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Abstract

Background: Transcription factors (TFs) contain DNA-binding domains (DBDs) and regulate gene expression by
binding to specific DNA sequences. In addition, there are proteins, called transcription coregulators (TCs), which lack
DBDs but can alter gene expression through interaction with TFs or RNA Polymerase II. Therefore, it is interesting to
identify and classify the TFs and TCs in a genome. In this study, maize (Zea mays) and foxtail millet (Setaria italica),
two important species for the study of C4 photosynthesis and kranz anatomy, were selected.

Result: We conducted a comprehensive genome-wide annotation of TFs and TCs in maize B73 and in two strains of
foxtail millet, Zhang gu and Yugu1, and classified them into families. To gain additional support for our predictions, we
searched for their homologous genes in Arabidopsis or rice and studied their gene expression level using RNA-seq and
microarray data. We identified many new TF and TC families in these two species, and described some evolutionary
and functional aspects of the 9 new maize TF families. Moreover, we detected many pseudogenes and transposable
elements in current databases. In addition, we examined tissue expression preferences of TF and TC families and
identified tissue/condition-specific TFs and TCs in maize and millet. Finally, we identified potential C4-related TF and TC
genes in maize and millet.

Conclusions: Our results significantly expand current TF and TC annotations in maize and millet. We provided
supporting evidence for our annotation from genomic and gene expression data and identified TF and TC genes with
tissue preference in expression. Our study may facilitate the study of regulation of gene expression, tissue
morphogenesis, and C4 photosynthesis in maize and millet. The data we generated in this study are available at http://
sites.google.com/site/jjlmmtf.
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Background
Gene regulation by transcription factors (TFs) is crucial for
development, maintenance of normal physiology and re-
sponse to external or internal stimuli. Hence, identification
and classification of TFs will increase our understanding of
TF functions and regulation of biological processes. A TF
contains one or more DNA-binding domains (DBDs),
which bind specific DNA sequences to mediate the binding
of RNA polymerase at the onset of transcription initiation.
For example, Arabidopsis ethylene response factor 1 (ERF1)
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contains an AP2 DBD, which binds the GCC box in the
promoter sequences of ethylene responsive genes , while
Arabidopsis AINTEGUMENTA (ANT) contains two AP2
domains [1,2]. A TF may also contain an auxiliary domain
that facilitates DNA binding. For example, an auxin
response factor (ARF) contains a B3 DBD and an auxiliary
domain, the “auxin/indole-3-acetic acid (Aux/IAA)
domain”. ARF proteins can form homodimers, where the
two combined B3 domains can bind a TGTCTC-
containing auxin responsive element, through interaction
with the two Aux/IAA domains [3,4]. In addition, there
are proteins that have no DBD but can bind TFs or RNA
polymerase II to alter gene regulation; such proteins are
called transcription coregulators (TCs), which include
coactivators and corepressors [5]. For example, an Aux/
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IAA protein, which contains an Aux/IAA domain, can
form a heterodimer with an ARF protein and prevent the
ARF from activating its target genes [4,6,7].
In recent years, many plant TF databases have been

developed. According to Mitsuda et al., in Arabidopsis
approximately 70 families of TFs have been classified in
public TF databases, including RARTF, AGRIS, DATF and
PlnTFDB 3.0 [8-12]. Furthermore, there are other data-
bases, such as PlantTFDB 3.0, ProFITS, GrassTFDB in
Grassius, PlantTFcat and TreeTFDB, which provide classi-
fications of TFs in Arabidopsis and other plants [13-17].
However, these databases classify TFs into families accord-
ing to their own criteria, leading to differences in the
number of annotated TF genes and in the number of fam-
ilies among databases. Moreover, only a few databases
provide annotation of TCs for plants, such as ProFITS,
PlnTFDB 3.0, PlantTFcat and GrassCoregDB in Grassius
[11,13-15].
We are interested in annotating TF genes and TC

genes in maize and millet. Maize gives a high crop
yield and is efficient in water usage. Its genome was
sequenced and annotated in 2009 [18,19]. Maize gene
annotation contains ~110,000 genes in the maize Working
Gene Set (WGS, release 5b) and 39,656 genes in the maize
Filtered Gene Set (FGS, release 5b), in which transposons,
pseudogenes, contaminants, and other low-confidence
genes have been excluded. PlantTFDB 3.0, Grassius and
iTAK (http://bioinfo.bti.cornell.edu/cgi-bin/itak/index.cgi)
provide maize TF annotation only for the FGS genes,
while most other databases have not been updated
recently [13,17]. According to the maize transcriptomes of
Liu et al., there were 6355 expressed genes in WGS that
were not included in FGS, suggesting that some TFs and
TCs have not been included in the above databases [20].
Millet is an emerging C4 model plant. It has a shorter

generation time (~12 weeks vs. ~16 weeks) and a much
smaller genome size (~490 Mb vs. 2500 Mb), suggest-
ing much fewer duplicate genes and less functional
redundancy compared to maize. Two different millet
cultivars, Yugu1 and Zhang gu, were sequenced in 2012
[21,22]. For millet, only PlantTFDB 3.0 provides TF
annotation [17].
In this study, we conducted a comprehensive genome-

wide annotation of TFs and TCs for maize WGS and
also for the two millet strains, Zhang gu and Yugu1. We
used protein domains to identify TFs and TCs and
classified them into families in maize and millet, separ-
ately. We also identified tissue- or condition-specific TF
and TC genes in maize and millet. Our study provides a
database of annotated TF and TC genes in maize and
millet with various kinds of supporting evidence, espe-
cially genomic and transcriptomic data. Our study sheds
light on the role of different TF and TC genes in the
development of different tissues in these two C4 plants.
Results
Genome-wide prediction and classification of TFs and TCs
To identify TF and TC genes in the maize and millet
genomes, we collected all protein sequences annotated in
the maize and millet genomes to form an initial set of
protein sequences. Then, for each sequence we checked
the presence of DBDs or TC domains.
There is abundant information of protein domains re-

lated to TFs and TCs in TF databases. To select
domains that may be related to a TF or TC family, we
compiled a set of related signature domains from
PlantTFDB 3.0, PlnTFDB 3.0, Grassius, ProFITS and
AnimalTFDB [11,13,14,17,23]. Besides TF databases, we
also used other resources to find out more possible
DBDs or characteristic domains of TCs. For example,
Gene Ontology (GO) annotation can be used to select
protein domains that may have TC function but have not
been included in the TF databases we used [24]. On the
other hand, experimental data such as ChIP-seq and pro-
tein binding microarray (PBM) are also useful for finding
more DBDs [25,26]. From these sources, we defined 67 TF
families and 29 TC families (Additional file 1: Table S1 and
Additional file 2: Table S2). As described in Methods, the
domains we selected were represented by Hidden Markov
Model (HMM). We used HMMER 3.0 to predict protein
domains on a protein sequence. After we obtained the
domain compositions on the protein sequences under
study, a set of classification rules was applied to identify
TFs and TCs (Methods). Figure 1 depicts the workflow of
our pipeline.
By applying our pipeline, 2538 genes (3637 proteins) in

maize were predicted as TF genes and classified into 64
families, including 153 genes that are not in FGS (Table 1
and Additional file 3: Table S3 (A)). In addition, 149 genes
(236 proteins) were predicted as TC genes and classified
into 21 families, including 8 genes that were not in FGS
(Table 2 and Additional file 3: Table S3 (B)).
In millet Yugu1, 1880 genes (2116 proteins) were

predicted as TF genes and classified into 64 families
(Table 1 and Additional file 3: Table S3 (C)). In
addition, 99 genes (118 proteins) were predicted as TC
genes and classified into 22 families (Table 2 and
Additional file 3: Table S3 (D)).
In millet Zhang gu, 1846 genes were predicted as TF

genes and classified into 65 families (Table 1 and
Additional file 3: Table S3 (E)), while 104 genes were
predicted as TC genes and classified into 22 families
(Table 2 and Additional file 3: Table S3 (F)). Orthologs of
maize and millet TF and TC genes in other genomes
To gain additional support of identified TF and TC

genes, we checked the existence of orthologous genes in
other plant species. For a maize TF or TC gene predicted
by our pipeline, we examined whether it has orthologs in
Arabidopsis thaliana or rice (Oryza sativa japonica)
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Figure 1 Pipeline for TF and TC prediction and classification.
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(Ensembl Plants release 17) because the Arabidopsis and
rice genomes are well annotated [27]. We found 2392
predicted maize TF genes (94.25%) have orthologs in either
or both of the two reference species, including 107 genes
that were not included in maize FGS (Table 3 and
Additional file 3: Table S3 (A)). The corresponding number
for TC genes was 143 (95.97%) (Table 4 and Additional file
3: Table S3 (B)), including 7 genes that were not included
in maize FGS. Thus, a substantial proportion of maize TF
and TC genes not included in FGS have supporting
evidence in Arabidopsis or rice.
In millet Yugu1, 1808 TF genes (96.17%) and 97 TC

genes (97.97%) have orthologs in Arabidopsis or rice
(Tables 3 and 4, Additional file 3: Table S3 (C) and S3
(D)). In millet Zhang gu, the orthologous relationships
were not covered in Ensembl Plants, so we used
BLASTP to search for putative orthologs of TFs and
TCs of millet Zhang gu in Arabidopsis and rice
(Methods) [27]. We found 1680 TF genes (91.01%) and
95 TC genes (91.35%) have orthologs in Arabidopsis or
rice (Tables 3 and 4, Additional file 3: Table S3 (E) and
S3 (F)).
We also examined orthology between maize and millet

because we also need to consider the possibility that some
TFs and TCs appeared after panicoideae emerged.
Between maize and millet Yugu1, we found 2209 maize
TF genes (87.04%) and 136 TC genes (91.28%) have ortho-
logs in millet Yugu1 (Tables 3 and 4, Additional file 3:
Table S3 (A) and S3 (B)), while 1537 millet Yugu1 TF
genes (81.76%) and 90 TC genes (90.91%) have orthologs
in maize (Tables 3 and 4, Additional file 3: Table S3 (C)
and S3 (D)). Between maize and millet Zhang gu, 2249
maize TF genes (88.61%) and 132 maize TC genes
(91.03%) have orthologs in millet Zhang gu (Tables 3
and 4, Additional file 3: Table S3 (A) and S3 (B)), while
1701 millet Zhang gu TF genes (92.15%) and 98 TC
genes (94.23%) have orthologs in maize (Tables 3 and
4, Additional file 3: Table S3 (E) and S3 (F)).



Table 1 Numbers of TF genes in maize and millet
annotated in this study

Family* Millet Zhang gu Millet Yugu1 Maize

AP2 23 24 26

ARF 24 24 36

ARR-B 9 9 9

B3 56 55 59

BBR-BPC 3 3 4

BES1 10 9 10

bHLH 177 172 207

bZIP 92 83 132

C2H2 103 108 137

C3H 40 38 64

CAMTA 7 7 8

CO-like 6 10 17

CPP 7 10 13

CSD (N) 2 0 4

DBB 8 8 14

Dof 24 28 46

E2F/DP 8 7 20

EIL 8 7 9

ERF 126 143 205

FAR1 8 61 19

G2-like 51 44 66

GATA 30 28 43

GeBP 12 15 21

GRAS 62 57 101

GRF 7 10 15

HB-other 9 8 28

HB-PHD 2 2 4

HD-ZIP 49 46 65

HMG (N) 10 10 15

HMGI/HMGY (N) 6 6 13

HRT-like 1 1 0

HSF 25 22 29

LBD 32 32 44

LFY 1 1 2

LSD 5 5 6

MBD (N) 12 12 13

MIKC 31 22 43

mTERF (N) 53 55 31

M-type 40 42 44

MYB 128 121 169

MYB_related 80 76 143

NAC 139 141 139

NF-X1 2 2 4

Table 1 Numbers of TF genes in maize and millet
annotated in this study (Continued)

NF-YA 9 10 18

NF-YB 16 15 19

NF-YC 16 14 19

Nin-like 18 17 18

Pseudo ARR-B (N) 5 4 5

RAV 2 4 3

S1Fa-like 1 1 2

SBP 20 18 38

SRS 6 6 13

STAT 1 1 1

TALE 24 24 29

TCP 17 18 46

Trihelix 27 27 48

VOZ 2 2 6

Whirly 2 2 2

WOX 9 13 20

WRKY 110 109 128

YABBY 8 8 13

BED (N) 9 13 54

ZF-HD 10 8 22

LITAF (N) 1 1 1

MIZ (N) 5 3 2

*: N at the end of a family name means that the family is not defined
in PlantTFDB3.0.
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In conclusion, a very high proportion of the TF and TC
genes we predicted in maize and millet have orthologs in
other species.

Expression of maize TF and TC genes in different tissues
or conditions
To gain functional support of our annotated TF and
TC genes, we collected the FPKM (Fragments Per Kilo-
base of exon per Million fragments mapped) values of
maize genes from 7 RNA-seq datasets via qTeller
(http://qteller.com), time course transcriptomes from
Liu et al., and a microarray dataset from Sekhon et al.
to examine their expression in different tissues or
under different conditions [20,28-35]. We found that
in maize, 2287 TF genes (90.11%) and 143 TC genes
(98.11%) were expressed in at least one RNA-seq data-
set (Additional file 3: Table S3 (A) and S3 (B),
Additional file 4: Table S4 and Additional file 5: Table
S5), and 1838 TF genes (72.42%) and 120 TC genes
(80.54%) were expressed in at least one condition in
the microarray dataset (Additional file 3: Table S3 (A)
and S3 (B)). When all 9 datasets were considered to-
gether, 2341 TF genes (92.24%) and 145 TC (97.32%)

http://qteller.com/


Table 2 Numbers of TC genes in maize and millet
annotated in this study

Family Millet Zhang gu Millet Yugu1 Maize

AUX/IAA 29 29 52

GIF 3 3 3

MBF1 2 2 3

Med10 1 1 2

Med11 1 1 2

Med12 1 1 6

Med13_C 1 1 1

Med14 2 2 1

Med17 1 1 2

Med18 1 1 0

Med20 1 1 1

Med22 1 1 1

Med31 1 1 1

Med4 1 1 2

Med6 1 1 2

Med7 2 2 2

PC4 2 2 3

RB 2 2 5

Sigma54_activat 9 10 9

Spt20 2 2 1

TAZ 7 7 7

OFP 33 27 43
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genes were found to be expressed (Tables 3 and 4,
Additional file 3: Table S3 (A) and S3 (B)).
To identify tissue expression preference of TF and

TC genes, we divided the RNA-seq datasets of maize
into 7 different tissue groups. The ratios of expressed
TF and TC genes to all expressed genes are around 5%
in different tissues (Figure 2), comparable to the ratio
in Arabidopsis [10].
We studied the expression enrichment of TF and TC

families in different tissues. We found that 39 TF families
and 4 TC families were enriched in at least one tissue
group (Table 5). Interestingly, there are 9 families (AUX/
IAA, C3H, CAMTA, FAR1, GeBP, NF-YA, Sigma54_acti-
vat, Trihelix and mTERF) that are enriched in all tissue
Table 3 Numbers of TF genes in maize and millet with orthol

Maize

Number of TF genes 2538

TF genes with orthologs in Arabidopsis or rice 2392

TF genes regarded as expressed 2341

TF gene with orthologs in maize N/A

TF gene with orthologs in millet Yugu1 2209

TF gene with orthologs in millet Zhang gu 2249
groups, implying that these families may play regulatory
roles in all tissues. For example, the WRKY family was only
enriched in root, suggesting that WRKY genes are import-
ant in maize root, as in Arabidopsis root [36]. The MIKC
family, which possesses a MADS domain, is enriched in
floral organs and seeds, so they may be important in floral
organ and seed development, as in Arabidopsis [37]. OFP
and B3 families are enriched in the seed. As some OFP
genes affect fruit development in pepper and B3 genes
affect seed maturation and embryo development in
Arabidopsis, they may play important roles in seed de-
velopment in maize [38-42]. The YABBY family is im-
portant in determining the abaxial cell fate in lateral
organs in Arabidopsis and lateral organ outgrowth in
maize, and it is highly enriched in the maize ear and
embryonic leaf data we collected [43,44]. The G2-like
family is enriched in shoot. The KANADI genes in the
G2-like family are known to be involved in the develop-
ment of organ polarity in Arabidopsis [45]. Our data
suggests that members in the G2-like family play vari-
ous roles in shoot development.
We also studied whether similar tissues would show

similar enrichments of TF and TC families (Figure 3).
Indeed, some closely related tissues showed highly similar
enrichments of TF and TC families. For example, the
enrichment patterns in embryonic leaf, seed and ear are
more similar than that among other tissues. The two
inflorescence types in maize are derived from the tip of
shoot, and our result showed that their TF and TC enrich-
ment patterns are similar. Thus, tissues similar in function
tend to express similar TF and TC genes.

Expression of millet TF and TC genes in different tissues
or conditions
For millet Zhang gu, RNA-seq samples from 4 different
tissues were available (Additional file 4: Table S4), and we
identified 1397 TF genes (75.68%) and 91 TC genes
(87.5%) expressed under the criterion of having the
adjusted RPKM value ≥1 in at least one tissue (Tables 3
and 4, Additional file 6: Table S6). The proportion of TF
and TC genes with supporting evidence from gene expres-
sion data in millet Zhang gu is lower than that in maize
TF and TC genes, because gene expression data is far less
abundant in millet than in maize. The ratios of expressed
ogs in other species and support from expression data

Millet Yugu1 Millet Zhang gu

1880 1846

1808 1680

N/A 1397

1537 1701

N/A 1772

1799 N/A



Table 4 Numbers of TC genes in maize and millets with orthologs in other species and support from expression data

Maize Millet Yugu1 Millet Zhang gu

Number of TC genes 149 99 104

TC genes with orthologs in Arabidopsis or rice 143 97 95

TC genes regarded as expressed 145 N/A 91

TC gene with orthologs in maize N/A 90 98

TC gene with orthologs in millet Yugu1 136 N/A 99

TC gene with orthologs in millet Zhang gu 132 97 N/A

Lin et al. BMC Genomics 2014, 15:818 Page 6 of 19
http://www.biomedcentral.com/1471-2164/15/818
TF and TC genes to all expressed genes are around 6% in
different tissues (Figure 4).
We also conducted expression enrichment analysis in

millet Zhang gu. There were 28 TF families and 2 TC fam-
ilies enriched in at least one tissue group (Table 6), and 3
TF families and 1 TC family enriched in all 4 tissue groups
(C3H, CAMTA, FAR1 and Sigma54_activat). The enrich-
ment patterns of TF and TC families in the four tissue
groups are shown in Figure 5. These families are also
enriched in all tissue groups of maize, so they may be
important in regulating biological processes. The expres-
sion of the mTERF family is not significantly enriched in
root (Fisher’s exact test p-value = 0.76). In Arabidopsis,
the number of mTERF genes potentially expressed in
root tissues is lower than in other tissues, and the
enrichment test in maize was barely significant (Fisher’s
exact test p-value = 0.049) [46].

TF and TC families enriched in same tissues in millet and
maize
We cross-compared our result of enrichment analysis in
maize and millet and identified 18 TF families and 3 TC
Figure 2 Expression of maize TF and TC genes in different tissues. Nu
in different tissues is shown. Complete statistics is shown in (C).
families enriched significantly in at least one same tissue of
maize and millet (Table 5, Table 6, Figure 3 and Figure 5).
Besides the four families that were enriched in all tissue
groups in maize and millet, other TF and TC families may
also play important roles in tissue groups they enriched.
For example, the WRKY family was enriched in both maize
and millet roots, implying the importance of WRKY genes
in the root. The two families NF-YA and NF-YC, which are
related to the nuclear factor Y complexes, were enriched in
leaf [47]. A previous study in rice indicated that their
possible binding DNA motifs were enriched in coexpressed
genes in specific leaf cell types in rice, so it is possible that
these two families also play an important role in leaf devel-
opment in grasses [48]. The SBP family was enriched in
the tassel group. A previous study indicated that it is
enriched for proximity to tassel branching loci, so this fam-
ily may be important in tassel development [49]. The NAC
family was significantly enriched in millet root and
although the enrichment of the NAC family in maize root
was not significant (p-value = 0.072), the number of NAC
family genes expressed in root was much larger than in the
other tissues studied. Previous studies found some NAC
mber of expressed or preferentially expressed TF (A) and TC (B) genes



Table 5 Significance levels of TF and TC Families in different maize tissues

Family Ear Embryonic Leaf Leaf at later stage Root Seed Shoot Tassel

AP2 0.67969 0.07021 0.56658 0.34981 0.03766 0.33074 0.59394

ARF 4.86E-05 3.88E-05 0.06251 0.00087 0.00118 0.003 0.00512

ARR-B 0.05005 0.02615 0 0.06493 0.06871 0.09044 0

AUX/IAA 0.01157 0.00349 0.01556 0.00023 0.00152 0.00134 0.0014

B3 0.07468 0.05294 0.974 0.88084 0.04704 0.09984 0.78141

BES1 0.43059 0.56894 0.72694 0.15304 0.04916 0.57422 0.44143

C2H2 0.40462 0.78835 0.93476 0.73105 0.48738 0.97906 0.97111

C3H 4.24E-06 5.48E-07 0.00079 9.57E-07 4.66E-08 3.25E-07 0.00022

CAMTA 0 0 0 0 0 0 0

CO-like 0.0025 0.24574 0 0.3737 0.03475 0 0

CPP 0.0112 0.00423 0 0.13826 0 0.0272 0

DBB 0 0.02279 0.05128 0 0.01288 0.30478 0.05652

Dof 0.03949 0.43131 0.17721 0.92732 0.01726 0.85531 0.33311

E2F/DP 0.17299 0.00468 0.2946 0.29741 0.44409 0.32046 0.12153

EIL 0.78314 0.02615 0.49092 0.7444 0.28728 0.34398 0.5084

ERF 1 0.98559 0.54626 0.79527 0.90577 0.99998 0.99987

FAR1 0.01502 0.00468 0.02056 0.00061 0.00338 0 0

G2-like 0.30988 0.77284 0.61504 0.47687 0.18978 0.04774 0.1884

GATA 0.01486 0.00012 0.22716 0.19129 0.00329 0.02585 0.05481

GRAS 0.48999 0.37522 0.92927 0.60385 0.60767 0.98753 0.70509

GRF 0 0 0.04081 0.34429 0 0 0

GeBP 0 0 0 0.00524 0 0 0

HB-other 0.11041 0.10066 0.12306 0.05348 0.17347 0.11616 0.13742

HD-ZIP 0.00013 0.20318 0.06448 0.03399 0.00064 0.03699 0.00026

HMG 0.00529 0.1858 0.04081 0.01778 0.06054 0.08808 0.04531

HMGI/HMGY 0 0.00423 0.06445 0.00081 0 0 0.0705

HSF 0.01116 4.94E-05 0.0551 0.02572 0.0236 0.22818 0.16553

LBD 0.99964 0.99862 0.99999 0.97509 0.92321 0.99993 0.99971

M-type 0.85675 0.9992 0.96814 0.92997 0.6328 0.92136 0.16782

MBD 0.22458 0.00423 0.06445 0.13826 0.10394 0.36196 0.27978

MIKC 0.00118 0.99996 0.99983 0.94689 0.01181 0.12968 0.00129

MYB 0.99839 1 0.99999 0.04121 0.84955 0.97306 0.97846

MYB_related 0.56902 0.77282 0.71872 0.00482 0.23988 0.13373 0.97806

NAC 0.99593 0.99509 0.93794 0.07169 0.49051 0.21413 0.41416

NF-YA 0.00364 0.00108 0 0.04416 0.0066 0.01104 0.03632

NF-YB 0.61894 0.80516 0.91116 0.20323 0.50517 0.78466 0.80344

NF-YC 0.34727 0.19528 0.02056 0.15186 0.44409 0.32046 0.02334

Nin-like 0.47377 0.14231 0.82469 0.12431 0.15546 0.42769 0.03632

OFP 0.32285 0.45214 0.86382 1 0.02237 0.83652 0.9731

SBP 0.00085 0.08131 0.03956 0.83484 0.00254 0.0064 0.00028

SRS 0.0112 0.30507 0.99933 0.96581 0 0.98247 0.56448

Sigma54_activat 0 0 0 0 0 0 0

TALE 0.00038 0.3918 0.65757 0.00274 0.00103 0.0024 0.01626

TCP 0.10247 0.06195 0.7239 0.99872 0.09356 0.42335 0.02011
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Table 5 Significance levels of TF and TC Families in different maize tissues (Continued)

Trihelix 2.10E-05 3.09E-09 0.00386 3.27E-06 5.58E-07 0.00161 0

WOX 0.94866 0.98276 0.99999 0.97133 0.44409 0.99912 0.76411

WRKY 0.99002 0.99987 0.68042 0.00066 0.99999 0.76124 0.97375

YABBY 0.0112 0.0335 0.7832 0.9925 0.10394 0.14156 0.27978

ZF-HD 0.00056 0.09192 0.06354 1 0 0.01969 0.21141

bHLH 0.76136 0.40417 0.64008 0.06933 0.61467 0.10359 0.50928

bZIP 0.0256 0.03162 0.01097 8.05E-08 2.45E-05 0.10417 0.12073

mTERF 0.00076 7.17E-06 0.00263 0.0492 0.00188 0.00041 0.02373

BED 0.86112 0.99946 0.99932 0.99858 0.99998 0.75519 0.80988

TAZ 0.10583 0 0 0 0 0.16493 0

Significance levels are based on P-values reported by Fisher’s exact test, a lower significance level means that larger amount of genes in a family are expressed in
a tissue group. A P-value lower than 0.05 is regarded as significant.
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family genes expressed in different zones and at develop-
mental stages of the root in Arabidopsis and poplar,
suggesting that NAC genes are important for plant root
development [50-54].

TF and TC genes preferentially expressed among tissues
We examined TF and TC genes preferentially expressed
among tissues in maize or millet. In maize, we identified
1819 TF genes and 109 TC genes preferentially expressed
in at least one tissue according to the available RNA-seq
data (Additional file 3: Table S3 (A) and S3 (B)). In millet,
we identified 608 TF genes and 33 TC genes preferentially
expressed in at least one tissue (Additional file 3: Table S3
(E) and S3 (F)). Moreover, some TFs and TCs were prefer-
entially expressed in a set of physiologically similar tissues.
In addition, we identified 138 TF and 7 TC genes

preferentially expressed in the same types of tissue in
maize and millet (Additional file 3: Table S3 (A), S3
(B), S3 (E) and S3 (F)). For example, GOLDEN2 (maize
gene ID: GRMZM2G087804, millet Zhang gu gene ID:
Millet_GLEAN_10019358) and GLK1 (maize gene ID:
GRMZM2G026833, millet Zhang gu gene ID: Millet_-
GLEAN_10029030), both of which are involved in
chloroplast development, were both preferentially
expressed in maize and millet leaves (Additional file 3:
Table S3 (A) and S3 (E)) [55,56]. APETALA3 (maize
gene ID: GRMZM2G139073, millet Zhang gu gene ID:
Millet_GLEAN_10022237) and PISTILLATA (maize
gene ID: GRMZM2G110153, millet Zhang gu gene ID:
Millet_GLEAN_10010374), which are important for
the specification of floral organs in Arabidopsis, were
preferentially expressed in tassel in maize and in millet
(Additional file 3: Table S3 (A) and S3 (E)) [57]. FIT1
(maize gene id: GRMZM2G173521, millet Zhang gu
gene id: Millet_GLEAN_10021794), which is important
in iron deficiency response in Arabidopsis root, was
preferentially expressed in root in maize and in millet
(Additional file 3: Table S3 (A) and S3 (E)) [58].
Conservation in tissue preference of gene expression
may imply conservation in function.

Possible C4-related TF and TC genes in maize and millet
As we are annotating TF and TC genes in maize and millet,
which are C4 plants, it is interesting to know whether some
of the TF and TC genes we identified are related to C4
photosynthesis or kranz anatomy development. Here, we
considered C4-related TF and TC genes in two different
aspects: (a) their possible contributions to regulatory
differences between bundle sheath and mesophyll cells,
and (b) their possible contributions to the formation of
kranz anatomy. In maize, we annotated 995 TF genes and
71 TC genes possibly related to C4 characteristics
(Additional file 7: Tables S7 (A) and S7 (B)). In millet, the
corresponding numbers are 546 TF genes and 33 TC
genes (Additional file 7: Tables S7 (C) and S7 (D)).
C4 photosynthesis is coordinated between bundle

sheath (BS) and mesophyll (M) cells. Thus, it is inter-
esting to study the regulatory differences between BS
and M cells. For this purpose, Li et al. and Chang et al.
obtained BS and M cell transcriptomes [29,34]. Here we
used the data of Chang et al. because it was more abun-
dant. We identified 256 TF genes and 16 TC genes prefer-
entially expressed in BS cells; among which 44 TF genes
and 14 TC genes were not identified by Chang et al.
(Additional file 7: Tables S7 (A) and S7 (B)). We identified
64 TF genes and 3 TC genes preferentially expressed in M
cells, among which 11 TF genes and 3 TC genes were not
identified by Chang et al. (Additional file 7: Tables S7 (A)
and S7 (B)).
John et al. identified genes differentially expressed be-

tween BS and M cells in green foxtail (Setaria viridis) and
conducted a detailed comparison of the gene expression
patterns in BS and M cells in green foxtail and maize [59].
Using their data, we identified 446 TF genes and 32 TC
genes preferentially expressed in BS cells (Additional file 7:
Tables S7 (A) and S7 (B)), among which 133 TF genes and



Figure 3 Clustering of enrichment pattern of expressed TF and TC genes in different tissues in maize. Each cell in the figure indicates the
significance level (in terms of p-value) of a TF family in a tissue group as indicates in Table 5. The dendrogram depicted the similarity of enrichment
pattern among different tissue groups.
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10 TC genes have conserved BS-preference in their
syntenic orthologs in millet (Additional file 7: Tables S7 (A)
and S7 (B)). We identified 303 TF genes and 24 TC genes
preferentially expressed in M cells; among which 74 TF
genes and 7 TC genes have conserved M-preference in
their syntenic orthologs in millet (Additional file 7: Tables
S7 (A) and S7 (B)). We identified 35 TF genes and 9 TC
genes preferentially expressed in BS cells that were not pre-
viously annotated as TF genes or TC genes, among which
11 TF genes and 5 TC genes have conserved BS-preference
in their syntenic orthologs in millet (Additional file 7:
Tables S7 (A) and S7 (B)). We identified 16 TF genes and
10 TC genes preferentially expressed in M cell that were
not annotated as TF genes or TC genes in the original
data, among which 1 TF gene and 3 TC genes have
conserved M-preference in their syntenic orthologs in
millet (Additional file 7: Tables S7 (A) and S7 (B)).
Tausta et al. isolated BS and M cells from 3 different

positions of maize leaves to study the developmental dy-
namics of BS and M cells at different photosynthetic stages
and they identified maize genes differentially expressed
between BS and M cells at these stages [60]. Using their
data, we identified 269 TF genes and 13 TC genes preferen-
tially expressed in BS cells, including 25 TF genes and 5 TC
genes that were not previously annotated as TF genes or
TC genes (Additional file 7: Tables S7 (A) and S7 (B)).



Figure 4 Expression of millet TF and TC genes in different tissues. Number of expressed or preferentially expressed TF (A) and TC (B) genes
in different tissues is shown. Complete statistics is shown in (C).
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Moreover, we identified 203 TF genes and 15 TC genes
preferentially expressed in M cells. Among them, 25 TF
genes and 6 TC genes were not annotated as TF genes or
TC genes in the original data (Additional file 7: Tables S7
(A) and S7 (B)).
The gene expression dynamics in leaves with and without

kranz anatomy can also provide clues for finding possible
key regulators of kranz anatomy. Wang et al. collected
RNA samples from maize foliar (with kranz anatomy) and
husk leaves (without kranz anatomy) and identified some
candidate regulators that may regulate the formation of
kranz anatomy [61]. Using their data, we identified 40 TF
genes and 1 TC genes that may be positive regulators of
kranz anatomy, 3 of which were not annotated as TF genes
in the original study (Additional file 7: Tables S7 (A) and S7
(B)). We identified 29 TF genes that may be negative
regulators of kranz anatomy, 7 of which were not annotated
as TF genes in the original study (Additional file 7: Tables
S7 (A) and S7 (B)).
In millet, John et al. used green foxtail (Setaria viridis)

to identify genes differentially expressed between M and
BS cells [59]. Using their data, we identified 304 TF and
17 TC genes preferentially expressed in BS cells. Among
them, 133 TF genes and 10 TC genes have conserved
BS-preference in their syntenic orthologs in maize
(Additional file 7: Tables S7 (C) and S7 (D)). We identified
242 TF genes and 16 TC genes preferentially expressed in
M cells. Among them, 75 TF genes and 8 TC genes have
conserved M-preference in their syntenic orthologs in
maize (Additional file 7: Tables S7 (C) and S7 (D)). Also,
we identified 28 TF genes and 5 TC genes preferentially
expressed in BS cells that had not previously been an-
notated as TF or TC genes. Among them, 9 TF genes
and 4 TC genes have conserved BS-preference in their
syntenic orthologs in maize (Additional file 7: Tables S7 (C)
and S7 (D)). We identified 13 TF genes and 4 TC genes
preferentially expressed in M cells that had not previously
been annotated as TF or TC genes. Among them, 4 TF
genes and 2 TC genes have conserved M-preference in
their syntenic orthologs in maize (Additional file 7: Tables
S7 (C) and S7 (D)).
In summary, we identified 995 TF genes and 71 TC genes

in maize and 546 TF genes and 33 TC genes in millet that
are potentially related to C4 photosynthesis or kranz anat-
omy development (Additional file 7: Tables S7 (A) ~ (D)).

Discussion
Annotation of maize and millet TF and TC genes
Our annotation of TFs and TCs in maize and two millet
strains is based on the DBDs and TC domains consid-
ered by many plant TF databases and servers such as
PlantTFDB 3.0, Grassius, PlnTFDB 3.0, ProFITS and
PlantTFcat [11,13-15,17]. We mainly followed the TF
family definition of PlantTFDB 3.0, but information from
other plant TF databases, animalTFDB, Gene Ontology
and experimental data such as PBM and ChIP-seq data,
were also taken as source for identifying TF and TC
families [23-26]. We revised the TF family classification
in PlantTFDB 3.0 and defined 9 additional TF families
(Additional file 1: Table S1) [17]. We predicted 2538 TF



Table 6 Significance levels of TF and TC Families in
different millet tissues

Family Leaf Root Stem Tassel

AP2 0.99945 0.76718 0.98899 0.56275

ARF 0.01159 0.06865 0.01158 0

AUX/IAA 0.47105 0.03618 0.03614 0.00532

B3 0.99396 0.95681 0.99811 0.95669

C2H2 0.89246 0.96644 0.82544 0.99639

C3H 0.00137 0 0.00137 0.00137

CAMTA 0 0 0 0

CPP 0 0.31277 0 0

DBB 0 0 0.25758 0.25749

Dof 0.77736 0.9161 0.77722 0.26481

E2F/DP 0 0 0.25758 0

ERF 0.81309 0.38687 0.97696 0.99993

FAR1 0 0 0 0

G2-like 0.14324 0.59204 0.00409 0.01937

GATA 0 0.6566 0.01406 0.08018

GRAS 0.21535 0.54695 0.70613 0.8295

GeBP 0 0.39791 0.11863 0.11857

HB-other 0 0.25768 0 0

HD-ZIP 0.64978 0.31871 0.31847 0.07824

HMG 0.51145 0.17489 0.17481 0

HSF 0.69426 0 0.09377 0.25772

LBD 1 0.87495 0.99906 0.99983

M-type 0.95506 0.34874 0.98958 0.34845

MBD 0.17489 0.17489 0.17481 0

MIKC 0.73159 0.99674 0.99908 0.93195

MYB 1 0.83698 0.99173 0.97335

MYB_related 0.02464 0.48928 0.0246 0.06101

NAC 0.98971 0.04414 0.79086 0.99741

NF-YA 0 0 0.2122 0.21211

NF-YB 0.17489 0.17489 0 0.17473

NF-YC 0 0.69635 0.11863 0.69607

Nin-like 0.1187 0.1187 0.39777 0.88753

OFP 1 1 0.99653 0.61825

SBP 0.40284 0.83409 0.03707 0

Sigma54_activat 0 0 0 0

TALE 0.98772 0.06865 0.06859 0.06852

TCP 0.73579 0.89168 0.73563 0

Trihelix 0.36847 0.0586 0.00954 0.05848

WRKY 0.96298 0.00631 0.96289 1

YABBY 0.89056 0.99982 0.89049 0

ZF-HD 0.89056 0.97861 0.25758 0.25749

bHLH 0.99999 0.99964 0.99472 0.95644

bZIP 0.07649 0.01792 0.07635 0.01784

Table 6 Significance levels of TF and TC Families in
different millet tissues (Continued)

mTERF 0.00206 0.76309 0.00205 0.00205

BED 0 0 0 0.31257

TAZ 0.31277 0 0.31267 0.71374

Significance levels are based on P-values reported by Fisher’s exact test, a
lower significance level means that larger amount of genes in a family are
expressed in a tissue group. A P-value lower than 0.05 is regarded
as significant.
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genes and 149 TC genes in maize, 1880 TF genes and 99
TC genes in millet Yugu1, and 1846 TF genes and 104
TC genes in millet Zhang gu (Table 1).
For maize, our consideration of WGS genes helped

identified more TF genes. Current TF databases such as
PlantTFDB 3.0, Grassius and iTAK (http://bioinfo.bti.
cornell.edu/cgi-bin/itak/index.cgi) use the FGS of maize
gene annotation, because genes in FGS have better
experimental support than non-FGS genes [13,17].
However, as extensive maize gene expression data are
now available and can be used to support gene predic-
tions, we used WGS. To gain additional support for our
predictions, we searched for homologs in the Arabidopsis
thaliana and rice (Oryza sativa japonica) genomes, which
are well assembled and annotated. By considering WGS,
we obtained 153 TF genes and 8 TC genes not covered by
FGS (Additional file 3: Tables S3 (A) and S3 (B)). For the
TF families in PlantTFDB 3.0, we obtained 108 TFs that
are not in FGS, 57 of which have orthologs in rice or
Arabidopsis and also have support from gene expression
data, 45 of which only have one type of support, while 6 of
which have neither type of support (Additional file 3: Table
S3 (A)) [17]. For the two millet strains, PlantTFDB 3.0
covered only the TF annotation of Yugu1. Our study
covered TF annotation of both genomes. In both genomes,
at least 95% of the TF genes in our database have orthologs
in rice or Arabidopsis (Table 3) [17].
The differences in the numbers of TF and TC genes

between maize and millet are noticeable due to the large
difference in genome size between maize and millet and in
their numbers of functional genes. Indeed, the current esti-
mates of protein-coding genes are 39,000 ~ 64,000, 35,471
and 38,801 for maize, millet Yugu1 and millet Zhang gu,
respectively. Another reason is that the maize genome is
more completely sequenced and better annotated than mil-
let. In fact, the current assemblies of the two millet strains
only contain about 81%~ 86% of the genome [21,22]. The
ratios of the number of TF and TC genes to that of all
genes are 4.2%, 6.9%, 5.6% and 5.0% for maize WGS, maize
FGS, millet Yugu1 and millet Zhang gu, respectively, which
are approximately equal to the ratio in Arabidopsis (5-10%)
[10]. We identified 995 TF genes and 71 TC genes in maize
that may potentially contribute to C4 characteristics in
maize (Additional file 7: Tables S7 (A) ~ (D)). These TF and

http://bioinfo.bti.cornell.edu/cgi-bin/itak/index.cgi
http://bioinfo.bti.cornell.edu/cgi-bin/itak/index.cgi


Figure 5 Clustering of enrichment pattern of expressed TF and TC genes in different tissues in millet. Each cell in the figure indicates the
significance level (in terms of p-value) of a TF family in a tissue group as indicated in Table 6. The dendrogram depicted the similarity of enrichment
pattern among different tissue groups.
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TC genes were preferentially expressed in BS or M cells in
maize and possibly regulates cell-specific processes, or are
preferentially expressed in foliar leaves or husk leaves, so
that they may be possible positive or negative regulators of
kranz anatomy development.

Phylogenies and possible functions of newly annotated
TF families
From plant TF databases and literature we collected 9 TF
families not included in PlantTFDB 3.0; most of them
have only been defined in AnimalTFDB, PlnTFDB 3.0,
ProFITS, Grassius and PlantTFcat but were not regarded
as DNA-binding TFs [11,14,15,17,23]. We constructed
their phylogenies to infer the evolutionary relationships
between TF genes in a family and their relatives in other
species (Additional file 8: Figure S1-S9 and Additional file
9: Table S8). Among these 9 families, only maize FGS TFs
in the mTERF family were annotated by GrassTFDB in
Grassius and in another study but none of the known plant
TF databases cover all of these 9 families of maize and
millet genes [13,62]. In these TF families, we have identified
138 new TF genes in maize, 104 new TF genes in millet
Yugu1 and 103 new TF genes in millet Zhang gu (Table 1).
The proportion of TF genes in additional families is around
5% in the whole set of TFs in either maize or millet.
For the Pseudo ARR-B family, whose family members

contain a response regulator domain at the N terminus
and a CCT domain at the C terminus. In vitro assays indi-
cated that proteins in this family can bind to DNA via their
CCT domain [25]. Many members of Pseudo ARR-B
families have been known to be involved in the regulation
of circadian rhythm [63]. We conducted a phylogenetic
analysis of the members of this family in maize, millet,
Arabidopsis, rice, spiked moss, moss and green algae
(Additional file 8: Figure S1). The members of this family
can be divided into three clades: TOC1, PRR3/PRR7 and
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PRR5/PRR9. The TOC1 clade is more ancient than the
other 2 clades. Our phylogeny is concordant with those
of previous studies [64,65]. The mTERF family broadly
exists in flowering plants but is not found in fungi [66].
Proteins in this family mainly target plastids and mitochon-
dria. Its possible functions include termination of mito-
chondrial gene transcription and plastid gene expression.
Our phylogenetic analysis generated a tree with the
topology similar to those of the previous studies [62,66]
(Additional file 8: Figure S2).
The MBD family proteins can bind to methylated DNA.

They usually act as transcriptional repressors, possibly by
interacting with histone deacetylase [67]. They can bind
methylated sequences, preventing them from interacting
with other TFs, by altering chromatin structure and pos-
sibly by sequestering other TFs [68]. The phylogeny of this
family (Additional file 8: Figure S3) is generally in agree-
ment with that of the previous study [69].
The LITAF family derived its name from its characteristic

domain resembling the lipopolysaccharide-induced tumour
necrosis alpha factor (LITAF). It is much less abundant in
plants. In Arabidopsis, rice, maize and millet, this family
contains only one gene. In Arabidopsis, it interacts with
LESION SIMULATING DISEASE1 (LSD1) and negatively
regulates hypersensitive cell death [70]. As some members
of this family in human may be involved in programmed
cell death, this function may have been conserved across
divergent evolutionary lineages, including maize and millet
[71,72]. The phylogenetic tree of this family (Additional file
8: Figure S4) generally agrees with the one on TreeFam
(tree id: TF313294) but with small discrepancies with
primate LITAF members [73]. The BED family members
have a BED-type zinc finger. This domain appears in many
transposases, but some TFs also have this domain, ZBED6
being a typical example [74,75]. Our study indicates that
maize has many BED family members. This may be related
to the abundance of transposable elements in the maize
genome [19].
The CSD family has a cold-shocked domain (CSD) re-

sembling the domain possessed by bacterial cold-shocked
proteins, its first member was identified in cold-shock
stimulation [76]. The CSD domains in plant CSD TFs still
exhibit high similarity to bacterial ones [77]. The HMG
and HMGI/HMGY families belong to the same big group
of proteins, the High-mobility group [78]. HMG proteins
possess the HMG-box domain, and they are involved in
many processes related to DNA replication, transcription,
and DNA repair. They also interact with other TFs [78].
HMGI/HMGY proteins possess the AT-hook domain,
which binds to AT-rich DNA sequences [26,79,80]. In
plants, some proteins in this family also contain a domain
called DUF296 by Pfam (Pfam ID: PF03479, IntroPro ID:
IPR005175), which confers the ability to interact with each
other and essential for nuclear localization [81]. The MIZ
family derived its name from the fact that one of its
member in human, MIZ1 (Msx-interacting-zinc finger),
interacts with another transcription factor MSX2 [82].
MIZ1 is able to act as DNA-binding transcription factor
and can increase the binding affinity of MSX2 through
their interaction.

Comparison with PlantTFcat
We compared our annotation with that of PlantTFcat,
which classified a collection of 108 families of TFs, tran-
scriptional regulators (TRs), chromatin regulators (CRs)
and some proteins that function as basal transcription
machineries, according to combinations of InterPro domain
annotations [15,83]. In our annotation of maize TFs and
TCs, we used the TF annotation of maize FGS in
PlantTFDB 3.0 as the reference dataset, which contains
3316 TF proteins [17].
According to the website of PlantTFcat, there are 59 TF

families in PlantTFcat that are related to 51 TF families in
PlantTFDB 3.0. Our annotation contained 3151 proteins in
these 51 families and recovered 3121 proteins annotated by
PlantTFDB 3.0 (Additional file 10: Table S9 (A)). PlantTFcat
predicted 6809 proteins related to TF, TR or CR, only 4888
of which are found in families defined by PlantTFDB 3.0
(48 families) and overlapped with 3121 proteins annotated
by PlantTFDB 3.0 (Additional file 10: Table S9(B)).
PlantTFcat predicted more TF proteins because they
considered more domains in some families. For example,
PlantTFcat also considered InterPro domain IPR001841 in
the C2H2 family, in which the annotated domain is the
RING type zinc finger domain. For classification, we
classified 3119 proteins into the families annotated by
PlantTFDB 3.0 (Additional file 10: Table S9 (A)), whereas
the corresponding number for PlantTFcat is only 2767
(Additional file 10: Table S9 (B)); this difference might be
due to the fact that the classification rules are not exactly
the same for PlantTFcat and PlantTFDB 3.0.
We also considered the possibility that PlantTFcat

may also include some TFs in the 7 families defined by
PlantTFDB 3.0 that have no defined correspondence to
PlantTFcat families. We conducted a test, using all 3316
TFs annotated by PlantTFDB 3.0 as the reference dataset.
Our annotation recovered 3301 of them but the corre-
sponding number for PlantTFcat was only 3267 (Additional
file 10: Tables S9 (A) ~ (D)). Among the 15 TFs that are not
in our annotation, seven are pseudogenes, five are transpo-
sons, two have FDs and one has a DBD with a score lower
than our threshold (Additional file 10: Table S9 (D). Our
annotation assigned 3280 TFs to correct families, whereas
the corresponding number for PlantTFcat was only 2767
(Additional file 10: Tables S9 (A) and S9 (B)).
We also repeated the same set of tests using the millet

Yugu1 TFs annotated by PlantTFDB 3.0 as the reference
dataset. We first considered the 51 families in PlantTFDB
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3.0 that correspond to 59 PlantTFcat families. Our an-
notation in Yugu1 covered 1909 proteins, which over-
lapped with 1896 proteins in the corresponding families
in PlantTFDB 3.0 (Additional file 10: Table S9 (E)).
PlantTFcat identified 4285 proteins that were TFs, TRs
or CRs, 2942 of which belonged to 49 of the 51 families
defined by PlantTFDB 3.0 and overlapped with 1891
proteins in these families in PlantTFDB 3.0 (Additional
file 10: Table S9 (F)). Among the 1891 proteins recov-
ered by PlantTFcat, only 1701 were assigned to correct
families in PlantTFDB 3.0 (Additional file 10: Table S9
(F)), while in our annotation 1894 of the 1896 proteins
were assigned to the correct families (Additional file 10:
Table S9 (E)).
When using all 1994 Yugu1 TFs in PlantTFDB 3.0 as

the reference set, our annotation recovered 1992 of
them, while PlantTFcat only recovered 1966 (Additional
file 10: Tables S9 (E) ~ (H)). The only two TFs we did
not recover had FDs considered by our classification
rules and so were not qualified to be TFs (Additional file
1: Table S1). When considering family assignment, we
assigned 1986 TFs to the correct families (Additional
file 10: Table S9 (E)), while PlantTFcat only assigned
1701 TFs to the correct families (Additional file 10:
Table S9 (F)). Compared to PlantTFcat, our annotation
has better coverage and higher accuracy in identifying
and classifying Yugu1 TFs.
In summary, our recovery rate was slightly higher than

that of PlantTFcat for the two benchmark datasets. Our
method could correctly assign more maize and millet
TFs into families in PlantTFDB 3.0 that were also shared
by PlantTFcat.

Preferential expression of TF and TC gene families in
tissues
We assessed the importance of TF and TC families in
some tissues by gene set enrichment analysis. Our ana-
lysis took advantage of the abundant RNA-seq data in
maize and the RNA-seq data from the millet genome
projects, so that we could cover different developmen-
tal stages of some tissues. We identified 39 TF families
and 4 TC families in maize enriched in expression in
one or more tissue groups (Table 5); the corresponding
numbers in millet were 28 and 2, respectively (Table 6).
There were 7 TF families and 2 TC families in maize
enriched in all tissue groups, and the corresponding
numbers in millets were 3 and 1, respectively (Tables 5
and 6). Our cross-comparison between these two spe-
cies indicated that 19 TF families and 2 TC families
were enriched in the same tissue group in both species,
suggesting expression conservation of these TF and TC
families (Tables 5 and 6). Prevalent expression of
WRKY and NAC genes in root, NF-YA and NF-YC
genes in leaf, and SBP genes in tassel are good
examples (Tables 5 and 6). The similarity of enrich-
ment pattern among different tissues may reflect the
physiological similarity in those tissues.
TF and TC genes preferentially expressed in certain
tissues
Even though enrichment data may tell us in which tissue
and under which conditions a TF or TC family may be
functional, we still need to check the expression prefer-
ence of individual TF or TC genes, because there may be
cases in which only a small fraction of genes in certain TF
or TC families exhibit expression preference in particular
tissues or conditions, a situation that cannot be revealed
by gene set enrichment analysis. We identified 1819 TF
genes and 109 TC genes in maize preferentially expressed
in at least one tissue (Additional file 3: Tables S3 (A) and
S3 (B)). We also identified 608 TF genes and 33 TC genes
in millet preferentially expressed in at least one tissue
(Additional file 3: Tables S3 (E) and S3 (F)). Among those
preferentially expressed TF and TC genes, we identified
138 TF and 7 TC maize-millet orthologous gene pairs
with conserved differential expression (Additional file 3:
Tables S3 (A), S3 (B), S3 (E) and S3 (F)). In terms of the
number of preferentially expressed TF and TC genes in
millet, a substantial proportion of them have conserved
expression preference. Our result can be useful for unrav-
eling specific biological process regulated by those TFs
and TCs.
Conclusion
We identified a set of TF and a set of TC families from
current database annotation and experimental evidence
and conducted a genome-wide prediction of TF and TC
genes in maize and millet. We identified many TF and TC
families that have TF or TC functions but have not been
curated by known plant TF databases, and we studied the
evolutionary relationships among the members of a new
family. Our annotation quality is comparable to or better
than those obtained by other approaches. We provided
supporting evidence for our predictions from gene expres-
sion data in maize or millet and from orthologous genes
in Arabidopsis or rice. We evaluated the expression pref-
erence of TF and TC genes in tissues in these two species
and found a substantial proportion of these genes exhibit-
ing conserved expression preference between the two
species. We also identified C4-related TF and TC genes,
using the published data from maize and millet BS and M
cells, and also from the foliar leaves and husk leaves of
maize. Our study significantly expanded current TF and
TC annotations in maize and millet, facilitating the study
of regulation of gene expression and tissue morphogenesis
in maize and millet.
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Methods
Genome annotation of maize and millet
Genome annotation and protein sequences of the maize
(Zea mays) WGS were downloaded from maizesequence.
org (http://ftp.maizesequence.org/release-5b/). Genome
annotation and protein sequences of Setaria italica
Yugu1 were downloaded from Ensembl Plants release
17 and those of Setaria italica Zhang gu were down-
loaded from Foxtail Millet Database (http://foxtailmil-
let.genomics.org.cn) [27].

Prediction of protein domains
We collected TF and TC domains from PlantTFDB 3.0,
Grassius, TreeTFDB, AnimalTFDB, ProFITS and PlnTFDB
3.0 [11,13,14,16,17,23]. We also included Pfam domains
that have GO annotations related to TC, or other support-
ing evidences such as ChIP-seq and PBM that suggest
DNA binding capability of proteins having them [25,26,84].
The GO annotation of Pfam domains was inferred by
GO annotation of their corresponding InterPro do-
mains (Additional file 2: Table S2) [83].
We considered 3 types of protein domain: DNA-binding

domain (DBD), auxiliary domain (AD), and forbidden
domain (FD). A domain is a FD if its existence in a protein
forbids it to have TF function, even if it contains a DBD.
For example, a protein with a C2H2 domain and also an
RNase_T domain, which is a FD, is not considered a TF.
An AD is a protein domain that enables a TF to respond to
a specific signal and TFs with the same DBD but with dif-
ferent ADs are usually classified into different TF families.
The protein domains are represented as characteristic

motifs of protein segment by Hidden Markov Models
(HMMs). Most of the HMM models were collected from
Pfam 27.0 [84]. For those domains without any HMM
model in Pfam 27.0, we downloaded the multiple sequence
alignment of TF domains from PlantTFDB 2.0 and
PlnTFDB 3.0 (Additional file 2: Table S2) and obtained cor-
responding HMM models by using the hmmbuild function
in HMMER 3.0 [11,85]. The presence of protein domains
in protein sequences of maize, millet Yugu1 and Zhang gu
was predicted by using the hmmsearch function in
HMMER 3.0. Similar to Pfam and PlantTFDB 3.0, we used
the bit scores output by HMMER 3.0 as a metric for
deciding the thresholds for classifying domains. As in
Pfam and PlantTFDB 3.0, there are two different measure-
ments for each domain: domain cutoff and sequence cut-
off. For each Pfam domain related to TF families in
PlantTFDB 3.0, we compared the domain cutoff and
sequence cutoff of PlantTFDB 2.0 and the noise cutoff
of Pfam, and we selected the minimum value as the
corresponding domain cutoff and sequence cutoff
(Additional file 2: Table S2). For each of the other do-
mains covered by Pfam 27.0, we used the noise cutoff
of domain cutoff and sequence cutoff suggested by
Pfam 27.0 (Additional file 2: Table S2). For each of G2-
like, NF-YB, NF-YC and Trihelix families, we used the
hmmsearch function in HMMER 3.0 to obtain bit
scores of DBDs in maize and millet TFs in PlantTFDB
3.0, and we selected the maize or millet TF in the
family that with the lowest domain cutoff score and
sequence cutoff score and used these two scores as the
threshold (Additional file 2: Table S2). For thresholds
of HRT-like, SAP, STAT and VOZ families, we used the
thresholds suggested by PlantTFDB 2.0 (Additional file
2: Table S2).
Family assignment rules
As in PlantTFDB 3.0, our TF classification considers the
DBD, AD and FD domains (Additional file 2: Table S2)
[17]. Our assignment rules are briefly as follows:

1. If a protein sequence has one or more DBDs and it
has no AD and FD, we assign it to a TF family
according to its DBD.

2. If a protein sequence contains one or more DBD
and Ads, but no FD, we assign it to the family that
contains the specific DBD and ADs.

Let us use AtHB8 as an example. First, since AtHB8
has a homeobox domain but no FD, it belongs to the
homeobox superfamily. Second, since it has a START
domain, it is classified into the HD-ZIP family, because
START is the AD required for the HD-ZIP family
(Additional file 1: Table S1).
Our TC classification procedure is the same as above,

except that we now consider the TC domain instead of
the DBD domain (Additional file 1: Table S1).
Performance comparison
We compared our annotation with that of PlantTFcat
[15]. The annotations of maize and millet Yugu1 TFs on
PlantTFDB 3.0 were used as two independent bench-
mark datasets [17]. We conducted another TF predic-
tion by using PlantTFcat on maize FGS and current
millet Yugu1 annotation. We compared the perform-
ance of our pipeline and PlantTFcat in two ways. The
first one is to evaluate coverage and classification accur-
acy on the 51 PlantTFDB families that have correspon-
dences in PlantTFcat families, which were defined on
PlantTFcat website (http://plantgrn.noble.org/PlantTF-
cat/). Second, we compared the coverage on the whole
benchmark set. The coverage was defined according to
the overlap between the prediction result and bench-
mark datasets. The classification accuracy was defined
as the proportion of proteins that could be assigned to
correct families in the benchmark datasets.

http://ftp.maizesequence.org/release-5b/
http://foxtailmillet.genomics.org.cn/
http://foxtailmillet.genomics.org.cn/
http://plantgrn.noble.org/PlantTFcat/
http://plantgrn.noble.org/PlantTFcat/
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Orthologs of TF and TC genes in maize and millet
For TF and TC genes in maize and millet Yugu1, the
orthologous relationships we used were obtained from
Ensembl Plants release 17 [27]. For each TF or TC protein
we predicted, we used BLASTP to find its best ortholog in
other species, i.e., the E-value of the best high-scoring
segment pair (HSP) should be smaller than 1e-20 and the
length of subsequence included in the HSP in both
sequences must occupy at least 30% of the total length in
both sequences. The same procedure was applied to millet
Zhang gu TF and TC genes.
Expression analysis of RNA-Seq and microarray datasets
For TF and TC genes in maize, we collected 8 RNA-
seq datasets (Additional file 4: Table S4) and the
microarray dataset from Sekhon et al. [20,28-35]. Raw
FPKM (Fragments Per Kilobase of transcript per
Million mapped reads) values of RNA-seq datasets
except Liu et al. were downloaded from qTeller
(http://qteller.com) [20]. For the RNA-seq datasets in
maize and millet, we normalized the FPKM values of
genes by the quantile normalization method [86]. We
regarded a gene as expressed if it satisfied one of the
following conditions:

1. For the RNA-seq datasets, the gene must have
FPKM ≥ 1 in at least one sample (Additional file 5:
Table S5).

2. For the microarray dataset, the gene must have
log2-transformed expression value ≥ 7.65 in at least
one condition.

For condition 2, we downloaded the dataset corre-
sponding to maize genome release 5a.59 from PLEXdb
(PLEXdb accession No. ZM37) [87].
We separated the samples in RNA-seq datasets into 7

tissue groups: seed, mature leaf, embryonic leaf, root, shoot,
ear and tassel. We used this grouping for enrichment
analysis and identification of preferentially expressed TF
and TC genes. Additional file 4: Table S4 shows the group-
ing of RNA-seq samples.
For detecting differential expression in maize genes, we

transformed the normalized FPKM values to z-scores. If a
gene has a z-score ≧3 in a tissue, this gene is defined as
preferentially expressed in this tissue.
For millet Zhang gu, we analyzed the expression data of 4

different tissues downloaded from the Foxtail Millet Data-
base. We regarded a gene as expressed if it had FPKM ≥ 1
in at least one sample (Additional file 6: Table S6).
For the identification of preferentially expressed TF

and TC genes in millet, since only four different tissues
were studied, we did not apply z-transformation. We say
that a gene is preferentially expressed in a tissue if the
normalized FPKM value in that tissue is two times larger
than the normalized FPKM values in the others tissues.
To identify TF and TC genes with preferential expres-

sion conserved in maize and millet Zhang gu, we consid-
ered reciprocal best hit pairs according to result of
BLASTP. For a pair of maize and millet genes, if they are
both preferentially expressed in a tissue, we say they have
conserved differential expression in that tissue. For maize,
embryonic leaf and leaf at later stage are grouped together
as “Leaf”. If a millet gene preferentially expressed in
mature leaf and its counterpart in maize preferentially
expressed in either mature leaf or embryonic leaf, it has
conserved differential expression.

Enrichment analysis
For maize, we grouped the RNA-seq samples into 7 tissue
groups (Additional file 4: Table S4) and examined whether
there were TF or TC families significantly preferentially
expressed in certain groups. For millet Zhang gu, we
treated 4 samples as 4 groups (Additional file 4: Table S4).
In both cultivars, all TF and TC families with more than 5
genes were used in our analysis. Fisher’s exact test was
used to check statistical significance (i.e., p-value < 0.05).

Phylogenetic analysis
We considered the 9 TF families not included by
PlantTFDB 3.0 (Table 1). The domain annotation and pro-
tein sequences of Physcomitrella patens v3.0 was down-
loaded from Phytozome 9.1 (Physcomitrella patens v3.0
early release, DOE-JGI, http://www.phytozome.net/phys-
comitrella_er.php), the annotation of the other species we
considered was downloaded from Ensembl via Ensembl
Biomart [27,88,89]. The members in the 9 TF families in
other species were identified based on the existence of
DBDs in these families. Detailed information about genome
annotation and protein sequences we used are described in
Additional file 9.
For reconstructing the phylogenetic tree of the members

of a gene family, the protein sequences in the family were
first aligned using MUSCLE [90]. A phylogenetic tree was
then constructed by the Neighbor-Joining (NJ) method
with the bootstrap procedure repeated 1 000 times, using
MEGA5 [91].

Additional files

Additional file 1: Table S1. Classification rules for TF and TC families.
For each family, we indicated whether it is TF or TC, the corresponding
family in PlantTFDB 3.0, related families in PlantTFcat, required domain(s),
auxiliary domain(s) (if any), forbidden domain(s) (if any), referenced
sources (TF databases, Gene Ontology website, literature, etc. ), and
superfamily it belongs according to PlantTFDB 3.0 (if any).

Additional file 2: Table S2. Protein domains used in our studies and
corresponding thresholds we used in domain prediction. For each
domain, we indicate its type (DBD, AD, FD, TC domain), source of the

http://qteller.com/
http://www.phytozome.net/physcomitrella_er.php
http://www.phytozome.net/physcomitrella_er.php
http://www.biomedcentral.com/content/supplementary/1471-2164-15-818-S1.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-15-818-S2.xls
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domain (Pfam or self-built, see Methods), Pfam ID (if any), InterPro ID (if
any), sequence cutoff and domain cutoff (in bit score).

Additional file 3: Table S3. TF and TC genes classified in maize and
millet. For each TF/TC gene, we indicated their expression preference
(tissue group it expressed/preferentially expressed, and whether its
orthologs in maize or millet Zhang gu also preferentially expressed in
same tissue group). We also listed all TFs/TCs encoded by each TF/TC
genes, families of these TFs/TCs, and best BLASTP hit of these TFs/TCs in
other genomes. For maize TF genes and TC genes, we also indicated
whether they have support from microarray data from Sekhon et al. [31],
and whether they are in FGS. (A) Annotation of maize TF genes. (B)
Annotation of maize TC genes. (C) Annotation of millet Yugu1 TF genes.
(D) Annotation of millet Yugu1 TC genes. (E) Annotation of millet Zhang
gu TF genes. (F) Annotation of millet TC genes.

Additional file 4: Table S4. RNA-seq samples used in our study. For
each sample, we listed tissue group it belongs to, and also the reference
of the sample.

Additional file 5: Table S5. Normalized expression values of all maize
protein-coding genes in all RNA-seq samples.

Additional file 6: Table S6. Normalized expression values of all millet
Zhang gu genes in all RNA-seq samples.

Additional file 7: Table S7. C4-related TF and TC genes in maize and
millet. (A) C4-related maize TF genes annotated from previous studies. (B)
C4-related maize TC genes annotated from previous studies (C) C4-
related millet TF genes annotated from previous studies (D) C4-related
millet TC genes annotated from previous studies. Each gene is annotated
with its expression preference identified in previous studies. (BS: bundle
sheath cells, BS_con: the differential expression preference in BS cells
conserved in S. viridis and maize, M: mesophyll cells, M_con: the differential
expression preference in M cells conserved in maize and millet, positive
kranz: possible positive regulator for kranz anatomy, negative kranz: possible
negative kranz regulator for kranz anatomy).

Additional file 8: Figure S1-S9. Phylogenetic trees of 9 newly
annotated families in various species. Sequences used in constructing
these phylogenetic trees and version of genome annotation information
are described in Table S9. The method for constructing phylogenetic
trees is described in Methods. Figure S1. Phylogenetic tree of Pseudo
ARR-B family. Figure S2. Phylogenetic tree of mTERF family. Figure S3.
Phylogenetic tree of MBD family. Figure S4. Phylogenetic tree of LITAF
family. Figure S5. Phylogenetic tree of BED family. Figure S6. Phylogenetic
tree of CSD family. Figure S7. Phylogenetic tree of HMG family. Figure S8.
Phylogenetic tree of HMGI/HMGY family. Figure S9. Phylogenetic tree of
MIZ family.

Additional file 9: Table S8. Annotation of amino acid sequences used
in constructing phylogenetic trees of 9 newly annotated TF families in
species we considered, and the information of genome annotation of
these species. (A) Genome annotation information of species considered
in construction of phylogenetic trees. (B) Information of sequences used
in constructing the phylogenetic tree of BED family. (C) Information of
sequences used in constructing the phylogenetic tree of CSD family. (D)
Information of sequences used in constructing the phylogenetic tree of
HMG family. (E) Information of sequences used in constructing the
phylogenetic tree of HMGI/HMGY family. (F) Information of sequences used
in constructing the phylogenetic tree of LITAF family. (G) Information of
sequences used in constructing the phylogenetic tree of LITAF family.
(H) Information of sequences used in constructing the phylogenetic tree
of MBD family. (I) Information of sequences used in constructing the
phylogenetic tree of MIZ family. (J) Information of sequences used in
constructing the phylogenetic tree of Pseudo ARR-B family.

Additional file 10: Table S9. Performance evaluation of our
annotation. We used TF annotation of maize FGS and millet Yugu1 on
PlantTFDB 3.0 as two independent benchmark datasets to assess the
quality of our annotation and compare it with PlantTFcat. (A) Comparison
between our annotation and the PlantTFDB 3.0 annotation of maize FGS
TFs. (B) Comparison between annotation of PlantTFcat and the PlantTFDB
3.0 annotation of maize FGS TFs. (C) Maize TFs annotated in PlantTFDB
3.0 but not covered by our annotation. (D) Maize TFs annotated in
PlantTFDB 3.0 but not covered by PlantTFcat. (E) Comparison between
our annotation and the PlantTFDB 3.0 annotation of millet Yugu1 TFs.
Table (F) Comparison between annotation of PlantTFcat and the
PlantTFDB 3.0 annotation of millet Yugu1 TFs. (G) Millet Yugu1 TFs
annotated by PlantTFDB 3.0 but not covered by our annotation. (H) Millet
Yugu1 TFs annotated by PlantTFDB 3.0 but not covered by PlantTFcat.
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