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Abstract

actinomycete genus.

Background: Prokaryotic CRISPR-Cas systems confer resistance to viral infection and thus mediate bacteria-phage
interactions. However, the distribution and functional diversity of CRISPRs among environmental bacteria remains
largely unknown. Here, comparative genomics of 75 Salinispora strains provided insight into the diversity and
distribution of CRISPR-Cas systems in a cosmopolitan marine actinomycete genus.

Results: CRISPRs were found in all Salinispora strains, with the majority containing multiple loci and different Cas
array subtypes. Of the six subtypes identified, three have not been previously described. A lower prophage
frequency in S. arenicola was associated with a higher fraction of spacers matching Salinispora prophages compared
to S. tropica, suggesting differing defensive capacities between Salinispora species. The occurrence of related
prophages in strains from distant locations, as well as spacers matching those prophages inserted throughout
spacer arrays, indicate recurring encounters with widely distributed phages over time. Linkages of CRISPR features
with Salinispora microdiversity pointed to subclade-specific contacts with mobile genetic elements (MGEs). This
included lineage-specific spacer deletions or insertions, which may reflect weak selective pressures to maintain
immunity or distinct temporal interactions with MGEs, respectively. Biogeographic patterns in spacer and prophage
distributions support the concept that Salinispora spp. encounter localized MGEs. Moreover, the presence of spacers
matching housekeeping genes suggests that CRISPRs may have functions outside of viral defense.

Conclusions: This study provides a comprehensive examination of CRISPR-Cas systems in a broadly distributed
group of environmental bacteria. The ubiquity and diversity of CRISPRs in Salinispora suggests that CRISPR-mediated
interactions with MGEs represent a major force in the ecology and evolution of this cosmopolitan marine
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Background

CRISPRs (clustered regularly interspaced short palindro-
mic repeats) have been detected in approximately 85%
of archaeal and 50% of bacterial genomes [1]. They are
considered a means of prokaryotic adaptive immunity
against bacteriophages [2], which are major determi-
nants of prokaryotic abundance, diversity and commu-
nity structure [3]. CRISPRs consist of conserved repeats
separated by variable spacers, the latter representing
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incorporated fragments of viral or plasmid DNA that
specify immunity upon subsequent encounters [4]. Many
CRISPRs are associated with Cas gene arrays, which can
be classified into three major types and ten subtypes
[5,6] and are considered essential for CRISPR function.
The activity of CRISPR-Cas systems proceeds in three
stages: the acquisition of protospacer sequences from
foreign genetic elements and their integration into the
CRISPR array, constitutive transcription of the array,
and target interference through transcribed crRNA [2].
In response, phages have developed mechanisms to
evade CRISPR action [7-9], suggesting a co-evolutionary
arms race between bacteria and phages.
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Comparative genomics has given insight into CRISPRs
from Actinobacteria [10,11], Firmicutes [12,13], Cyano-
bacteria [14,15], enterobacteria [16], and Archaea [17].
In addition, mathematical modeling has presented im-
portant concepts about CRISPR dynamics during phage-
bacteria interactions [18,19]. Most of what is known
about CRISPRs has been derived from pathogenic or in-
dustrially relevant bacteria such as Salmonella [20] and
Streptococcus [12]. In the case of environmental bac-
teria, it has been shown that CRISPRs are widespread
in Cyanobacteria except for the major marine lineages
Prochlorococcus and Synechococcus [15]. In freshwater
Cyanobacteria, CRISPRs were used to illustrate spe-
cific host-cyanophage interactions [14]. Furthermore,
CRISPRs have been linked to host-phage co-evolution,
community structuring and biogeographic patterns in
microbial mats [21], acidophilic biofilms [22], and hot
spring microbiota [23].

CRISPRs also control genetic exchange [24,25] and
intraspecies recombination [26], hence mediating evo-
lutionary processes [27]. They may also regulate gene
expression via crRNAs [28] and ‘self-targeting spacers’
that match elements in the host genome [29]. CRISPR
activity has also been linked to DNA repair [30] and
can affect various bacterial phenotypes including bio-
film formation [31], swarming motility [32], and pa-
thogenicity [33]. Despite the insights afforded by these
studies, the distribution, diversity and functional roles
of CRISPR-Cas systems among closely related environ-
mental bacteria remain largely unknown.

In the present study, we analyzed CRISPR-Cas and
prophage content in 75 Salinispora strains from seven
global collection sites. This actinomycete genus has a
pan-tropical distribution in marine sediments [34,35]
and is comprised of three closely related species; the
cosmopolitan S. arenicola and the regionally confined
sister taxa S. pacifica and S. tropica [36,37]. The spe-
cies have been further divided into 16S rRNA phylo-
types (i.e. single nucleotide variants), with the highest
diversity in S. pacifica and the lowest in S. tropica [35].
The genus is recognized for the production of diverse sec-
ondary metabolites [38], with the associated biosynthetic
pathways showing evidence of extensive horizontal gene
transfer [39,40].
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The diversity and distribution of CRISPR-Cas systems
in Salinispora spp. was investigated to (i) assess the role
of CRISPRs in phage defense, (ii) characterize past in-
teractions with foreign genetic elements, (iii) elucidate
linkages between CRISPR features and Salinispora mi-
crodiversity, and (iv) identify biogeographic signatures in
CRISPR and prophage content. The detected diversity of
CRISPR-Cas systems, including spacers that match for-
eign genetic elements, supports a role in host immunity.
Spacer arrays illustrated recurring encounters with rela-
ted phages as well as geographically confined MGEs.
These findings suggest the presence of complex CRISPR-
mediated interactions between Salinispora spp. and for-
eign genetic elements that may influence the ecology and
evolution of this broadly distributed marine actinomycete
genus.

Results and discussion

CRISPR content in 75 Salinispora strains

Genome sequences from 75 Salinispora strains derived
from seven global collection sites were analyzed for
CRISPR-Cas content (Additional file 1). In total, 335
CRISPR loci were detected, with an average of 4.4 per
strain (Table 1) but considerable among strain varia-
bility, ranging between 1 and 12 (Additional file 1). Unlike
many genera for which multiple genome sequences are
available, all 75 Salinispora strains harbored CRISPRs,
suggesting they are an ecologically relevant feature of this
genus. Salinispora CRISPR content exceeded the average
reported for mesophilic bacteria [1] and marine bacterial
metagenomes [41] and accounted for up to 0.3% of some
genomes, which is approximately a third of the reported
‘prokaryotic maximum’ [2]. CRISPRs were concentrated
in genomic islands, which represent the major regions of
gene acquisition in Salinispora spp. [40]. Prior evidence of
extensive horizontal gene transfer in Salinispora spp.
[39,40], coupled with the ubiquity of CRISPR-Cas systems
detected in the present study, suggests an ongoing dy-
namic between CRISPR-mediated immunity and the ac-
quisition of foreign genetic material.

The 335 CRISPR loci contained 5737 spacers, of which
68% were observed only once across all genomes. Exten-
sive differences in spacer content were detected among
strains isolated at the same time from the same site

Table 1 Summary of CRISPR-Cas and prophage content in Salinispora spp.

Species Genomes Total Avg. loci/ Avg. locus Loci with Cas Total Avg. spacers/ Avg. Spacers matching
analyzed CRISPRs strain (per Mb) size +SD (bp) arrays (%) spacers strain (+SD)  prophages/ Salinispora prophages/
strain known MGEs (%)*
S. arenicola 37 169 45 (0.8) 1243+1087 78 (56) 3033 82+52 13 18.3/2.5
S. pacifica 31 136 44(08) 1110+ 1087 54 (63) 2153 69 +£42 1.1 8.9/0.6
S. tropica 7 30 43(08) 1362 + 1086 14 (63) 551 79+57 2.1 45/0.2

*only considering perfect matches (100% sequence identity/coverage).
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(Additional file 1), suggesting that spatiotemporal en-
counters with mobile genetic elements (MGEs) may be
highly variable. On average, S. arenicola and S. tropica
contained more spacers per strain than S. pacifica, how-
ever, the numbers varied greatly among strains within
each species (Table 1).

Diversity and evolution of Cas array subtypes

The 75 Salinispora strains contained 146 Cas arrays
(Table 1), all of which can be classified as type I based on
the inclusion of a cas3 gene [6]. Cas arrays could be fur-
ther grouped into six subtypes (Figure 1), of which five oc-
curred in all three species and one (I-U_Sa) was only
observed in S. arenicola. In total, 60% of the CRISPRs
were associated with Cas arrays (Table 1), with up to five
different array subtypes in some strains (Additional file 1).
Three of these subtypes (I-E, I-C, I-B) have been previ-
ously characterized [6], with the most common (I-E) oc-
curring in 49 strains. Almost two-thirds of the I-E arrays
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were associated with paired loci, i.e., two CRISPRs (one
with inverted repeat sequences) flanking internalized cas
genes, as often observed in Archaea [42]. Eleven strains
contained two I-E or I-C arrays (Additional file 1). BLAST
analysis of the associated cas3 genes indicated that the
two arrays in a given strain were acquired as independent
events from different sources based on sequence similar-
ities to homologs in different actinomycetes (Verrucosi-
spora vs. Streptomyces spp. for I-E arrays and Frankia vs.
Stackebrandtia spp. for 1-C arrays). In all three species,
the GC content of I-C arrays was lower than the overall
genomic GC content. This was especially apparent in S.
pacifica (64.2% vs. 69.8% GC), suggesting that I-C arrays
have been acquired from distantly related taxa. To the best
of our knowledge, three of the Cas array subtypes detected
(herein designated as I-U_csb3, I-U_csx17 and I-U_Sa)
have not previously been described despite containing
known cas genes (csb1, csb2, csb3, csx17). These subtypes
were designated as [-U based on convention [6]. However,
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Figure 1 cas3 phylogeny and CRISPR repeat diversity. Condensed maximum likelihood phylogeny of cas3 nucleotide sequences reveals
clades corresponding to Cas array subtype. The two major clades delineate known (I-E, I-C, I-B) and previously undescribed (I-U) subtypes. The
order of genes for each subtype is displayed on the right. Gene annotations in parentheses designate hypothetical proteins with low identity to
those indicated. In the |-B arrays, cas8b was replaced by a larger gene related to cst1. The total number of each array subtype among the 75
genomes is shown in the condensed nodes. Six arrays were missing several genes and therefore excluded from the analysis. Nodal support values
(o above 80%, A 100%) were obtained by 1000 bootstrap replicates (see Additional file 2 for the full tree including strain names and bootstrap
values). Consensus repeat sequences in the associated CRISPR loci (indicated in gray) were specific to each array subtype and mostly showed
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the Integrated Microbial Genomes (IMG) database [43]
revealed that a variety of bacteria from different phylogen-
etic groups possess equivalent arrays, indicating these are
not unique to Salinispora spp.

cas3 is the signature gene of type I arrays [6]. A cas3
phylogeny revealed clades that corresponded to Cas array
subtype as opposed to taxonomic relationships (Figure 1).
The finding of cas3 sequence similarities across species
boundaries supports the concept that Cas arrays evolve in-
dependent of their hosts [20,44]. Furthermore, sequences
within the array subtypes reveal evidence of recombin-
ation, as different Salinispora species shared virtually
identical cas3 genes. The same patterns were observed
with casl genes and corresponding protein sequences
(Additional file 2), the most common phylogenetic marker
for CRISPR-Cas systems. The delineation of the Cas array
subtypes was supported by the repeat sequences, which
frequently shared subtype-specific conservation (Figure 1)
and averaged between 29 nt (subtypes I-E and I-B) and
37 nt (subtypes I-C and I-U).

Cas-associated CRISPRs contained significantly more
spacers than Cas-devoid loci (p <1 x 107°), as might be
expected given that cas genes are required for spacer in-
tegration [2]. Furthermore, subtypes I-E, I-C and I-B
contained significantly more spacers (p <0.0001) than
the three I-U subtypes. Considering the latter, I-U_Sa
and I-U_csx17 lack casl and are thus potentially unable
to incorporate additional spacers, as casl is involved in
spacer integration [2].

CRISPRs illustrate interactions with foreign genetic
elements

We assessed defensive functions of Salinispora CRISPRs
by analyzing for perfect matches between Salinispora
spacers and mobile genetic elements (MGEs). These in-
cluded 97 prophages that were identified in the 75 ge-
nomes (Additional file 3) as well as MGEs deposited in
the Aclame database [45] (the latter referred to as ‘known
MGEs’). On average, 11% of spacers matched Salinispora
prophages (Table 1). Prophage-devoid strains had a higher
fraction of matching spacers than prophage-harboring
strains (p < 0.05), supporting a functional role of CRISPRs
in phage immunity. In addition, 1.1% of spacers matched
known MGEs, which was comparable to observations for
marine bacterial metagenomes [41] and oral pathogens
[26]. Some spacers matched homologous elements from
different viral genomes, suggesting they may target multi-
ple phage strains. CRISPRTarget [46] revealed that MGEs
matched by Salinispora spacers are associated with
various protospacer-associated motifs (PAMs), short
sequences important for protospacer acquisition [2].
This suggests that Salinispora spp. can detect differ-
ent PAMs and integrate a large diversity of spacers.
When including lower-quality matches (100% identity
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over at least 18 nt) the majority (77%) of spacers matched
plasmids, suggesting that a major role for Salinispora
CRISPRs is to defend against plasmid integration. As no
information about the plasmid content of the strains in-
vestigated is currently available, we focused on the role of
CRISPRs in phage defense, while realizing this may not
present a complete picture of CRISPR functionality in
Salinispora spp.

CRISPRs indicate differing defensive capacities among
Salinispora species

S. arenicola had four-fold more spacers matching Sali-
nispora prophages and twelve-fold more spacers mat-
ching known MGEs than S. tropica. This corresponded
to the fact that only two-third of S. arenicola but all S.
tropica strains harbored prophages, with 1.3 vs. 2.1 pro-
phages per genome, respectively (Table 1). A substantial
number of S. arenicola spacers that matched Salinispora
prophages were located in the I-U_Sa Cas arrays, which
are specific to S. arenicola. This additional array and
spacer diversity may provide superior defensive capaci-
ties for S. arenicola, which potentially contributes to its
broader geographic distribution [35]. S. pacifica had an
intermediate fraction of spacers matching Salinispora
prophages and known MGEs, with 1.1 prophages per
genome (Table 1). There was a significantly lower fre-
quency of prophages among phylotype C and F strains
(p <0.01). While these phylotypes also contained signifi-
cantly more spacers (p <0.01), the fraction of those spa-
cers matching Salinispora prophages and known MGEs
was similar to other phylotypes. The differing phage sensi-
tivities between S. pacifica phylotypes are thus independ-
ent from or only partially related to CRISPRs.

In contrast, the total numbers of CRISPR loci or
spacers were uncorrelated with prophage content in all
three species (R?<0.01). For instance, strains CNS-051
and CNS-205 contained 11 and 8 CRISPRs with 119 and
140 spacers, respectively. Despite these similarities,
these strains harbored 0 and 5 prophages, respectively
(Additional file 1). The number and diversity of Cas
arrays were also uncorrelated with prophage content
(R? <0.001). For instance, S. pacifica strain DSM-45549
contained four Cas array subtypes and three prophages
while the Cas-devoid S. pacifica strain CNS-103 only
contained one prophage (Additional file 1). Thus, the
number of CRISPR loci as well as the diversity of associ-
ated Cas arrays appear to be affected by factors other
than phage exposure.

History of Salinispora interactions with a common
prophage

We focused on a common prophage that is related to
the Streptomyces SV1 phage and was detected in 24
Salinispora strains from all three species (Figure 2A,
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Figure 2 Streptomyces SV1-related prophage content in Salinispora spp. A) Comparison of genes from six intact, SV1-related prophages in
Salinispora genomes with the SV1 type phage (gray; with GenBank Gene IDs in parentheses) by color-coding percent sequence similarities over a
12400 bp region within SV1. B) History of SV1 encounters in S. tropica CNR-699 as reflected in multiple spacer matches in a single array. Incomplete

matches are indicated by asterisks, perfect matches by encircled asterisks with sequences shown above.

Additional file 3). Six percent of Salinispora spacers
matched SV1-related sequences, suggesting that this phage
represents a major challenge to the genus. Strains without
an integrated SV1 prophage had a larger fraction of spacers
matching SV1 in Cas-associated loci (89%) compared to
those with an integrated SV1 prophage (75%), supporting a
specific targeting of this phage. The history of encounters
with SV1-related phages was determined for six strains per
species (three harboring and three lacking SV1) by analyz-
ing the location of matching spacers within spacer arrays
according to the concept that ancestral spacers are com-
monly located at the ‘trailer’ end and more recent spacers
at the ‘leader’ end of a spacer array [4]. Matching spa-
cers, the majority with unique sequences, were detected
throughout the spacer arrays (Figure 2B) suggesting re-
curring encounters with SV1-related phages over time.
Given that the SV1 phage represents a vector for genetic
exchange [47], it is interesting to speculate that it may
represent a source of beneficial genetic material in
addition to a survival challenge.

Linkages of CRISPR-Cas features with microdiversity

Salinispora microdiversity on the subspecies level has
been defined based on 16S rRNA phylotypes (Additional
file 1) and a multilocus phylogeny (Additional file 4). We
detected several correlations between CRISPR-Cas fea-
tures and microdiversity. For instance, one well-supported
S. pacifica lineage contained the only strains (CNT-796
and CNT-851) with a modified I-C array lacking casi/
cas2, suggesting these genes have been lost in this lineage.
Another S. pacifica lineage (containing strains CNQ-768
and CNS-103) was unique in being entirely devoid of
cas genes. Also, certain clades were characterized by

chromosomal relocations of CRISPR-Cas systems, as seen
with I-E arrays in S. pacifica (strains CNT-796 and CNT-
851) and S. tropica (strains CNS-197 and CNR-699).

The most distinct linkages were observed among the
four S. arenmicola phylotype B strains, which contained
significantly more CRISPRs and spacers than strains
from S. arenicola phylotypes A and ST (p < 0.05). Many
spacers were unique to phylotype B, underlining that
spacer composition can reflect population structure and
evolutionary relationships [48,49]. CRISPR characteris-
tics not only distinguished phylotype B from other phy-
lotypes, but also the two subclades within phylotype B
(strains CNH-941 and CNP-193 vs. CNH-964 and CNP-
105; Additional file 4). For instance, a paired CRISPR
locus and flanking genes were inverted in one of the
subclades (Additional file 5). Furthermore, there were
subclade-specific differences in spacer content. While
multiple spacers were shared by all phylotype B strains,
which is consistent with observations among other closely
related bacteria [46], spacer array alignments revealed
three sets of spacers that were specific to one of the
subclades (Figure 3). This probably illustrates subclade-
specific deletions or insertions of whole spacer groups
[49]. Sixty-five percent of the group 1 spacers in CNH-941
and CNP-193 matched plasmids from Alphaproteo-
bacteria, while the group 2 spacers in CNH-964 and
CNP-105 equally matched phages and largely gamma-
proteobacterial plasmids. This may coincide with differ-
ing defensive capacities or varying modes of interaction
with MGEs between the two subclades. While prophage
content appeared independent of these observations
(Additional file 2) MGEs are also involved in diversifica-
tion [50,51], niche adaptation [52], and microdiversity
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Figure 3 Subclade-specific spacer content in S. arenicola phylotype B. Alignment of spacers from a homologous CRISPR locus present in all
four S. arenicola phylotype B strains. The phylogenetic relationships among the four strains are depicted on the right. Spacers are indicated by
rectangles arranged from the oldest (trailer end; right) to the most recent spacers (leader end; left). Vertically aligned spacers are identical and
separated by subclade-specific groups of spacers (1, 2, 3), which were likely deleted from the respective other lineage or selectively acquired.

[53]. It is hence interesting to speculate that these dif-
ferences may influence the evolutionary or ecological
divergence within S. arenicola phylotype B.

Biogeographic patterns in CRISPR and prophage content

The strains analyzed in this study originate from seven
global collection sites and were derived from indepen-
dent sediment samples. While sampling efforts were not
uniform across locations and may have affected the bio-
geographic patterns observed, it is interesting to note
that 40% of the spacers observed in more than one strain
were restricted to specific locations and/or biomes, the
latter describing major oceanic regions distinguished by
oceanographic factors such as nutrient concentrations
and primary productivity [54]. Location-specific spacers
provide evidence of exposure to local virus populations
[41,55], with the majority of localized spacers occurring
in strains from the Sea of Cortez (Figure 4A). This is a
highly productive sea [56] enclosed by a distinct geo-
graphical barrier and the only site classified as a Coastal
biome [54]. While these results are preliminary, it is in-
triguing to speculate that spacer sequences can be used
to trace location-specific interactions with distinct MGE
pools, as also observed in other ecosystems [23,57,58]. A
more nuanced biogeographic pattern was the detection of
identical spacers with location-specific nucleotide substi-
tutions, as found in strains from Hawaii, Fiji and Palau
(Figure 4B). This may illustrate the presence of widespread

MGEs that maintain location-specific genetic variants.
Furthermore, SV1-related prophages could be resolved
into geographically confined lineages (Figure 4C), support-
ing the concept that Salinispora strains are exposed to
location-specific MGEs.

Self-targeting spacers

Several studies have reported the occurrence of ‘self-
targeting spacers’ that match regions within the host
genome [29]. While self-targeting spacers can be dele-
terious and strongly selected against [29,59], they have
also been suggested to function as regulatory elements
[20,60,61] or to affect genome content [62]. Interestingly,
a third of the 75 Salinispora strains harbored such spacers,
with perfect matches to e.g. a cytochrome P450 within
a terpenoid biosynthetic pathway [40] and two DNA-
modifying genes (Table 2). However, experimental evi-
dence would be required to determine potential regulatory
roles. In addition, several self-targeting spacers matched
resident prophages, suggesting that CRISPR interference
may be ineffective in some cases. Alternatively, self-
targeting may be prevented by selective self vs. non-self
mechanisms, such as variations in spacer flanking
sequences [63].

Conclusions
This study describes a comprehensive survey of CRISPR-
Cas systems among a large collection of strains from a
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Figure 4 Biogeographic patterns among Salinispora spacers and prophages. A) Distribution of spacers unique to certain locations (SC = Sea
of Cortez, HW =Hawaii, FJ = Fiji, PY = Palmyra, BH = Bahamas, PA = Palau) and biomes; B) Location-specific spacer variants reflected in single
nucleotide polymorphisms (marked in red) within a conserved 41 nt spacer in strains from Hawaii (3 strains with 3 variants), Fiji (4 strains with 1
variant) and Palau (1 strains with 1 variant); C) Maximum likelihood phylogeny (1000 bootstrap replicates) of SV1-related prophages in genomes
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Table 2 Chromosomal matches of select self-targeting spacers

Strain Spacer match (IMG Gene ID)

Spacer sequence (above) and matching chromosomal region with adjacent

nucleotides (5'-3'; below)

S. arenicola CNH-964/
S. arenicola CNP-105

Adenylosuccinate lyase
(2515702456/2518452715)

GCCCACCTTGCCGTGCCACCACGCCTCCCGCACCTCGTT

GTGCTGCTGCCCACCTTGCCGTGCCACCACGCCTCCCGCACCTCGTTGAACTCCG

23S rRNA methyltransferase
(2515702034/2518452486)

CCGAGCGGGTCGAGCTGACCGTCGGEGLGETGECCCCEGE

GCGGAGGCCGAGCGGGTCGAGCTGACCGTCGGEGLGGETGGCCCCGGGLGEELALC

S. arenicola CNX-481 Cytochrome P450 (2518471737)

TACCGACGCAGCCATAACTCGTGCTAGGACGG

CTGATGGCTACCGACGCAGCCATAACTCGTGCTAGGACGGTGCCCGLG

cosmopolitan marine actinomycete genus. The finding of
ubiquitous and diverse CRISPR-Cas systems suggests that
Salinispora maintains a robust mechanism to mediate in-
teractions with MGEs, which may be of ecological and
evolutionary relevance in virally rich marine sediments
[3]. Future surveys of CRISPR-Cas systems will provide
additional opportunities to assess the evolutionary history
of MGE exposure, the effectiveness of these systems as
mechanisms of adaptive defense, and how CRISPRs may
be linked to the ecology and evolution of Salinispora.

Methods

Genome sequences and CRISPR-Cas classification

The 75 Salinispora genome sequences (Additional file 1)
were downloaded from the IMG database (https://img.jgi.
doe.gov). CRISPRs were predicted using CRISPRFinder
[64] on pseudochromosomes generated from the genome
sequences (i.e. contigs assembled using a closed reference
genome) [39] and unmapped contigs. Only CRISPRs
classified as ‘confirmed’ were considered. Predicted
CRISPRs were manually checked and adjacent loci
combined if separated by Ns and having the same re-
peat sequences. Annotated cas genes were verified by
determining similarities to known cas genes using
BLAST [65] and UniProt [66]. The naming of cas genes
and their classification into Cas array subtypes was
done following [6]. The IMG database was searched for
equivalent Cas arrays in other sequenced bacterial ge-
nomes. CRISPRmap was used to classify repeats into
motifs, families, and superclasses based on similarities
to known repeat sequences [67]. Repeat consensus
sequences were obtained using WebLogo [68].

Phylogenetic and structural analyses of Cas arrays

casl and cas3 nucleotide and corresponding Casl and
Cas3 amino acid sequences were aligned using MAFFT
v7.017 (L-INS-i algorithm, 100PAM/k = 2 scoring matrix,
gap open penalty 1.53, offset value 0.123) [69] and manu-
ally curated. The best substitution models (casl: TN93 +
G +1; Casl: WAG + G +F; cas3: T92 + G; Cas3: JTT + G)
were determined using MEGA5 [70]. Maximum likeli-
hood phylogenies were computed with MEGA5 (using the
best model and 100 bootstrap replicates) and RAxML

(with default settings and 1000 bootstrap replicates) im-
plemented on the CIPRES Science Portal [71], always
giving the same topology. Nucleotide sequences of casl
[KM526976-KM527070] and cas3 [K]677987-K]678124]
have been deposited at GenBank (Additional file 6). Ar-
chitectures of selected loci and flanking regions were
analyzed with progressiveMauve [72]. Spacer arrange-
ment in S. arenicola phylotype B was evaluated by
aligning concatenated spacer sequences (sorted from
trailer to leader end) with MAFFT [69].

Prophage prediction and sequence comparison
Prophages were predicted using PHAST [73] on both
the pseudochromosomes and unmapped contigs. Pre-
dicted intact prophages classified as being related to the
Streptomyces SV1 phage were compared with the se-
quenced SV1 type phage (GenBank accession number
NC_018848) using the CGView Comparison Tool [74].
Nucleotide sequences of SVI1-related prophages were
aligned using Mugsy [75] and the resulting alignment
file converted to Fasta using the Galaxy web server [76].
The alignment was manually curated and the best sub-
stitution model (GTR +G) determined using MEGAS5
[70]. A maximum likelihood phylogeny was computed
using MEGAS5 with 1000 bootstrap replicates (Additional
file 7).

Analysis of spacers

Spacers were extracted from genome sequences and sor-
ted by unique (only found once across all 75 genomes)
and shared (found in >2 genomes). Spacers were searched
against different databases (Aclame MGE_0.4, PHAST_
virus, PHAST_prophage_virus, CRISPRFinder spacer)
with the standard BLAST parameters for short query
sequences (word size 7; match/mismatch scores 1,-3;
gap costs 5,2) using Geneious Pro v5.5 (available from
http://geneious.com). In addition, short-query BLAST
was used to determine spacers matching Salinispora pro-
phages as well as self-targeting spacers matching non-
CRISPR regions. Furthermore, short-query BLAST against
Salinispora prophages was done with spacers from five
representative strains from each species that were sorted
by Cas-associated, Cas-devoid, associated with known Cas
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array subtypes (I-E, I-C, I-B), and associated with herein
designated Cas array subtypes (I-U). Only perfect matches
with 100% identity over the entire spacer length were con-
sidered. A separate BLAST search against Aclame was
performed which also considered incomplete hits (100%
sequence identity over at least 18 nt), as this may still be
indicative of the targeted MGE type. The 18 nt threshold
corresponds to 2/3 of the average Salinispora repeat
length, which has been suggested as the minimum for a
functioning spacer [1]. Also, 100% coverage hits are pos-
sibly rare since the vast majority of phage diversity is likely
still unknown [3].

Statistical evaluation

The number of CRISPR loci, prophages and MGE genes
per strain were normalized by genome size and gene
count, respectively. Values were compared by species,
location, and biome (both between and within species)
as well as phylotype (only within species) using the
Kruskal-Wallis one-way analysis of variance implemented
in R [77] to test for significant differences. In case of a sig-
nificant result (p <0.05) the Wilcoxon rank-sum test im-
plemented in R [77] was used to test the specific sample
pairs for significant differences (p < 0.05). The fraction of
spacers matching Salinispora prophages in strains with
and without prophages was compared using Student’s
t-test. Correlations between the number of CRISPRs/
spacers/Cas arrays and prophages were calculated using
least squares regression.

Availability of supporting data
All supporting data are included within the article and

its additional files.

Additional files

Additional file 1: Overview of genome and CRISPR features of 75
Salinispora strains. Origin (location, biome, latitude/longitude, sampling
date, depth) and general genome characteristics (genome size, gene
count, 16S rRNA phylotype), CRISPR content (number of loci and spacers,
Cas array diversity, CRISPRmap classification of repeats), number of
prophages, and MGE content of 75 Salinispora strains analyzed in the
present study.

Additional file 2: Phylogeny of cas genes and Cas proteins.
Maximum likelihood phylogenies of aligned casi/cas3 nucleotide as well
as Cas1/Cas3 amino acid sequences (1000 bootstrap replicates with only
those >50 shown). Species names abbreviated (SA = S. arenicola, SP =S.
pacifica, ST = S. tropica) followed by strain number, Cas array subtype, and
internal CRISPR locus ID.

Additional file 3: Detected prophages. Prophages detected in the 75
Salinispora genomes, classified based on sequence similarities with
known prophages [73], length in Kb, number of coding sequences (CDS)
and GC content (% GQ).

Additional file 4: Salinispora species phylogeny. Maximum likelihood
phylogeny (1000 bootstrap replicates) of ten single-copy, concatenated
housekeeping genes from 75 Salinispora genomes labeled with origin
and phylotype (ST; A-F). A detailed description can be found in the
original publication [39].
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Additional file 5: Subclade-specific architectures of CRISPR loci and
flanking genes. progressiveMauve alignment of paired CRISPR loci and
flanking genes in S. arenicola phylotype B, showing that the arrays are
inverted in subclade 1 (strains CNH-941 and CNP-193) compared to
subclade 2 (strains CNH-964 and CNP-105). Blue: CRISPRs, yellow: cas
genes, green: integrases; pink: tRNAs.

Additional file 6: Salinispora cas gene accession numbers. GenBank
accession numbers of Salinispora cas1 and cas3 sequences used for
phylogenetic analyses.

Additional file 7: SV1 prophage phylogeny. Maximum likelihood
phylogeny (1000 bootstrap replicates) of conserved regions within
SV1-related prophages in Salinispora genomes.
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