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Abstract

Background: Current practice in mass spectrometry (MS)-based proteomics is to identify peptides by comparison
of experimental mass spectra with theoretical mass spectra derived from a reference protein database; however,
this strategy necessarily fails to detect peptide and protein sequences that are absent from the database. We and
others have recently shown that customized proteomic databases derived from RNA-Seq data can be employed
for MS-searching to both improve MS analysis and identify novel peptides. While this general strategy constitutes a
significant advance for the discovery of novel protein variations, it has not been readily transferable to other
laboratories due to the need for many specialized software tools. To address this problem, we have implemented
readily accessible, modifiable, and extensible workflows within Galaxy-P, short for Galaxy for Proteomics, a
web-based bioinformatic extension of the Galaxy framework for the analysis of multi-omics (e.g. genomics,
transcriptomics, proteomics) data.

Results: We present three bioinformatic workflows that allow the user to upload raw RNA sequencing reads and
convert the data into high-quality customized proteomic databases suitable for MS searching. We show the
utility of these workflows on human and mouse samples, identifying 544 peptides containing single amino acid
polymorphisms (SAPs) and 187 peptides corresponding to unannotated splice junction peptides, correlating protein
and transcript expression levels, and providing the option to incorporate transcript abundance measures within the
MS database search process (reduced databases, incorporation of transcript abundance for protein identification
score calculations, etc.).

Conclusions: Using RNA-Seq data to enhance MS analysis is a promising strategy to discover novel peptides
specific to a sample and, more generally, to improve proteomics results. The main bottleneck for widespread
adoption of this strategy has been the lack of easily used and modifiable computational tools. We provide a
solution to this problem by introducing a set of workflows within the Galaxy-P framework that converts raw
RNA-Seq data into customized proteomic databases.
Background
Mass spectrometry-based proteomics is widely employed
to characterize proteins in myriad organisms, ranging
from E. coli to human. Fundamental to almost all proteo-
mics analyses is the database search step, where experi-
mental peptide mass spectra are matched with theoretical
peptide mass spectra derived from a protein reference
database [1]. This MS database searching strategy relies
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on the completeness and quality of the protein reference
database, meaning that peptides and proteins are only
identified if their correct sequence is present in the pro-
tein reference file. However, individual organisms often
possess genetic variations that differ from the canonical
sequences present in the database. These variations are
often not represented in the reference database causing
the corresponding peptides to be invisible to MS-based
analyses.
In recent years, high-throughput RNA sequencing has

been used to empirically determine the transcript se-
quences expressed in a given sample, strain, cell line, or
tissue, and has become accessible to many researchers
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Figure 1 Experimental overview. The Galaxy-P workflows take as
input sample-specific RNA-Seq data and create sample-specific
protein databases. These protein databases are then employed for
MS-based proteomics database searching. The workflows were
developed on datasets generated from human (Jurkat cells) and
mouse (B6 and CAST islets) samples.
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[2,3]. Taking advantage of this powerful new capability,
we and others have developed novel strategies to lever-
age RNA-Seq for the detection of sample-specific pro-
tein variations [4-11]. In this strategy parallel RNA-Seq
and proteomics data are collected from the same or re-
lated samples. Novel sequences discovered from RNA-
Seq data are translated into proteins and added to the
MS search database, which can then be employed to de-
tect the corresponding protein variations.
RNA-Seq derived databases tailored for a given sample

can improve proteomics in two main ways. First, and
most importantly, RNA-Seq can be used to reveal novel
single nucleotide polymorphisms (SNPs), indels, alterna-
tive splice forms, and gene fusions at the transcript level
that, when translated, yield protein sequences that are
not in the reference protein database. These novel pro-
tein sequences are then appended to the reference data-
base and employed for MS-searching, enabling the
detection of novel peptides. Second, RNA-Seq can be
used to estimate the abundance of transcripts and this
information can be used to improve database searching,
such as through reduction of protein database size or
through use of transcript abundances in calculating pro-
tein identification scores. We describe here a database
reduction procedure in which RNA-Seq is used to quan-
tify transcript levels and all protein entries in the data-
base that fall below a threshold expression level for
the corresponding transcript are removed [10,12,13].
This can be useful for reducing database size, but has
the possible disadvantage of excluding proteins whose
protein abundance levels are high but have low tran-
script abundance.
The greatest bottleneck in harnessing RNA-Seq data

for the discovery of protein variations is not data
generation– deep coverage RNA-Seq data is readily and
inexpensively produced–but rather in creating accessible
and flexible bioinformatic pipelines to process the data.
Given that sequencing platforms and software tools are
rapidly evolving, researchers need an environment where
it is easy to quickly integrate new transcriptomic and
proteomic tools and readily modify workflows to suit
their system of study. There is a dire need for transpar-
ency and sharing of workflows so that other labs can
build upon prior work. These problems are magnified
when considering the troves of next generation sequen-
cing (NGS) data that are currently underutilized in the
field of proteomics. One tool, CustomProDB, describes
an R package to streamline the process of RNA-Seq-
based database creation; however, we believe there is still
a need for flexible tools that can be easily modified and
integrated into larger bioinformatic pipelines [14].
Here we address the bioinformatic bottleneck in RNA-

Seq-based protein database construction by introducing flex-
ible, extensible, and sharable workflows within usegalaxyp.
org, the public version of Galaxy-P. Galaxy-P is an ex-
tension of the original web-based Galaxy framework
[15-17], with a focus on proteomic and multi-omic data
analysis applications. We present three workflows that
can be used for RNA-Seq-derived proteomic database
construction. These workflows are transparent, easily
shared, and flexible, so researchers, especially those
without expertise in computer science and bioinformat-
ics, can quickly extend and evolve the workflows for
their needs. We describe the workflows and show their
utility in discovering novel peptides in both human
(Jurkat cells) and mouse (pancreatic islet) samples. The
implementation of these workflows in Galaxy-P will
help researchers utilize NGS data for the detection and
discovery of protein variations via mass spectrometry.

Results and discussion
Galaxy workflows
We have developed workflows in Galaxy-P that convert
RNA-Seq data into three types of readily usable prote-
omic databases. These are databases containing novel
single amino acid polymorphisms; databases containing
novel splice junction sequences; and a reduced database,
which only contains protein sequences with correspond-
ing transcripts that are expressed over a threshold level
of abundance.
We demonstrated the utility of these workflows on par-

allel RNA-Seq and proteomics datasets collected from
the same sample. Figure 1 shows an overview of the
experimental design employed to collect RNA-Seq and
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proteomic data from human Jurkat cells and mouse
pancreatic islets from B6 and CAST mice. From each
sample, paired-end RNA-Seq reads (350 bp, 2 × 100bp)
from polyadenylated mRNAs were sequenced on an Illu-
mina HiSeq2000 and tandem mass spectra of tryptically
digested peptides were collected on a Velos-Orbitrap mass
spectrometer. Figure 2 gives an overview of the three bio-
informatic workflows, which are described below. These
workflows should be considered merely the starting point
for more complex bioinformatic pipelines and were de-
signed to be readily edited, extended, and evolved.

Galaxy workflows for RNA-Seq-derived database creation
SAP database
SNPs are single nucleotide differences between genomes
of different individuals and are one of the most common
types of genetic variation [18]. SNPs that reside within a
protein coding region and change the coding amino acid
are termed non-synonymous SNPs (nsSNPs) and the
corresponding amino acid is then called a single amino
acid polymorphism (SAP). Since a change in protein
coding sequence can potentially alter a protein’s func-
tion, it is important to directly measure SAP-containing
proteins by mass spectrometry. This would allow the
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evaluation of the post-translational consequences of a
given variant. For example, the quantification of each
SAP-containing peptide derived from a heterozygous
gene pair could allow for measurement of allele-specific
protein expression. These values may be compared with
allele-specific RNA abundance values to study potential
translational regulation of specific alleles [19].
Most reference protein databases contain only those

amino acid sequences that are translated from the refer-
ence genome, which typically represent nucleotide se-
quences derived from one or more representative
individuals or strains [20]. Therefore, SAPs present in a
particular experimental sample will be missed unless
they are explicitly added to the database. To solve this
problem, we and others have shown that customized
SAP polypeptide databases can be constructed from
RNA-Seq data. The set of nsSNPs encoded in a sample’s
transcriptome can be detected by RNA-Seq and the
stretches of RNA sequences containing nsSNPs can be
translated into SAP-containing protein sequences for
database searching [4,10].
The SAP database workflow in Galaxy-P inputs raw
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tide entries that can be used for MS searching. The
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Figure 3 Comparison of score distributions of all peptides
identified in the search versus peptides containing SAPs. For
Jurkat cells, the distribution of SEQUEST XCorr Scores for peptides
passing a 1% false discovery rate were compared between 1)
peptides mapping to the Ensembl reference proteome, and 2)
peptides containing single amino acid polymorphisms (SAPs)
derived from the sample-matched RNA-Seq data. SAP-containing
peptides had, on average, higher peptide spectral match (PSM)
quality scores as compared to those of reference peptides, attesting
to the high quality of the sample-specific SAP database employed
for MS searching.

Table 1 Results from creating SAP databases and using
them for searching proteomic datasets

Sample SAP database Proteomic identifications

SAPs SNP sites SAP Peptide IDs* SNPs ID’d

Jurkat human cells 9,168 6,924 522 491

B6 mouse islets 1 1 N/A N/A

CAST mouse islets 476 249 22 19

*peptide passing a 1% FDR.
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workflow aligns RNA-Seq reads to the reference genome
using Tophat [21], calls SNPs using SAMtools [22], and
annotates the SNPs that reside within protein-coding re-
gions using SNPeff [23]. To convert the annotated SNPs
into a SAP-containing polypeptide database, the work-
flow uses a tool we developed within Galaxy-P called
“SNPeff to Peptide Fasta”. Within this tool, the user spe-
cifies the number of amino acids to the left and right of
each detected SAP to include in the final SAP database.
Each entry in the database contains an informative
header specifying the location of both the SNP and SAP
on the transcript and protein, respectively. Additionally,
if the user would like to employ an alternative SNP call-
ing tool, like GATK, they can modify the workflow to in-
clude it [24].
We used the Galaxy-P SAP database workflow to cre-

ate and employ custom SAP databases for the human
and mouse samples. Using the human RNA-Seq dataset,
this workflow produced a SAP database comprising
6,168 SAP polypeptide entries, which was combined
with the Ensembl reference proteome. After MS data-
base searching, 522 SAP peptides that mapped up to 491
unique SNP sites on the genome were identified. These
SAP peptides would not have been detected if only the
canonical Ensembl protein sequences were used for
database searching. When comparing the SAP peptides
detected in the present study (522) with SAP peptides
detected using our previously published SAP workflow
(491) [4], which used different gene models (RefSeq in-
stead of Ensembl), there was an 89% overlap in peptide
identifications.
The peptide spectral match scores for SAP peptides

were higher on average than for peptides that mapped to
the reference proteome, underscoring the high quality
(i.e. fewer spurious SAPs) of SAP databases derived from
RNA-Seq data (Figure 3). These results are in direct
contrast to previously published studies in which the
SAP database was derived from the full collection of
non-synonymous SNPs from repositories such as dbSNP
and COSMIC. When these aggregate databases were
employed for MS searching, the resultant SAP peptide
identifications tended to have low scores as compared to
reference peptide identifications, because a high number
of SAP sequences were included in the database but not
present in the analyzed samples [25].
We also demonstrated the utility of this SAP database

workflow on two mouse strains, B6 and CAST. For B6,
the workflow produced, as expected, only 1 SAP entry, a
likely false positive or recent mutation since the mouse
reference genome is based on B6 [26]. For CAST, how-
ever, the workflow output a database with 476 SAPs,
which was concatenated with the Ensembl reference
proteome and subsequently used for MS searching. 22
SAP peptides mapping to 19 unique SNP sites were
identified. The difference between B6 and CAST SAP
databases illustrates that the number of SAPs detected
is dependent on the relationship between the sample
and the reference genome. B6, which is in fact
the strain from which the reference genome is based,
did not have detected variants while CAST, a less well
characterized disease model system for Type II dia-
betes, had many. This illustrates the importance of
utilizing RNA-Seq data for proteomics analysis, espe-
cially for organisms, strains, and disease models that
have not been thoroughly characterized or contain
sparsely annotated reference proteomes.
Results for both human and mouse data are summa-

rized in Table 1.



Table 2 Results from creating splice junction databases
and using them for searching proteomic datasets

Sample Splice database

Size Min. depth Peptide IDs*

Jurkat human cells 33,372 6 67

B6 mouse islets 57,587 4 64

CAST mouse islets 43,244 4 66

*peptide passing a 1% local FDR.
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Splice database
A majority of genes in higher eukaryotes are alterna-
tively spliced resulting in the production of multiple
mRNA forms from the same gene. The spliceosome pro-
cesses pre-mRNAs by excising introns and combining
specific exons to produce a mature RNA. The ubiquity
of splicing, especially in humans, has been revealed by
next generation sequencing methods that allow un-
biased, global characterization of splicing in many cell
and tissue types [27,28].
Despite the high number of novel splice forms de-

tected at the transcript level, proteomic databases for
MS searching are far from complete in terms of splicing.
There are still novel splice events in certain cell types or
disease models that are not yet annotated. Consequently,
the polypeptide sequences corresponding to these novel
splice sites are not in the protein reference database and
are thus missed during standard MS-based proteomic
analyses.
Within Galaxy-P, we have created a workflow for the

detection and subsequent incorporation of novel splice
sequences into custom splice-junction databases. The
splice database workflow first aligns RNA-Seq data to
the genome twice, first to only those splice junctions
found in the Ensembl gene models and second to both
the Ensembl gene models and reference genome. The
output BED files, which contain the coordinates of all
detected junctions, are compared to each other and only
those coordinates corresponding to splice junctions not
present in the gene models are retrieved. Next, the gen-
omic sequences for each splice junction are retrieved.
We developed a program within Galaxy-P, “Translate
BED sequences”, which translates the splice junctions
and compiles all splice-junction polypeptide sequences
into a database. The user may choose to filter out splice
junction entries that contain stop codons, are less than a
certain length, or are below a certain expression level as
measured by the RNA-Seq read depth at each splice
junction.
We used the splice database workflow to create and

employ custom splice-junction databases for the human
and mouse samples. Using the human RNA-Seq dataset,
this workflow produced a splice-junction database com-
prising approximately 33,000 splice-junction polypeptide
entries. Previously, we have found it was important to
use a stringent score cut-off for peptide spectral matches
corresponding to splice junction peptides [5]. Therefore,
we required the same 1% local FDR for splice-junction
peptide identifications in the present study. After MS
searching against the splice-junction database, 67 novel
splice junction peptides, defined as those peptides not
present in the Ensembl reference proteome, were identi-
fied. There was a 57% overlap of splice-junction peptides
identified in this and a previous study, which used a
similar though not identical workflow (e.g. RefSeq gene
models) [5].
Application of the workflow for analysis of the mouse

islet RNA-Seq data resulted in a splice junction database
containing approximately 32,000 (B6) and 20,000 (CAST)
splice junction polypeptides. After MS searching, 58 (B6)
and 72 (CAST) novel splice junction peptides were identi-
fied at a 1% local FDR.
Results for human and mouse data are summarized in

Table 2. These results show that many sample-specific
peptides derived from novel alternative splice events are
missed when using only the reference protein database
for MS searching.

Reduced database
Target decoy search strategies are widely used in mass
spectrometry-based proteomics to determine a false dis-
covery rate (FDR) for peptide identifications [29]. The
underlying assumption in this approach is that the
target database, which comprises the sequences of the
proteins in a reference database, reflects the protein se-
quences actually present in the sample. However, this is
rarely the case; for example, human cells have been
found to express fewer than 50% of the proteins
encoded in their genome at any given time [30-32].
RNA-Seq data can be employed to quantify transcripts
and then remove those protein sequences from the ref-
erence database that have minimal or undetected
mRNA expression levels [33]. This procedure can be
thought of as reduction of database “noise” resulting
from removal of putatively unexpressed proteins. This
produces a smaller, sample-specific “reduced” database
that could improve the number and quality of peptide
identifications or could aid in disambiguation of pro-
teins during protein inference [10,12,13].
In the reduced database Galaxy-P workflow, the sample-

matched raw RNA-Seq data serves as input and RSEM
[34] is used to quantify transcripts based on Ensembl gene
models (e.g. GTF file). The output is a list of each tran-
scripts’ abundance in Transcripts Per Million (TPM).
Next, Galaxy Text Manipulation tools are used to link
each protein entry in the protein FASTA file to its cor-
responding transcript and the transcript’s abundance
in TPM.
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We used the human and mouse datasets to test the re-
duced database workflow by creating reduced databases
comprised of only those proteins with transcript abun-
dances above 1 TPM. For human, the Ensembl protein
database was reduced from approximately 104,000 to
83,000 entries. The MS search against this reduced data-
base yielded 313 more peptide identifications as com-
pared to the original database search. For mouse, the
Ensembl protein database was reduced from approxi-
mately 52,000 to 18,000 (B6) or 17,000 (CAST) entries,
increasing the number of peptide identifications for each
strain by 166 (B6) and 146 (CAST). Full results for the
reduced databases are listed in Table 3. Though these in-
creases in peptide identifications are modest, this work-
flow offers a starting point for investigators interested
in studying the relationship between database size and
proteomics search results or how incorporation of tran-
scriptional abundance values in peptide or protein iden-
tification scoring could improve database searching. One
can easily change the TPM cut-off employed for various
proteomic datasets that have different depths of cover-
age; this could allow exploration of where the optimum
“balance” between including and excluding protein se-
quences should be. If available, alternative gene models
besides Ensembl can be used, as can different transcript
quantification programs.
Additionally, this workflow can be used to measure

RNA-protein expression correlations, because the tran-
scriptional abundance is reported for each protein. One
could perform an MS database search against the full (or
reduced) protein database and then compare estimated
protein abundances (e.g. from spectral counting) to the
abundance of the corresponding transcript. Comparison
of transcript and protein abundance levels would pin-
point proteins that are high in cellular abundance but
low in transcript abundance and vice versa. This infor-
mation could help researchers gain biological insight by
revealing underlying mechanisms of post-transcriptional
regulation of protein expression and/or turnover [35].

Conclusions
Using RNA-Seq data to enhance MS analysis is a promis-
ing strategy to discover novel peptides specific to a sample
and, more generally, to improve proteomics results. The
Table 3 Results from MS searching with the original Ensembl

Sample RNA-
Seq
reads

Mass
spectra

Original da

# entries

Jurkat human cells 80 M 500 K 104,310

B6 mouse islets 94 M 250 K 52,165

CAST mouse islets 126 M 250 K 52,165

*peptide passing a 1% FDR.
main bottleneck for widespread adoption of this strategy
has been the lack of easily used and modifiable computa-
tional tools. We provide a solution to this problem by
introducing a set of workflows within Galaxy-P that easily
convert raw RNA-Seq data into proteomic databases. De-
velopment within Galaxy-P brings unique benefits due to
the inherent characteristics of the Galaxy-framework
[15-17], such as easy publication and sharing of complete
workflows with other users. Flexibility is a key benefit, as
users can easily customize workflows to account for
sample- or experiment-specific parameters, and also in-
corporate emerging new tools as desired. Although the
complete workflows are available for use on the public
Galaxy-P instance (i.e. implementation), the tools used
and developed here are either already a part of the main
Galaxy build or have been deposited in the Galaxy Tool
Shed (http://toolshed.g2.bx.psu.edu/) under the “Proteo-
mics” link. Thus these workflows should be usable on
local Galaxy instances as well.
These workflows were tested on RNA and protein

datasets that were collected in parallel from human and
mouse samples. The results show that incorporating
RNA-Seq data into proteomic analyses enables discovery
of novel peptides arising from genetic variation and al-
ternative splice forms, improves the number and quality
of peptide identifications, and enables measurement of
RNA-Protein expression correlations. These workflows
and the benefits of the Galaxy framework provide a
sound basis upon which to build newer and more so-
phisticated methods of RNA-Seq analysis for the contin-
ued advancement of proteomics, as newer tools and
technologies arise.

Methods
Jurkat cell RNA-Seq
Jurkat cells were grown in 90% RPMI and 10% FBS (ATCC,
Manassas, VA) to 1.3 × 106 cells/mL. Total RNA was ex-
tracted using TriZol and its protocol (Invitrogen). RNA li-
braries were prepared using the Illumina TruSeq protocol,
which includes a dT bead enrichment of polyadenylated
mRNAs and size selection of 350 bp cDNA fragments. ~80
million paired end reads (350 bp, 2 × 100bp) were se-
quenced on an Illumina HiSeq2000. More information
about this dataset may be found in [5].
protein database and the reduced database

tabase Reduced database

Peptide IDs* # entries Peptide IDs* % increase

73,123 82,101 73,436 0.4

30,212 18,052 30,220 0.3

28,902 16,940 28,823 0.2

http://toolshed.g2.bx.psu.edu/
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Jurkat cell MS-based proteomics
MS-based proteomics data collection has been previously
described [5]. Briefly, protein was extracted and digested
using the FASP protocol [36]. Peptides were fractionated
on a high-pH HPLC and 28 fractions were analyzed on a
nanoflow HPLC integrated with a Velos-Orbitrap mass
spectrometer. The MS raw files for the Jurkat cell lysate
samples are available via FTP from the PeptideAtlas data
repository [37] by accessing the following link: http://
www.peptideatlas.org/PASS/PASS00215.

B6 and Cast Mouse Islet RNA-Seq
Pancreatic islets were isolated from two B6 mice and
two CAST mice. Total RNA was extracted from ~250 is-
lets of each mouse strain using the Qiagen RNeasy Mini
Kit (Qiagen, Hilden, Germany). RNA-Seq data was col-
lected as described for the human sample.

B6 and Cast Mouse Islet proteomics
Protein was extracted from ~400 B6 islets (~470 CAST
islets), and then proteomics data was collected in the
same manner as for the human sample, except that 9
fractions were collected during the high-pH HPLC frac-
tionation. MS raw files for the mouse samples are avail-
able via FTP from the PeptideAtlas data repository [37]
by accessing the following link http://www.peptideatlas.
org/PASS/PASS00470.

Workflows
Three workflows were created within Galaxy-P that
allow for the conversion of RNA-Seq data into custom-
ized protein databases. Galaxy-generated visualizations
of these workflows may be found in Additional files 1, 2,
3, 4, 5, 6, 7. Full computational details of these work-
flows can be found in the following links:

SAP database workflows
Human_SAP_DB_Workflow.html (Additional file 1).
Mouse_SAP_DB_Workflow.html (Additional file 2).
URL to workflow within Galaxy Toolshed: http://toolshed.g2.

bx.psu.edu/view/galaxyp/proteomics_rnaseq_sap_db_workflow.

Splice database workflows
Human_Splice_DB_Workflow.html (Additional file 3).
Mouse_Splice_DB_Workflow.html (Additional file 4).
URL to workflow within the Galaxy Toolshed: http://

toolshed.g2.bx.psu.edu/view/galaxyp/proteomics_rnaseq_
splice_db_workflow.

Reduced database workflows
Human_Reduced_DB_Workflow.html (Additional file 5).
Mouse_Reduced_DB_Workflow.html (Additional file 6).
URL to workflow within the Galaxy Toolshed: http://
toolshed.g2.bx.psu.edu/view/galaxyp/proteomics_rnaseq_
reduced_db_workflow.

Database searching of mass spectrometry data
For each of the three sample types described above (human,
mouse B6, mouse CAST), Galaxy-P workflows generated
a SAP, splice, and reduced database which was concatenated
with the cRAP database of common MS contaminants
(ftp://ftp.thegpm.org/fasta/cRAP). The resultant reduced +
SAP + splice + cRAP databases, one created for each of
the three samples, were searched against the sample-
matched raw mass spectra data using the Percolator search
node within Proteome Discoverer (v1.4, Thermo Fisher
Scientific, San Jose, CA). Default peaklist-generating pa-
rameters were used. Precursor m/z tolerance was set to
10 ppm and product m/z tolerance was set to 0.05 Da.
Peptides with up to two missed cleavages (trypsin) were
permitted. Variable methionine oxidation and static carba-
midomethylation were used. Using reversed sequences as
a decoy database, peptides passing a 1% global FDR were
accepted as identified (except in cases where a more strin-
gent 1% local FDR was mentioned in the text).

Post-search peptide filtering and annotation
Peptide identifications were filtered using the “Filter In
Reference” tool we developed within Galaxy-P, which
finds and annotates the novel peptides not listed in the
reference proteome. An example workflow may be found
in the following links:
Example_Novel_Peptide_Filter.html (Additional file 7).
URL to workflow within the Galaxy Toolshed: http://

toolshed.g2.bx.psu.edu/view/galaxyp/proteomics_novel_
peptide_filter_workflow.

Availability of supporting data
The MS raw files for the Jurkat cell lysate samples are
available via FTP from the PeptideAtlas data repository
[37] by accessing the following link: http://www.pepti-
deatlas.org/PASS/PASS00215. Information for download
of the RNA-Seq data collected from Jurkat cell lysates
may be found in a previous publication [5]. MS raw files
for the mouse samples are available via FTP from the
PeptideAtlas data repository [37] by accessing the follow-
ing link http://www.peptideatlas.org/PASS/PASS00470.

Ethics
The Biochemistry Department at the University of Wisconsin
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