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Abstract

Background: Gene set enrichment analysis (GSEA) is an important approach to the analysis of coordinate
expression changes at a pathway level. Although many statistical and computational methods have been proposed
for GSEA, the issue of a concordant integrative GSEA of multiple expression data sets has not been well addressed.
Among different related data sets collected for the same or similar study purposes, it is important to identify
pathways or gene sets with concordant enrichment.

Methods: We categorize the underlying true states of differential expression into three representative categories:
no change, positive change and negative change. Due to data noise, what we observe from experiments may not
indicate the underlying truth. Although these categories are not observed in practice, they can be considered in a
mixture model framework. Then, we define the mathematical concept of concordant gene set enrichment and
calculate its related probability based on a three-component multivariate normal mixture model. The related false
discovery rate can be calculated and used to rank different gene sets.

Results: We used three published lung cancer microarray gene expression data sets to illustrate our proposed
method. One analysis based on the first two data sets was conducted to compare our result with a previous
published result based on a GSEA conducted separately for each individual data set. This comparison illustrates the
advantage of our proposed concordant integrative gene set enrichment analysis. Then, with a relatively new and
larger pathway collection, we used our method to conduct an integrative analysis of the first two data sets and
also all three data sets. Both results showed that many gene sets could be identified with low false discovery rates.
A consistency between both results was also observed. A further exploration based on the KEGG cancer pathway
collection showed that a majority of these pathways could be identified by our proposed method.

Conclusions: This study illustrates that we can improve detection power and discovery consistency through a
concordant integrative analysis of multiple large-scale two-sample gene expression data sets.

Background
The recent large-scale technologies like microarrays
[1-3] and RNA-seq [4,5] allow us to collect genome-
wide expression profiles for biomedical studies. Genes
showing significant differential expression are potentially
important biomarkers [6]. Furthermore, a gene set

enrichment analysis enables us to identify groups of
genes (e.g. pathways) showing coordinate differential
expression [7,8]. For some disease studies, multiple gene
expression data sets have been collected and the related
integrative analysis of multiple data sets has been inves-
tigated [9]. Since microarray and sequencing based gen-
ome-wide expression data sets have been increasingly
collected, it is necessary to further develop the computa-
tional and statistical methods for integrative data analy-
sis studies.
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Genes and gene sets showing consistent behavior
among multiple related studies can be of great biological
interest. However, since the sample sizes are usually
small but the numbers of genes are large, it is difficult
to identify truly differentially expressed genes and deter-
mine whether a gene or a gene set behaves concordantly
among different related studies. Although the integrative
analysis of multiple gene expression data sets has been
well studied in recent years [10,11], the genome-wide
concordance has not been well considered. Misleading
results may be generated if the concordance among dif-
ferent data sets is not considered in an integrative analy-
sis. Our purpose is to identify pathways or gene sets
with concordant enrichment. Recently, there are several
methods published for meta gene set enrichment analy-
sis of expression data [12,13]. However, these methods
have not been specifically developed for our study pur-
pose. Statistically, we need analysis methods that are
consistent with the study purpose. There is still a lack
of methods and software for the concordant integrative
gene set enrichment analysis.
For a gene set enrichment analysis, an enriched gene

set in one data set may also be enriched in another data
set. However, this gene set is not necessarily concor-
dantly enriched in both data sets. For an illustration, let
us consider a simple artificial example: gene set S con-
tains five genes with the first three genes strongly up-
regulated in the first data set (the last two genes non-
differentially expressed) and the last three genes strongly
up-regulated in the second data set (the first two genes
non-differentially expressed). Then, in general, gene set
S is enriched in up-regulated differential expression in
both data sets. However, there is only one gene up-regu-
lated in both data sets; the remaining genes are showing
inconsistent behavior. Therefore, unless the proportions
of differentially expressed genes are small, there is a lack
of evidence to conclude that gene set S is concordantly
enriched in both data sets. Since a gene set concordantly
enriched in several similar studies may be of great
importance, it is necessary to develop statistical methods
for detecting these gene sets.
It has been shown that a mixture model based

approach can be an efficient approach to the differential
expression analysis [14]. Furthermore, we have also
demonstrated the usefulness of mixture models in con-
cordant analysis of differential expression among large-
scale expression data sets [15,16]. The advantage of the
mixture model based approach is that the probability of
a particular behavior (up-regulated or down-regulated)
can be modeled and estimated for a given gene. Thus, it
is feasible to address how likely this gene shows a con-
cordant behavior. In this study, we develop a mixture
model based method for a concordant integrative gene
set enrichment analysis.

Methods
Concordant gene set enrichment
In this study, we consider multiple large-scale two-sam-
ple gene expression data sets. We use K to denote the
number of these data sets and m to denote the number
of common genes in these data sets. For each of these
data sets, we usually use a t-type test to evaluate the dif-
ferential expression of each gene and a gene set enrich-
ment analysis (GSEA) method to evaluate the
enrichment level of a given gene set. In order to define
and evaluate a concordant gene set enrichment when an
integrative analysis is conducted for all K data sets, we
categorize differential expression in each data set into
three underlying (unobserved) representative categories:
no change, positive change (or up-regulated differential
expression) and negative change (or down-regulated dif-
ferential expression). Due to data noise, what we observe
from experiments may not indicate the underlying truth.
(For example, a gene with slight down-regulated differ-
ential expression may show a small positive t-type test
value.) Although these categories are not observed in
practice, they can be considered in a mixture model
framework.
To understand the concept of concordant gene set

enrichment, let us consider an artificial example. Given
a pathway with 30 genes, we know all the underlying
behavior of these genes: 20 genes have positive changes
consistently among all different data sets. Furthermore,
if we randomly select 30 genes, we also know that the
expected number of genes with consistent positive
changes among different data sets is just 5. In this case,
we would conclude that the given gene set is concor-
dantly enriched in up-regulated differential expression
(because 30 is clearly larger than 5). However, in prac-
tice, all the underlying differential expression categories
are not observed. Instead, they can be considered in a
mixture model framework. Then, we need to develop a
mathematical formula for the probability of concordant
enrichment score (CES) of a given gene set S that con-
tains mS genes:

CESS = Pr(gene set S is concordantly enriched|observed data),

which can be useful for prioritizing different gene sets
in practice.
Before we derive the mathematical formula for the

above probability, we need to explain the term
“enriched”. As suggested by Efron and Tibshirani [17],
unless the test statistic for a gene set enrichment analy-
sis (GSEA) considers the genome-wide background pat-
terns (e.g. the statistics proposed in the original GSEA
[7,8]), it is necessary to consider the “row randomiza-
tion” for genes in addition to the “column permutation”
for samples. Therefore, the term “enriched” means
“higher/better than expected”.
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Although many test statistics have been developed for
GSEA with one large-scale expression data set, we still
need to develop a new approach for this study. The
motivation is: we need to address the component infor-
mation of the genes in a gene set. The component infor-
mation is whether a gene is up-regulated, down-
regulated or non-differentially expressed. Most existing
test statistics for the gene set enrichment analysis are
either nonparametric or functions of z-score. But it is
difficult to analyze the component information with
these test statistics. Therefore, based on the above dis-
cussion for the term “enriched”, we propose the follow-
ing probability for measuring concordant gene set
enrichment:

CESS = Pr(The number of events of interest is larger than expected|observed data).

For a gene in a given gene set S, an event of interest
can be: (1) the gene is concordantly up-regulated; (2)
the gene is concordantly down-regulated; or (3) the
gene is concordantly differentially expressed (either up-
regulated or down-regulated). Our analysis methods for
these different types of enrichment analysis are almost
mathematically identical. For a mathematical notation of
the above CES, we denote Ui the indicator that the i-th
gene in gene set S satisfies the event of interest. Let D
be the observed data and π be the probability of event
of interest if the gene is randomly sampled. Then,
we have

CESS = Pr(
mS∑
i

Ui > mSπ |D).

In order to calculate CES practically, we propose a
three-component multivariate mixture model. In the
model, each component is a normal distribution. The
model configuration for these three components is con-
sistent with the differential expression categories as
described above. This model is conceptually analog to a
simple normal mixture approach to differential expres-
sion analysis proposed by McLachlan et al. [14]. The
special feature of our model is that we focus on some
specific combination of components from different
dimensions. A bivariate version of this model has been
used by us to evaluate the concordance and discordance
between two large-scale experiments with two sample
groups [15] and to integrate two microarray data sets in
differential expression analysis [16]. Before the model
description, we need to describe the related data prepro-
cessing and differential expression test scores as follows.

Data preprocessing
Because our proposed statistical method is developed
based on the differential expression test scores, we
assume that the given gene expression data sets have

been preprocessed appropriately [18]. For a concordant
integrative analysis of multiple data sets, we also need to
select genes shared commonly by different data sets.
This can be achieved using the genes’ unique identifiers.

Differential expression test scores
For each of the two-sample gene expression data sets,
we screen individual genes with the traditional two-sam-
ple Student’s t-test. Several modified t-tests, such as
SAM t-test [19] and the moderated t-test [20], have
been widely used in the differential expression analysis
of microarray data. These test statistics can generally
improve the control of false positives by “softly” filtering
out genes with relatively small expression variance.
However, we intend to consider all the genes equally
important in the concordant integrative analysis of mul-
tiple data sets. Furthermore, a given gene can show dif-
ferent levels of variance in different data sets, which
may make it difficult to use these modified t-tests.
Therefore, we still recommend the traditional two-sam-
ple t-test as the differential expression test statistic. (In
practice, other test statistics like SAM t-test or the mod-
erated t-test can still be considered when there is a
strong reason to do so.) Because the sample size of a
high-throughput study is usually not large, it is generally
difficult to validate the normal distribution assumptions
for the t-test. Therefore, instead of the theoretical t-dis-
tribution, we use the permutation procedure to compute
the p-value of an observed t-test [21]. This approach
has been widely adopted in the analysis of gene expres-
sion data [6].
For K two-sample gene expression data sets with m

common genes, we compute the one-sided upper-tailed
p-value pi,k for gene Xi in the k-th data set, i = 1, 2, . . .
, m and k = 1, 2, . . . , K. Then, we perform an inverse
normal transformation to obtain a z-score: zi,k = F-1(1 -
pi,k), where F(·) is the cumulative distribution function
(c.d.f.) of the standard normal distribution. This trans-
formation has been widely used to improve the fitting of
a mixture model [14]. Our proposed statistical methods
for the concordant integrative analyses of multiple data
sets are developed based on these sets of z-scores.

A mixture model
For each individual data set, we assume that a mixture of
three normal distributions can well fit the z-scores. Let
φμ,σ 2 denote the probability density function (p.d.f.) of a
normal distribution with mean µ and variance s2. Three
representative components are considered for the k-th
data set (k = 1, 2, . . . , K): φμ0,k,σ 2

0,k
(·) for genes non-differ-

entially expressed (no change), φμ1,k,σ 2
1, k
(·) for genes with

up-regulated differential expression (positive change) and
φμ2,k,σ 2

2,k
(·) for genes with down-regulated differential
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expression (negative change). Notice that µ0,k = 0 and
σ 2
0,k = 1 (a z-score under the null hypothesis follows the

standard normal distribution because its associated
p-value follows a standard uniform distribution). This
configuration has been suggested in the analysis of gene
expression data [14] although more components can be
considered to improve the data fitting. Mathematically,
we have the following density function:

f (zi,k) =
2∑

jk=0

ρjkφμjk
,k, σ 2

jk ,k(zi,k),

which is a type of well-known simple normal mixture
model.
When the above simple model is extended to accom-

modate the analysis of multiple data sets, we need to
consider the combination of components from different
dimensions (data sets). Then, there are 3K different
combinations. We assume that different data sets are
collected independently. For the i-th gene with a list of
z-scores {zi,k}Kk=1 from different data sets, if we know all
the related component information, then the join den-
sity of these z-scores is the product of marginal densities
of individual z-scores. Therefore, the following formula
defines our basic mixture model for a concordant
analysis:

fPCD(zi,1, zi,2, ..., zi,K) =
2∑
j1=0

2∑
j2=0

· · ·
2∑

jK=0

[
πj1,j2,...,jK

K∏
k=1

φμjk
,k,σ 2

jk ,k
(zi ,k)

]
, (1)

where πj1,j2,...,jK is the probability for this gene being in a
particular combination of different components (j1, j2, . . . ,

jK) in different data sets (
∑2

j1,j2,...jK=0 πj1,j2,...,jK = 1). We call

this model a partial concordance/discordance (PCD)
model. Notice that a bivariate version of this model has
been used to evaluate the overall concordance or discor-
dance of two large-scale data sets and to conduct an inte-
grative analysis of differential expression for two large-
scale two-sample data sets [15,16].

Model estimation
Our mixture model can be estimated by the well-developed
E-M algorithm [22]. In the model, the differential expres-
sion categories are considered as missing information. For
any z-score vector (zi,1, zi,2, . . . , zi,K), i = 1, 2, . . . , m, this
information can be mathematically represented as

w(i)
j1,j2,...,jK

= 1 if each zi,k is sampled from the jk-th compo-

nent (jk = 0, 1 or 2 and k = 1, 2, . . . , K) or zero otherwise.
With only the observed data, the likelihood can be

calculated by the following formula:

L(z|�) =
n∏
i=1

fPCD(zi,1, zi,2, ..., zi,K),

where Θ represents the parameter space described
previously. The “complete likelihood” based on the
observed data and missing information can be calculated
by the following formula:

Lc(z,w|�) =
n∏
i=1

2∏
j1=0

2∏
j2=0

· · ·
2∏

jK=0

[
πj1,j2,...,jK

K∏
k=1

φμjk ,k
,σ 2

jk ,k
(zi,k)

]w(i)
j1,j2,....,jK

.

Then, we can derive the following E-step formula:

E(w(i)
j1,j2,...,jK

) =
πj1,j2,...,jK

∏K
k=1 φμjk ,k

,σ 2
jk ,k
(zi,k)∑2

j1=0

∑2
j2=0 · · ·

∑2
jK=0

[
πj1,j2,...,jK

∏K
k=1 φμjk

,k,σ 2
jk ,k
(zi,k)

] .

We can also derive the following M-step formulas:

π̂ j1, j2, ..., jK =

∑n
i=1 E(w

(i)
j1,j2,...,jK )

n
;

μ̂jk,k =

∑n
i=1

∑2
j1=0

∑2
j2=0 · · ·

∑2
jk−1=0

∑2
jk+1=0

· · ·∑2
jK=0

[
zi,kE(w

(i)
j1,j2,...,jK

)
]

∑n
i=1

∑2
j1=0

∑2
j2=0 · · ·

∑2
jk−1=0

∑2
jk+1=0

· · ·∑2
jK=0 E(w

(i)
j1,j2,...,jK

)
;

σ̂ 2
jk,k =

∑n
i=1

∑2
j1=0

∑2
j2=0 · · ·

∑2
jk−1=0

∑2
jk+1=0

· · ·∑2
jK=0

[
(zi,k − μ̂jk,k)

2E(w(i)
j1,j2,...,jK

)
]

∑n
i=1

∑2
j1=0

∑2
j2=0 · · ·

∑2
jk−1=0

∑2
jk+1=0

· · ·∑2
jK=0 E(w

(i)
j1,j2,...,jK

)
.

In the E-M algorithm, we iterate E-step and M-step until
a numerical convergence of likelihood (not the “complete
likelihood”). Let L(t) and L(t+1) be the likelihood values cal-
culated after the t-th and (t + 1)-th iterations, respectively.
A numerical convergence is claimed if |L(t+1) − L(t)| <0.001.

Concordant enrichment score
Suppose that we are interested in gene sets with coordi-
nate up-regulated differential expression (the CES for-
mulas for the other events of interest can be derived
similarly). Then, we need to focus on the combination
of different components with (j1 = 1, j2 = 1, . . . , jK =
1). Based on the mixture model, we can derive the fol-
lowing probability for a gene XS,i in a given gene set S =
{XS,i : i = 1, 2, . . . , mS}:

uS,i = Pr(geneXS,i is concordantly up-regulated differentially expressed|zS,i)

=

[
π1,1,...,1

K∏
k=1

φμ1,k , σ
2
1,k(zS,i,k)

]
/fPCD(zS,i,1, zS,i,2, . . . , zS,i,K).

This probability uS,i can be estimated as ûS,i by plug-
ging-in the estimated parameters in the PCD model. Let
hS,i be either 0 or 1. Under the assumption that z-scores
{zi,k : i = 1, 2, . . . , m} from different genes are indepen-
dent in each data set k, k = 1, 2, . . . , K, we can calcu-
late the concordant enrichment score (CES) for a gene
set S = {XS,i : i = 1, 2, . . . , mS}:

CESS =
1∑

hS,1=0

1∑
hS,2=0

· · ·
1∑

hS,mS=0

[
I(

mS∑
i=1

hS,i > mSπ̂1,1,...,1)
mS∏
i=1

ûhS,iS,i (1− ûS,i)
1−hS,i

]
, (2)

which is the PCD model based estimate for the prob-
ability Pr(gene set S is concordantly enriched | observed
z-score matrix of gene set S). In the formula, I(true
statement) = 1 and I(false statement) = 0 (indicator
function). Notice that the formula can be simplified to a
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well-known binomial tail probability if all {uS,i}mS
i=1 are the

same. However, {uS,i}mS
i=1 are usually different in practice.

Then, we need to calculate a tail probability for a het-
erogeneous Bernoulli process.
For the calculation for gene sets with coordinate down-

regulated differential expression, we need to focus on the
combination of different components with (j1 = 2, j2 = 2, . . . ,
jK = 2). Then, we need to change the formulas for uS,i and
CESS as follows:

uS,i = Pr(geneXS,i is concordantly down-regulated differentially expressed | zS,i)

=

[
π2,2,...,2

K∏
k=1

φμ2,k,σ 2
2,k
(zS,i,k)

]
/fPCD(zS,i,1, zS,i,2, . . . , zS,i,K);

CESS =
1∑

hS,1=0

1∑
hS,2=0

· · ·
1∑

hS,mS=0

[
I(

mS∑
i=1

hS,i > mSπ̂2,2,...,2)
mS∏
i=1

ûhS,iS,i (1− ûS,i)
1−hS,i

]
.

False discovery rate
The concordant enrichment score given in Equation (2)
is an estimated conditional probability of concordant
enrichment, which can be considered as the true posi-
tive probability for the gene set S. This conditional
probability is closely related to the concept of false dis-
covery rate (FDR). FDR has been widely used to evaluate
the proportion of false positives among the claimed
positives [6,23]. According to the discussion by McLa-
chlan et al. [14], among the J top gene sets {S1, S2, . . . ,
SJ} claimed significantly concordantly enriched, the false
discovery rate can be estimated as:

FDR = 1−
J∑

j=1

CESSj/J. (3)

Computational approximation
Although we have derived the formula for concordant
enrichment score (CES), it is usually difficult to compute
it in practice: the number of possible component combi-
nations from different genes in a given gene set is usually
huge. Based on our observation, most gene sets contain
more than 20 genes. Since different genes have different
probabilities of being concordantly up-regulated and/or
down-regulated differentially expressed, we cannot
further simplify the formula (we need to calculate a tail
probability for a heterogeneous Bernoulli process). How-
ever, we can consider a simulation based approach to the
approximation of CES given in Equation (2).
Monte Carlo approximation
Recall that the probability of event of interest uS,i can be
calculated for a gene XS,i in a given gene set S = {XS,i, i =
1, 2, . . . , mS}. The simulation scheme is based on a het-
erogeneous Bernoulli process:

• For each XS,i, simulate a Bernoulli random variable
with probability of event uS,i;

• For the gene set S, count the number R of events
from different genes;
• Repeat the above two steps B times and report the
approximated enrichment score as {number of
(R > mSπ̂1,1,...,1)}/B.

One related question is how large B should be set in
the simulation. As we have discussed above, the concor-
dant enrichment score (CES) is closely related to the
false discovery rate (FDR). Then, it is reasonable to
require its accuracy around the 1% level for the 95%
CES level (e.g. a 95% normally approximated binomial
confidence interval 0.95 ± 0.01) and B = 2000 is ade-
quate. Therefore, the Monte Carlo approximation is a
feasible approach in practice. (In general, if we do not
have a specific CES level, we can simply use an upper
bound B = 10000 calculated based on the 95% normally
approximated binomial confidence interval. Then, the
related computing burden is still practically feasible.)

Results and discussion
Application #1: an integrative analysis of two data sets
To illustrate our method, we first considered two micro-
array gene expression data sets collected for lung cancer
studies [24,25]. The first one was collected by a research
group in Boston (referred to as Boston data) and the
second one was collected by a research group in Michi-
gan (referred to as Michigan data). For an application of
their Gene Set Enrichment Analysis (GSEA) method,
Subramanian, Tamayo et al. [8] reorganized these two
data sets, which were made freely available at http://
www.broadinstitute.org/gsea. There were 62 and 86
patients for the Boston and Michigan data sets, respec-
tively. These patients were classified as either “good” or
“poor” outcomes. Expression profiles were available for
5216 genes that were common for both data sets. To
compare our analysis results with the results reported
by Subramanian, Tamayo et al. [8], we used an early
version of gene set collection that was used by them [8].
Subramanian, Tamayo et al. [8] also suggested a moder-
ate range of 15-500 genes for the sizes of gene sets that
were analyzed in their gene set analysis. A gene set was
not analyzed if its number of genes was out of this
range. This range was used in our analysis. To demon-
strate the advantage of their GSEA, Subramanian,
Tamayo et al. [8] observed several commonly signifi-
cantly enriched gene sets from the analysis of each data
set although no individual genes with significantly differ-
ential expression were identified.
Since no concordant integrative analysis has been con-

ducted before for these two data sets, it is necessary to
investigate whether more significant results can be
achieved by such an analysis. Lai et al. [15] and Lai
et al. [16] have discussed that it is necessary to evaluate
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the genome-wide concordance before an integrative ana-
lysis to be conducted. Based on a likelihood ratio test
[15,16], we obtained p-values <0.01 and >0.3 for testing
hypothesis complete discordance (CD) model vs. partial
concordance/discordance (PCD) model and complete
concordance (CC) model vs. PCD model, respectively.
This result suggested that the expression profiles of
both data sets were overall concordant at a genome-
wide level. To avoid any possible selection bias, we still
conducted our integrative analysis based on the general
PCD model. (When the simplified CC model was used,
we still observed similar results [not shown].) As shown
in Table 1, the gene sets identified by Subramanian,
Tamayo et al. [8] were also identified by our method.
Furthermore, the resulting false discovery rates (FDRs)
were even more significant (all below 0.08 and most of
them below 0.001) by our method. [The complete gene
sets (328 gene sets) with the false discovery rates (FDRs)
based on our concordant integrative gene set enrich-
ment analysis have been included in our supplementary
material.]
Figure 1 gives some graphical illustrative examples for

our concordant integrative gene set enrichment analysis.
Proteasome degradation is a well-known pathway in

cancer studies [26]. Furthermore, proteasome inhibitors
are being used clinically in lung cancer treatments [27].
Yang et al. [28] has also demonstrated that proteasome
regulates the key survival factors for cells. However, this
gene set had not been identified in the study by Subrama-
nian, Tamayo et al. [8]. As shown in Figure 1, the major-
ity of z-scores from both data sets were positive for the
gene set proteasome pathway. Because most of these z-
scores were relatively close to zero, it was difficult to
identify this pathway by an analysis based on individual
data sets. However, the concordant enrichment of up-
regulation of this gene set was identified by our integra-
tive analysis approach (CES > 0.999 and FDR < 0.001 for
the up-regulation enrichment). The B cell receptor (BCR)
signaling pathway has been shown to be important in
immune disease and cancer studies [29]. As shown in
Figure 1, the majority of z-scores from both data sets
were negative for this gene set although these z-scores
were also relatively close to zero. For the down-regula-
tion enrichment, the CES and FDR for this gene set was
>0.9 and ~ 0.05, respectively. For a comparison, we also
randomly selected 30 genes as a random gene set. As
shown in Figure 1, the paired z-score pattern of this ran-
dom gene set was consistent with the genome-wide
paired z-score distribution. Therefore, this random gene
set was not significantly concordantly enriched. (The cor-
responding up-regulation and down-regulation based
CES were both in the range of 0.4 ~ 0.6.)
Mootha, Lindgren, et al. [7] have made their gene set

collections freely available at their web site for Molecu-
lar Signatures Database. Since the introduction of gene
set enrichment analysis [7,8], the collections of gene
sets have been updated to version 3.0 (at the time of
our study). Therefore, based on the Boston and Michi-
gan data, we have performed a concordant integrative
analysis for this updated version of the C2 canonical
pathway collection. Among 880 gene sets in the collec-
tion, there are 700 gene sets with gene number range
from 15 to 500. We have also compared our results
with the results calculated separately for individual data
sets based on the gene set analysis (GSA) method pro-
posed by Efron and Tibshirani [17]. Although certain
statistical assumptions are required for the GSA
method, Maciejewski [30] have still suggested in a
recent comparison study that this method is one of the
preferred methods for a gene set enrichment analysis.
Figure 2 shows that the false discovery rate (FDR) curve
based on our method is clearly lower than these two
FDR curves based on GSA (one for Boston data and the
other for Michigan data). There are 224 and 15 path-
ways with significant CES (FDR < 0.05) for up-regulated
and down-regulated differential expression, respectively.
These results have been included in our supplementary
material.

Table 1 A comparison based on two data sets.

Gene sets enriched in poor outcome FDR

Boston data

Hypoxia and p53 in the cardiovascular system <0.001

Aminoacyl tRNA biosynthesis <0.001

Insulin upregulated genes <0.001

tRNA synthetases <0.001

Leucine deprivation down-regulated genes <0.001

Telomerase up-regulated genes <0.001

Glutamine deprivation down-regulated genes <0.001

Cell cycle checkpoint <0.001

Michigan data

Glycolysis gluconeogenesis <0.001

vegf pathway <0.001

Insulin up-regulated genes <0.001

Insulin signaling 0.021

Telomerase up-regulated genes <0.001

Glutamate metabolism 0.018

Ceramide pathway 0.076

p53 signalling <0.001

tRNA synthetases <0.001

Breast cancer estrogen signalling <0.001

Aminoacyl tRNA biosynthesis <0.001

Gene sets identified by Subramanian, Tamayo et al. [8] for Boston and
Michigan data are listed with the false discovery rates (FDRs) calculated by
our proposed concordant integrative gene set enrichment analysis. Based on
the gene set enrichment analysis (GSEA) for each individual data set, the FDRs
calculated by Subramanian, Tamayo et al. [8] were between 0.006 to 0.25
(most of them were between 0.1 to 0.2).
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Application #2: an integrative analysis of three data sets
In addition to the Boston and Michigan data sets, Subra-
manian, Tamayo et al. [8] also mentioned and reorganized
another related data set collected by a Stanford study [31].
We then considered these three data sets together for a
concordant integrative gene set enrichment analysis. The
number of patients in the Stanford data set was much less:
24 patients were classified as either “good” or “poor” out-
comes. For these three data sets, there were 2865 common
genes (almost 50% reduction from the first application

described above). We still used the Version 3.0 of the C2
canonical pathway collection. The GSA method was again
used to analyze individual data sets separately for 700 gene
sets (see above for details). Figure 3 shows that the FDR
curve based on our method is still clearly lower than these
three FDR curves based on GSA (one curve for each data
set). There are 99 and 74 pathways with significant CES
(FDR < 0.05) for up-regulated and down-regulated differ-
ential expression, respectively. These results have also
been included in our supplementary material.

Figure 1 Illustrative examples based on two data sets. Three illustrative examples for our proposed method for a concordant integrative
gene set enrichment analysis of two data sets. In each plot, the gray dots represent all paired z-scores for 5216 common human genes and the
black dots represent the paired z-scores for the gene set specified in the title.

Figure 2 A comparison of FDR curves based on two data sets. A comparison of false discovery rate (FDR) curve based on our proposed
method for concordant integrative gene set enrichment analysis with the FDR curves based on the gene set analysis (GSA) for individual data
sets. In each plot, the black solid curve represents the results based on our method; the black dashed curve represents the results based on GSA
for the Boston data; the black dotted curve represents the results based on GSA for the Michigan data. The gray dotted lines represent three
FDR levels: 0.05, 0.1 and 0.2. Both up-regulated (a) and down-regulated (b) differential expression based analysis results are presented.
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Among the gene sets with FDR < 0.05, we observed
many interesting pathways. Among these 74 identified
based on down-regulated differential expression, there
were pathways related to immune system, TCR signal-
ing, viral myocarditis, BCR signaling, cell survival,
WNT-b-catenin signaling, cytokine, PI3K, VEGF signal-
ing, interleukins and GPCR signaling. Among these 99
identified based on up-regulated differential expression,
there were pathways related to different metabolism, cell
cycle, checkpoints, and related phases and transitions,
DNA replication, synthesis damage and repair, p53, gly-
colysis gluconeogenesis, telomere maintenance and
extension, apoptosis, TGF-b signaling, tRNA aminoacy-
lation, gene expression, lung cancer and PDGF signaling.

Consistency between two application results
We also investigated whether the inclusion of an addi-
tional data set to our previous integrative analysis of
two data sets would still generate consistent results.
(Notice that the number of common genes was much
reduced from 5216 to 2865 when the Stanford data set
was included. This would change the number of selected
pathways as shown above.) Figure 4 shows the scatter
plot for the paired CES calculated based on two data
sets and CES calculated based on three data sets (sepa-
rately for up-regulated and down-regulated differential
expression). For each plot, a clear correlation pattern

can be observed. The Spearman correlation coefficients
were both greater than 0.75 for these two plots (0.804
and 0.760). We also compared the listed of selected
pathways with FDR < 0.05 (see above for details). For
up-regulated differential expression, there were 92 path-
ways in common (among 224 selected based on two
data sets and 99 selected based on three data sets); for
down-regulated differential expression, there were 11
pathways in common (among 15 selected based on two
data sets and 74 selected based on three data sets). If
[(the number of commonly selected pathways)/(the
number of smallest list of selected pathways)] was used
as the overlap proportion, then we would have 92/99 =
92.9% and 11/15 = 73.3% as the overlap proportions for
up-regulated and down-regulated differential expression,
respectively. Therefore, a satisfactory consistency
between both results was also observed.
About two pathways mentioned particularly in our

first application, there were two proteasome pathways in
the Version 3.0 of the C2 canonical pathway collection:
one given by BioCarta and the other given by KEGG.
For both pathways, their CESs and FDRs for up-regu-
lated differential expression were consistently respec-
tively >0.999 and <0.001 based on our integrative
analysis of two data sets, and these values were also
consistently respectively >0.95 and <0.005 based on our
integrative analysis of three data sets. There were also

Figure 3 A comparison of FDR curves based on three data sets. A comparison of false discovery rate (FDR) curve based on our proposed
method for concordant integrative gene set enrichment analysis with the FDR curves based on the gene set analysis (GSA) for individual data
sets. In each plot, the black solid curve represents the results based on our method; the black dashed curve represents the results based on GSA
for the Boston data; the black dotted curve represents the results based on GSA for the Michigan data; the black dot-dashed curve represents
the results based on GSA for the Stanford data. The gray dotted lines represent three FDR levels: 0.05, 0.1 and 0.2. Both up-regulated (a) and
down-regulated (b) differential expression based analysis results are presented.
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two BCR signaling pathways collected by KEGG and
Signaling Gateway, their CESs and FDRs for down-regu-
lated differential expression were consistently respec-
tively >0.95 and <0.01 based on our integrative analysis
of three data sets. Based on our integrative analysis of
two data sets, the CES and FDR for the pathway by
KEGG were respectively >0.7 and <0.2 and these two
values for the pathway by Signaling Gateway were
respectively >0.9 and ~ 0.05. Figure 5 shows different
paired z-scores from three data sets and the z-scores for
these two pathways are highlighted for an illustration.

KEGG cancer pathways
There is a collection of cancer pathways in the database
of Kyoto Encyclopedia of Genes and Genomes (KEGG
with web link http://www.genome.jp/kegg/). According
to the database updated on July 24, 2013, 17 pathways
are associated with lung cancer and general cancer stu-
dies. Table 2 lists 16 of these pathways that are also in
the Version 3.0 of the C2 canonical pathway collection.
(The KEGG PI3K-AKT signaling pathway is not
included since it is not listed in the C2 collection.
Notice that only pathways from KEGG are included.
Pathways with same or similar names from other online
databases like Reactome are not considered here. This
ensures the consistency between the gene sets from the
C2 collection and the gene sets mentioned in the KEGG
cancer pathways.) Since a pathway could be enriched in

either up-regulated or down-regulated differential
expression, we would choose the one with larger CES if
the absolute difference of two CESs was greater than 0.1
(same results observed when this threshold value was
set between 0.05 to 0.15), which was a conservative
choice of threshold value. Otherwise, we would not pre-
sent any further analysis results for this pathway. For
examples, if these two CESs were 0.5 (up-regulated) and
0.45 (down-regulated), then no further analysis results
would be presented for this pathway; if these two CESs
were 0.8 (up-regulated) and 0.1 (down-regulated), then
the analysis results based on up-regulated differential
expression would be presented. For these 16 pathways
listed in Table 2, the results from the analysis described
in our first and second applications were consistent. All
the pathways except the TGF-b signaling pathway
showed FDRs < 0.2 for at least one applications. Ten
and eight pathways showed FDRs < 0.1 and FDRs < 0.05
respectively for at least one applications. Furthermore,
all sixteen pathways showed FDRs < 0.25 for at least
one applications.

Conclusions
In this study, we proposed a mixture model based statis-
tical method for the concordant integrative gene set
enrichment analysis. Our method was first applied to
two published lung cancer microarray gene expression
data sets. As shown in Figure 1, gene sets like the

Figure 4 A comparison of CESs based on two application results. A comparison of our concordant integrative gene set enrichment analysis
results based on two data sets to the results based on three data sets. In each plot, the gray dots represent the paired concordant enrichment
scores (CESs) for all pathways in the Version 3.0 of the C2 canonical pathway collection and the black dots represent the paired CESs for
pathways with FDR< 0.05 for both analysis results. Both up-regulated (a) and down-regulated (b) differential expression based analysis results are
presented.
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Figure 5 Illustrative examples based on three data sets. Two illustrative examples for our proposed method for a concordant integrative
gene set enrichment analysis of three data sets. In each plot, the gray dots represent all paired z-scores for 2865 common human genes and
the black dots represent the paired z-scores for the gene set specified in the title.

Table 2 An exploration of KEGG cancer pathways.

Two data sets Three data sets

KEGG cancer pathways U/D CES Diff. FDR CES Diff. FDR

PPAR signaling * down 0.671 >0.1 0.194 0.563 >0.1 0.210

MAPK signaling ** down 0.639 >0.1 0.209 0.857 >0.1 0.063

ERBB signaling * up 0.629 >0.1 0.119 0.581 >0.1 0.188

Calcium signaling ** down 0.925 >0.1 0.051 0.694 >0.1 0.153

Cytokine-cytokine receptor interaction *** down 0.717 >0.1 0.172 0.943 >0.1 0.022

Cell cycle *** up 0.998 >0.1 <0.001 0.959 >0.1 0.012

p53 signaling *** up 0.999 >0.1 <0.001 0.944 >0.1 0.018

MTOR signaling * down 0.724 >0.1 0.167 0.611 >0.1 0.193

Apoptosis * down ≤ 0.1 0.776 >0.1 0.102

WNT signaling *** down ≤ 0.1 0.888 >0.1 0.048

TGF-b signaling down ≤ 0.1 0.521 >0.1 0.236

VEGF signaling *** down 0.784 >0.1 0.136 0.919 >0.1 0.033

Focal adhesion *** up >0.999 >0.1 <0.001 0.830 >0.1 0.077

ECM receptor interaction *** up 0.996 >0.1 <0.001 0.977 >0.1 0.005

Adherens junction * up 0.646 >0.1 0.114 ≤ 0.1

JAK-STAT signaling *** down 0.875 >0.1 0.082 0.901 >0.1 0.044

Our application results for sixteen KEGG cancer pathways. “Diff” column presents the absolute difference between the CES based on up-regulated differential
expression and the CES based on down-regulated differential expression. If “Diff”≤ 0.1, then no further analysis results is presented. Otherwise, the larger CES
as well as the related FDR and differential expression direction (up or down) are presented in the “CES”, “FDR” and “U/D” columns, respectively. Both application
results (an integrative analysis of two data sets and an integrative analysis of three data sets) are presented for the listed pathways. Pathways with symbols
*, ** or *** means that FDRs < 0.2, FDRs < 0.1 or FDRs < 0.05 are observed for at least one applications, respectively.
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proteasome and BCR signaling pathways were identified
by our method. These gene sets were not identified in
the previous study [8] since the differential gene expres-
sion among these gene sets were relatively weak. How-
ever, the concordant enrichment of these gene sets was
detected by our method. This comparison illustrated the
advantage of our proposed concordant integrative gene
set enrichment analysis. The analysis results from our
second application (a concordant integrative analysis of
three data sets) also showed that many gene sets could
be identified with low false discovery rates. A consis-
tency between both results was also observed. A further
exploration based on the KEGG cancer pathway collec-
tion demonstrated the practical usefulness of our pro-
posed method. Overall, this study illustrates that we can
improve detection power and discovery consistency
through a concordant integrative analysis of multiple
large-scale two-sample gene expression data sets.
There are several advantages for our proposed

method. The genome-wide concordance can be statisti-
cally tested before the integrative analysis. The mixture
model is estimated based on the maximum likelihood
estimation procedure. Furthermore, our integrative ana-
lysis of gene sets is based on a probabilistic framework,
which can be conveniently used for the calculation of
false discovery rates. However, there are also limitations.
Our proposed mixture model is simple and it contains
only three components. Normal distributions are
assumed for these components. Furthermore, we assume
that different genes behave independently (Gold et al.
[32] have showed that the independence assumption can
be acceptable in practice). These limitations should be
considered when our method is used in practice.
For our future research, it will be useful to extend our

proposed method for an integrative analysis of data with
multiple sample groups. This will be particularly useful
for studying diseases with different progression stages.
Although a major proportion of gene expression data
have been collected for binary outcomes (e.g. normal vs.
abnormal), data with other types of responses (e.g. survi-
val data) have also been collected. It will also be useful
to extend our method for these data. Furthermore,
when our proposed method is used for an integrative
analysis of more than 3 data sets, it is desirable to sim-
plify the mixture model so that the number of model
parameters (particularly for {πj1,j2,...,jK }) can be reduced
to achieve statistical efficiency. Furthermore, we would
also like to consider more robust approaches (e.g. a
nonparametric method) to the concordant integrative
gene set enrichment analysis.
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