1 receptor activity, hydrogen antiporter
activity, calcium ion binding, solute antiporter activity,
plasma membrane, antiporter activity, and cation anti-
porter activity. GO terms with marginal significance
were mainly involved in cell-cell adhesion, cytokine re-
ceptor activity, dystrophin-associated glycoprotein com-
plex, homophilic cell adhesion and hydrogen antiporter
activity (monovalent cation and sodium). KEGG pathway
analyses showed that genes in CNVRs were enriched in 95
pathways, two of them statistically significant (calcium
signaling and N-Glycan biosynthesis pathways) (Table 2).

Integrative analysis of CNVRs, QTLs, and selective sweeps
for abdominal fat content
In the chicken QTL database (http://www.animalgenome.
org/cgi-bin/QTLdb/GG/index; May 21, 2013), there were
3,808 quantitative trait loci (QTLs) affecting 296 traits, in-
cluding 291 QTLs for abdominal fat weight and percent-
age. In the lean line, 160 CNVRs overlapped with 74
QTLs affecting abdominal fat weight or percentage. Fur-
thermore, for the 271 CNVRs in the current study and
5357 core regions detected in the previous seletive sweep
study [62], we found that 225 CNVRs overlapped with 311
core regions, after comparing the CNVR and selective
sweep results. In the 311 core regions, 10 regions reached
Table 2 Significant GO categories and KEGG pathways associ

Category Term

GOTERM_MF_FAT GO:0019966

GOTERM_MF_FAT GO:0004908

GOTERM_MF_FAT GO:0015299

GOTERM_MF_FAT GO:0005509

GOTERM_MF_FAT GO:0015300

GOTERM_CC_FAT GO:0005886

GOTERM_MF_FAT GO:0015297

GOTERM_MF_FAT GO:0015298

KEGG_PATHWAY gga04020

KEGG_PATHWAY gga00510
statistical significance of P < 0.01. These 10 core regions
related to 10 CNVRs, with six CNVRs located in QTL re-
gions for abdominal fat content. Eight genes were found
within these six CNVRs, including solute carrier family 9
member 3 (SLC9A3), guanine nucleotide binding protein
(G-protein), alpha activating activity polypeptide, olfactory
type (GNAL), sparc/osteonectin, cwcv and kazal-like do-
mains proteoglycan (testican) 3 (SPOCK3), annexin A10
(ANXA10), IKAROS family zinc finger 2 (HELIOS), my-
osin light chain kinase (MYLK), coiled-coil domain con-
taining 14 (CCDC14), and sperm-associated antigen 9
(SPAG9).
In the fat line, 112 CNVRs overlapped with 66 QTLs

affecting abdominal fat weight or percentage in the
chicken QTL database. In addition, for the 188 CNVRs
in the current study and 5593 core regions detected in
the previous seletive sweep study [62], we found that
140 CNVRs overlapped with 203 core regions, and in
the 203 core regions, 6 regions reached statistical signi-
ficance of P < 0.01. These 6 core regions related to six
CNVRs, with four CNVRs located in abdominal fat
QTLs. Six genes were found within these four CNVRs,
including SRY (sex determining region Y)-box 5 (SOX5),
visinin-like 1 (VSNL1), structural maintenance of chro-
mosomes 6 (SMC6), GEN endonuclease homolog 1
(GEN1), mesogenin 1 (MSGN1) and zona pellucida
protein (ZPAX).

Discussion
The chicken 60 k SNP array was originally developed for
high-throughput SNP genotyping in GWAS studies.
Although CNV detection is feasible with this SNP panel,
ated with genes in CNVRs

Description P-value

Interleukin-1 binding 0.00

Interleukin-1 receptor activity 0.00

Solute: hydrogenantiporter activity 0.02

Calcium ion binding 0.02

Solute: soluteantiporter activity 0.02

Plasma membrane 0.03

Antiporter activity 0.03

Solute: cationantiporter activity 0.03

Calcium signaling pathway 0.02

N-Glycan biosynthesis 0.03

http://www.animalgenome.org/cgi-bin/QTLdb/GG/index
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it is of less power due to low marker density, non-
uniform SNP distribution along chicken chromosomes,
and a lack of non-polymorphic probes specifically de-
signed for CNV identification [63]. Thus, using this
array, typically only large CNVRs could be identified.
Several algorithms have been developed to identify CNVs,

including CNVPartition, QuantiSNP, PennCNV, Birdsuite,
Cokgen, Gada, and CONAN [9-14]. Each algorithm has its
own strength and weakness [15,16]. In the present study,
the PennCNV algorithm was used for CNV detection, and
CNVPartition was employed to verify the CNVs detected
by PennCNV. We found that 99% of the CNVRs detected
by PennCNV could be verified by the CNVPartition pro-
gram. This high ratio indicated that the CNVRs detected in
this study were credible and the following discussion was
based on the PennCNV results.
We used two lines divergently selected for abdominal

fat content to detect CNVs in the chicken, and found
the lean line had more CNVs than the fat line (438 vs
291). One of the reason could be due to different num-
ber of animals (203 and 272 individuals in the lean and
fat lines, respectively). Additionally, these two lines have
different selection signatures as reported previously [62],
which suggests that artificial selection for abdominal fat
could also lead to CNV alterations between these two
lines.
We compared our results with several previous reports

on chicken CNVs. The first study was reported by
Griffin et al. [64]. They used the CGH array and de-
tected 12 CNVs in broiler and layer genomes, compared
with the Red Jungle Fowl. Two of these 12 CNVs over-
lapped with our results (Additional file 4: Table S4). Wang
et al. detected 96 CNVs in three chicken lines (Cornish
Rock broiler, Leghorn, and Rhode Island Red) using whole-
genome tiling arrays [46]. Of these 96 CNVs, 14 CNVs
overlapped with our results (Additional file 4: Table S4). In
2012, Wang et al. detected 130 CNVRs in four chicken
breeds (Cobb broiler, White Leghorn, Chinese Dou and
Chinese Dehong) using CGH arrays, with 16 overlapping
CNVs (Additional file 4: Table S4) [47]. In the same year,
Jia et al. identified 209 CNVRs in two distinct chicken lines
(White Leghorn and dwarf) using chicken 60 k SNP arrays,
with 47 overlapping CNVRs (Additional file 4: Table S4)
[49]. Luo et al. identified 45 CNVs in four chicken lines
(L63, L72, RCS-L, and RCS-M), with two CNVs overlap-
ping with our CNVRs [51]. Crooijmans et al. detected
1556 CNVRs using the CGH arrays in a wide variety of
chicken breeds, with 140 overlapping CNVRs with our
current study [48]. In total, 181 of 459 CNVRs (271 and
188 CNVRs in lean and fat lines, respectively) (39%) de-
tected in our study were also detected in previous studies
(Additional file 4: Table S4). Potential reasons for the ob-
served differences include the following three conside-
rations. Firstly, the populations are of different sizes and
genetic background; Secondly, different array platforms are
used, either SNP genotyping or CGH arrays; Thirdly,
genomic waves can interfere with accurate CNV detection
[41,65]. Genomic waves refer to signal intensity patterns
across all chromosomes, with different samples showing
highly variable magnitudes of waviness [41]. In our study,
we adjusted for genomic waves using the -gcmodel option
in PennCNV. Genomic waves were generally not consi-
dered in other studies. Apart from low overlapping rates
between different chicken CNV studies, the same issue was
also encountered in other animals [65-67].
In previous observations, CNVs are preferentially located

in gene-poor regions [68,69]. It is speculated that CNVs
present in gene-rich regions may be deleterious and under
purifying selection [70]. In the chicken genome, there are
approximately 28,000 genes (data from the GeneChip®-
Chicken Genome Array Profile), and 886 (3.16%) annotated
genes located in the 271 and 188 CNVRs in the lean and
fat lines, respectively, were identified in our current study.
These CNVRs covered 3.92 and 2.98% of the chicken gen-
ome in the lean and fat lines, respectively. Therefore, we
can not state that these CNVRs locate in gene-poor or
gene-rich regions.
QPCR is often used to validate novel CNVRs, but con-

firmation rates are usually not very high [11,20,21]. For
instance, Fadista et al. [20] and Hou et al. [65] confirmed
50 and 60% of CNVRs selected for validation, respectively.
Our validation rate was 61% (204 out of the 333 qPCR
assays), comparable to the results of other studies.
Comparing CNVs detected in our current study with

known QTLs (in the QTL database) and selective sweeps
for abdominal fat content [62], we identified 14 genes (8
and 6 in the lean and fat lines, respectively). For the eight
genes in the lean line, we found SLC9A3, GNAL, ANXA10,
MYLK, CCDC14, and SPAG9 expressed in chicken pre-
adipocytes, and SLC9A3, GNAL, ANXA10, HELIOS, MYLK,
CCDC14, and SPAG9 expressed in both chicken abdominal
fat and liver tissues (data not published). For the six genes
in the fat line, we found SOX5, VSNL1, SMC6, and GEN1
expressed in chicken pre-adipocytes, GEN1, SMC6, SOX5,
and VSNL1 expressed in chicken abdominal fat tissue, and
SOX5,VSNL1, and SMC6 expressed in chicken liver tissue
(data not published). Basic functions of these 14 genes are
described as follows.
SLC9A3 is also known as sodium–hydrogen anti-

porter 3, or sodium–hydrogen exchanger 3 (NHE3)
[71]. SLC9A3 is expressed in human intestine, stom-
ach, respiratory tract, kidneys, glandular and epithelial
cells [72]. SLC9A3 is present in the brush-border of
intestinal Na + −absorptive cells and renal proximal
tubules, playing an important role in gastrointestinal
and renal Na + absorption [73], and suggesting it may
be involved in food digestion and nutrient absorption,
and in turn, abdominal fat deposition.
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G-proteins are divided into four subfamilies according
to their α-subunits (Gαs, Gαi/o, Gαq, and Gα12) [74].
Gα subunits interact with both receptor and effect or
molecules, and are considered the functional component
of G-proteins. GNAL shares 88% amino acid homology
with Gαs, and is considered a member of the Gαs family
[74]. Although GNAL was originally discovered in olfac-
tory neuroepithelium and striatum, it is also present in
pancreatic β-cells, testis, spleen, lung, and heart [75]. In
addition, this gene is highly expressed in adipose tissue
(http://www.genatlas.org/), indicating it may be associ-
ated with abdominal fat deposition.
SPOCK3 encodes a member of the novel family of

calcium-binding proteoglycan proteins that contain
thyroglobulin type-1 and Kazal-like domains. Encoded
SPOCK3 protein may play a key role in adult T-cell
leukemia by inhibiting membrane-type matrix metallo-
proteinase activity [76]. SPOCK3 is expressed in the
mouse nervous system [77].
ANXA10 belongs to the annexin family, and is over-

expressed in oral squamous cell carcinoma-derived cell lines
[78]. ANXA10 plays an important role in cellular function-
ing of endocytosis and exocytosis, anticoagulant activity,
cytoskeletal interactions, differentiation, and cellular prolif-
eration [79,80]. Moreover, ANXA10 shows relevant malig-
nancy in Barrett’s esophagus, gastric cancer, and bladder
cancer [81-83]. ANXA10 is expressed in the digestive system
including liver and stomach tissues (http://www.genatlas.
org/), indicating it may affect food digestion and absorption,
and consequently be associated with fat deposition.
Helios is a member of the Ikaros transcription factor

family, and preferentially expressed by regulatory T cells
[84]. Previous work has shown that obese patients with
insulin resistance have decreased HELIOS but increased
FOXP3 mRNA expression in visceral adipose tissue [85].
Helios is expressed in ectodermal and neuroectodermal-
derived tissues [86].
MYLK is a muscle member of the immunoglobulin gene

superfamily, and encodes myosin light chain kinase, a
calcium/calmodulin dependent enzyme. Genetic and func-
tional studies show that heterozygous loss-of-function
mutations in MYLK are associated with aortic dissection
[87]. MYLK is highly expressed in heart, prostate, trachea
tissues, and the digestive system (including esophagus and
small intestine), suggesting this gene is involved in food
digestion and absorption, and consequently associated
with fat deposition.
CCDC14 is a protein-coding gene with unknown func-

tion. CCDC14 is expressed in male testis tissue (http://
www.genatlas.org/).
SPAG9 is a novel member of c-Jun NH2 -terminal ki-

nase (JNK) interacting proteins, exclusively expressed in
testis [88]. SPAG9 may play a key role in reproductive
processes, and tumor growth and development [88,89].
SOX5 is a member of the SOX (SRY-related HMG-box)
family, and involved in regulation of embryonic develop-
ment and cell fate determination [90]. In chicken, CNV in
intron 1 of SOX5 can cause the Pea-comb phenotype [42].
SOX5 is expressed in brain, spinal cord, testis, lung, and
kidney, and can control cell cycle progression in neural
progenitors by interfering with the WNT-beta-catenin
pathway [91]. A recent study indicated SOX5 may play an
important role in left ventricular mass regulation, a disease
that may be affected by abdominal obesity [92].
VSNL1 is a member of the visinin/recoverin subfamily

of neuronal calcium sensor proteins, and highly expressed
in human heart and brain [93,94]. Previous results suggest
VSNL1 regulates heart natriuretic peptide receptor B [93].
The VSNL1 gene also plays a critical role in regulating cell
adhesion and migration via downregulation of fibronec-
tin receptor expression [95]. The VSNL1 gene is highly
expressed in the nervous system.
Structural maintenance of chromosomes (SMC) pro-

teins are a family of related proteins that form the core of
three protein complexes. Smc1 and 3 ensure sister chro-
matids remain associated after DNA replication, as well as
playing roles in gene expression and DNA repair [96].
Smc2 and 4 are responsible for chromosome condensation
during mitosis [97]. The Smc5-6 complex is required for
DNA repair by homologous recombination, although its
exact role is not fully understood [98].
GEN1 is a member of the Rad2/XPG family of mono-

meric, structure-specific nucleases [99]. This protein family
includes N-terminal and internal XPG nuclease motifs, and
a helix–hairpin–helix domain [100]. The GEN1 gene is
expressed in pancreas, thymus, brain, testis, lung, and kid-
ney, and has Holliday junction resolvase activity in vitro,
presumably functioning in homology-driven repair of DNA
double-strand breaks [101].
Msgn1 is a basic helix–loop–helix transcription factor,

specifically expressed in the presomitic mesoderm (psm).
Msgn1 controls differentiation and movement of psm
progenitor cells, and mouse embryos lacking Msgn1
exhibit a severely reduced psm and an absence of trunk
somites [102,103].
The vertebrate egg envelope is constructed by a set of

related proteins encoded by the zona pellucida (ZP) genes
[104]. Vertebrate ZP genes have six subfamilies: ZPA/ZP2,
ZPB/ZP4, ZPC/ZP3, ZP1, ZPAX, and ZPD [105]. The Zpb
pseudogene was identified in the mouse genome, Zp1
pseudogene in the dog and bovine genomes, and Zpax
pseudogene in the human, chimpanzee, macaque, and
bovine genomes [105]. ZP genes may play an important
role in sperm-egg recognition [105].
All these genes are located in QTLs for abdominal fat

weight or percentage in the chicken. From the known
functions of these genes, GNAL, HELIOS, and SOX5 are
directly related to adipose tissue metabolism or obesity,

http://www.genatlas.org/
http://www.genatlas.org/
http://www.genatlas.org/
http://www.genatlas.org/
http://www.genatlas.org/
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while SLC9A3, SPOCK3, ANXA10, MYLK, and VSNL1
may be indirectly related. The function of CCDC14,
SPAG9, SMC6, GEN1, MSGN1, and ZPAX on adipose
tissue development is unknown. However, further inves-
tigation are still needed to examine their functional
implications in chicken adipogenesis.

Conclusions
We have constructed a CNVR map for the broiler
chicken using two lines divergently selected for abdo-
minal fat content. In total, 271 and 188 CNVRs in the
lean and fat lines were identified, respectively. Integra-
ting detected CNVRs, and results of QTLs and selection
signatures for abdominal fat content, 14 genes (including
SLC9A3, GNAL, SPOCK3, ANXA10, HELIOS, MYLK,
CCDC14, SPAG9, SOX5,VSNL1, SMC6, GEN1, MSGN1,
and ZPAX) were identified as putatively important for
chicken abdominal fat content.
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