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Abstract

Reference-free SNP detection, that is identifying SNPs between samples directly from comparison of primary
sequencing data with other primary sequencing data and not to a pre-assembled reference genome is an
emergent and potentially disruptive technology that is beginning to open up new vistas in variant identification
that reveals new applications in non-model organisms and metagenomics. The modern, effcient data structures
these tools use enables researchers with a reference sequence to sample many more individuals with lower
computing storage and processing overhead. In this article we will discuss the technologies and tools
implementing reference-free SNP detection and the potential impact on studies of genetic variation in model and
non-model organisms, metagenomics and personal genomics and medicine.

SNP calling pipelines rely on a reference genome
It is no overstatement to say that the recent technological
advances that have made it possible to sample whole gen-
omes many times over has changed forever the way that
geneticists and genomicists design and carry out their
experiments. Many of these experiments require the detec-
tion of genetic variants as a preliminary, most often single
nucleotide polymorphisms (SNPs). The basis of all these
experiments is the same: one sequence must be compared
with another. The predominant model for this is to have a
single genome assembly chosen as the baseline against
which all others will be compared. Often this reference gen-
ome will have been produced in a large-scale ‘big-biology’
project by a large consortium using long read Sanger-style
sequencing or a hybrid approach that mixes long and short
reads, but the defining characteristic will be that a great
deal of time and expense has gone into preparing the refer-
ence. To avoid this expense later, the genome is not
assembled for each further individual sample, instead the
sequence reads will be aligned directly to the single
assembled reference irrespective of any assembly errors or
structure specific to the population or individual sequenced.

The consensus from the sequence reads will then be taken
as the new sample’s genome and SNPs are called using
sophisticated statistical methods based on sequence and
alignment quality metrics.

The De Bruijn graph as a data-structure for
identifying variants
Recently, a new model that is predominantly based on De
Bruijn graphs, has emerged that removes the need for a
reference genome and uses comparisons of the raw
sequence directly. De Bruijn graphs are directed graphs of
overlapping symbols that are well suited to representing
ordered relationships between same length sequences,
such as sub-sequences of sequence reads (see Figure 1).
De Bruijn graphs have proven to be of great utility as the
underlying data model over which almost all de novo
assembly algorithms designed to use short read data have
been implemented. Some examples of these tools are
Velvet [1], ABySS [2], Euler [3], SOAPdenovo [4] and ALL-
PATHS [5]. In the majority of these assembly tools the De
Bruijn graph is implemented as an internal data structure
that represents a network in which the linked entities are k-
mers from the sub-sequences of sequence reads and links
are made between k-mers that overlap by k-1 with a single
nucleotide overhang (in some implementations the k-mer
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is the link, rather than the entity). In a situation with no
read errors and with k long enough to include the longest
repeat in a single k-mer then it is theoretically possible to
reconstruct the genome by following from k-mer to k-mer
along the edges, passing through each k-mer only once.
Since sequencing data do contain errors and genomic
repeats can be very long (many times longer than fre-
quently used read length, let alone the length of k used)
then the read errors can cause dead ends in the path that
terminate extension of the contig, repeats in the genome
can cause cycles in the graph. True genetic variation will
also cause these sub-structures. The different ways in
which the De Bruijn graph based assembly programs get
around these problems, essentially how they throw out var-
iation-like structure in the graph, is what separates them
and is the area on which assembler research is currently
focussed. By focussing on these structures, rather than
throwing them away, we can identify variation directly
from the graph of k-mers. The basic distinct structure that
indicates the presence of a SNP is described as a ‘bubble’
(see Figure 2). A bubble is caused by a single nucleotide dif-
ference at the end of two k-mers that causes a closing bifur-
cation within the graph such that each path around the
bubble indicates a different allele. SNPs can be identified by
searching the De Bruijn graph for these bubble structures.
These bubbles may also have long leading or trailing paths
of nucleotides, meaning SNPs can be embedded in long
contigs.

Limitations of short-read alignment based variant
calling
With current tools the SNP content of whole genomes of
many organisms can be compared very widely in just
hours and the differences between them catalogued almost
as a matter of course. As such we have vast new horizons
of genetic variation to explore. The new vistas offered by
advances in sequencing are not as broad as they might at
first seem and there are significant disadvantages to the
usual SNP- by-alignment approach.

A typical SNP and INDEL calling pipeline based on
alignment to a reference is restricted by the reference.
Generally, deletions and only small variations of that cano-
nical sequence can be found whereas larger structural
rearrangements, such as inversions or large insertions can-
not be, without significant further analysis, such as reas-
sembly of the genome or any non-mapping reads. The
reads are too small to show these within themselves and
any mate-pair orientation or read insert size information
that points towards this will often be rejected since it does
not fit in with the a priori quality parameters of the align-
ment pipeline. As a consequence sequence reads from
such areas are rejected and the regions cannot be discov-
ered. A reference-free de novo assembly approach can
discover small changes like these as new or sample depen-
dent sections in the graph. Reference-free methods are not
the only approach and a number of techniques incorporat-
ing reference-based mapping have also been published
that seek to identify more complex structural variations
through additional algorithmic layers built on top of
standard mapping tools such as BWA [6-8].
Multiple recent studies are now suggesting that an

individual’s genomes may be much more mosaic-like
than previously thought [9] and that important variations
may be a result of larger structural changes rather than
simply substitutions in the sequence. A reference-free
model allows us to find such variations as a series of por-
tions of the graph apparent in only one or a few samples.
Such approaches also offer greater power to identify rarer
events, for example in comparisons of parental and child
genomes and exomes, due to the algorithms giving less
reliance to simple coverage based metrics.
Many scientists work with non-model organisms that

lack an assembled reference genome, so when work that
aims to identify variation between samples a typical work-
flow is to build a working reference genome. Completed
or even relatively good drafts are time consuming and
expensive to build from next generation sequencing
technologies and as the genome sequence is only a means

Figure 1 De Bruin graphs constructed from overlapping k-mers. De Bruijn graphs are networks of short overlapping sub-sequences of reads
of length k. Typically, k-mers are set as the nodes in the graph and links are drawn between k-mers that have overlap of length k - 1, that is
they overhang each other by just one nucleotide.
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to an end in these cases then often primary contigs or
first-pass scaffolds will be used. Ultimately, this can be of
detriment to the final aim as poor quality and incomplete
reference means that read alignment can be badly sub-
optimal and generate many false positives or miss much of
the variation. There are systematic errors that occur in
alignment-based SNP detection that rely particularly on
reference genome quality and the alignment parameters:
three valid SNPs, equally-spaced in the read, can mean no
SNPs found at all if the analysis specifies a two mismatch
cutoff per read. A reference-free method that captures all
information from the reads can potentially avoid the
sequence problems of an error-prone early draft genome
and reduce expense from the time and effort required to
create one and therefore potentially maximise the power
of variant calling.
Metagenomic data provide an even greater challenge

to the task of SNP calling. Samples typically consist of a
mixture of genomes at widely varying abundance levels.
Even with extremely deep sequencing, the genomes of
some species will be incomplete in the read set. The dif-
ficulty of estimating read depth, combined with the like-
lihood that many of the genomes will be from closely
related species makes SNP calling based on depth extre-
mely problematic. Thus, reference-free algorithms that
take account of local graph topology or locally derived
coverage statistics have the potential to produce results
where a standard alignment based approach would fail.
Data storage and archiving is a major problem for

alignment based methods of SNP calling. The major
recording method for alignments is the SAM format, a
record-per-alignment format whose file size increases

with the number of reads that have been used in the align-
ment. Although clever compression and indexing to BAM
format and others [10] alleviates some of the pain, the sto-
rage of alignment data for many samples consumes large
amounts of expensive disk-space, takes a long time to
move across networks for processing or sharing, and
requires that storage continually expands as new samples
are added. As these files can be many gigabytes in size for
individual samples, it is not hard to see how a medical
centre trying to deal with many hundreds of patients data
in a clinical diagnostic setting would perhaps struggle to
keep up with demands on that data. Nor is it hard to see
how a population genomics study would need to rely on
massive amounts of storage for its many data sets, thereby
limiting the sample that could actually be taken and the
science that could be done. Using a De Bruijn graph to
hold sequence information can potentially be much more
compact than the conventional per-read alignment in
BAM files since each k-mer of the original sequence need
only be represented once. Per sample counts of occurence
of that k-mer are recorded and the structure of the graph
encoded. New k-mers not seen in previous samples
increase the size of the files more substantially as they,
their counts and the changes to the graph structure must
be recorded, but the overall growth is many times less
than that taken up by per-alignment storage methods. A
significant disadvantage of the De Bruijn graph approaches
developed so far is that individual read information is lost
in the preparation of the graph. Scientists still like to be
able to check each read manually when calling SNPs,
often to convince themselves of the quality of the calls and
rule out obvious errors in SNP calling in a very ad hoc

Figure 2 Bubble structures formed in De Bruijn graphs by SNPs. Bubble structures form as the result of a divergence in sequence by one
nucleotide, initially at the end of a k-mer, that then moves backwards at each progressive node, allowing for a close of the two paths at the
end. Colouring the edges in the graph according to sample provenance helps identify inter-sample SNPs.
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manner, reads cannot yet be reconstituted from De Bruijn
graphs as they can from BAM alignments so a dual storage
is needed. Although the cost of sequencing has stopped
declining at the rate it has done over the last few years, the
low cost of the actual sequence is still a major attraction to
laboratories interested in these sorts of experiments. The
cost of analysis and storage of data is much more often
overlooked and constitutes a substantial investment too.
While it is true that for alignment-based SNP detection it
is arguable that we need only store BAM files for as long
as it takes to calculate a result and that final output can be
stored more efficiently than the reads, such an approach
precludes the possibility of truly novel discovery that the
De Bruijn graph approach makes possible and is also not
amenable to easy re-analysis.
Although being able to call SNPs and other variants

without a reference is very useful, when a reference is
available it can add much to analyses using these sys-
tems as it can provide a very useable guide set of
k-mers that SNP finding without losing any of the
advantages of the reference-free model.

Strategies for identifying variants from the
structure of a De Bruijn graph
Depth-first
Iqbal et al. produced the first methods for detecting var-
iants and distinguishing populations or individuals by
finding alleles with the use of a differential ‘colouring’
technique on the graph [11]. A key component of their
strategy is to add a nominal colour to the k-mers that
come from each sample so that uniquely ‘coloured’ seg-
ments in the graph then represent regions unique to one
sample, naturally this approach is well suited to describ-
ing insertions or deletions as well as SNPs. Variant iden-
tification from a De Bruijn graph relies on finding the
structures that correspond to different classes of variant.
Since the SNPs manifest as bubble structures within the
graph, one way of finding these structures is to use a
graph traversal algorithm, such as the clean bubble caller
employed in Iqbal et al., and the more computationally
intensive depth-first search method in Leggett et al. [12].
These algorithms proceed by marking the nodes in the
graph that have at least two edges departing from them
as starting points and following nodes sequentially (graph
walking) until a node with at least two edges entering it
is reached. Two such paths from the same origin to the
same destination, with different colours delineate a
potential bubble and therefore SNP between samples
(Figure 2). A complication occurs when the paths split
again before they can resolve, resulting in an large
increase in search space and therefore compute time. In
the case of Iqbal et al., path complexity can be restricted
with the use of a reference, while the solution for Leggett
et al. is to limit the number of branching paths that are

followed with a maximum depth parameter and thereby
allow the algorithm to complete. A significant source of
false-positives for this method comes from the fact that
dual out-edges can be created by genome structure that
is not just a SNP- any pair of k-mers that differ by a sin-
gle end nucleotide causes the key bifurcation thus
repeats, inversions and other low-complexity genome
sequence can be problematic to differentiate from the
desired SNPs.
This approach is not just restricted to identifying

SNPs. Iqbal et al also showed the power of the approach
for finding INDELs and larger scale variants between
samples, though power of the algorithm is increased for
complex INDELs by using a reference.

Topological
Another graph structure, or topological method that has
appeared recently has taken a very strict approach to the
definition of the bubble structures and therefore repre-
sents a potentially very effective SNP detection tool. In the
2k + 2 approach, bubbles are identified by decomposing
the De Bruijn graph to an undirected graph and then iden-
tifying bubbles as Eulerian and Hamiltonian cycles, i.e
paths in bubble sized subgraphs (2k) that visit each node
and edge just once on their way back to the starting node.
This method’s very precise description of a bubble means
that it has the potential to be extremely specific and gener-
ate highly accurate lists of SNPs from graph structure
alone (Younsi et al., unpublished) (2k + 2), however the
computational time required is great and sensitivity must
be compromised, the entire graph cannot be searched and
random start sites within the graph must be selected
repeatedly to prevent ample coverage, furthermore as
graph complexity increases the time to complete increases
badly too, rendering these approaches likely unsuitable for
metagenomics applications or situations were complete-
ness of SNP detection, rather than simpler marker selec-
tion is needed.

Microassembly
Peterlongo et al. [13] adopt a microassembly approach to
SNP detection. They begin by producing a tree of k-mers
for an input read set and then build bubble microassem-
blies (or ‘mouth’ structures in their terminology) based
on the k-mer set. The algorithm consists of first picking a
seed k-mer by choosing the k-mer with the lowest count
that occurs more in one set than another. A low count
k-mer is chosen to avoid repeat structures, while it his
hoped that a differing set count may be indicative of a
SNP. Having chosen a seed, the algorithm assumes that it
lies on one path through a SNP and then looks for an
opposite k-mer, one substitution different, which would
lie on another path through the bubble. If this can be
found in the k-mer tree, then a recursive algorithm builds
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paths left and right of each k-mer until they join up or no
k-mer can be found in the tree. Once a bubble has been
identified, it is checked for read coherence by checking
for coverage from at least two reads. The approach has a
significant memory saving and speed advantage over
techniques that build a complete De Bruijn graph, as the
initial tree structure does not include connectivity infor-
mation. However, the method does not handle heterozy-
gous SNPs and is limited to pairwise comparisons
for data sets containing more than two samples. An
improved version of the technique is currently being pre-
pared for publication that addresses some of these limita-
tions ([14] and R. Uricaru, pers. comm.).

Maximum likelihood methods
The Stacks tool developed by Catchen et al. [15] is
designed for restriction enzyme based sequencing proto-
cols such as RAD-Seq (Restriction site Associated
DNA), a technique designed to sample from the same
reduced and representational fraction of the genomes of
multiple individuals of a population [16,17]. The method
begins by generating ‘stacks’ of reads at particular loci,
which form because of the nature of the restriction
enzymes used. These stacks are then merged with
nearby stacks using either a de novo or a reference
based approach. SNPs are called from stacks using a sin-
gle-nucleotide, diploid maximum liklihood genotyping
algorithm designed for RAD-Seq data by Hohenlohe et
al. [18]. Related work by Dou et al. take this ML
method further, publishing what is described as an
improved maximum liklihood algorithm (iML) [19].
They note that in a Stacks experiment, short reads from
repetetive regions cluster together and are difficult to
distinguish, potentially resulting in false SNP calling.
They observe that the distribution of composite clusters
should show a repeating pattern corresponding to copy
number variations of the repeating elements. This is
modelled with a Poisson distribution and the model
combined with the Hohenlohe et al. ML algorithm to
exclude repetetive loci from SNP calling.

Contig based graphs
Approaches specifically targetted at metagenomic data
have been rare, due to the complexity of such datasets.
However Nijkamp et al. have recently published a tool
called MARYGOLD which aims to identify complex bub-
bles in and between metagenomic samples [20]. Their
approach is based on contig graphs rather than De Bruijn
graphs. In such graphs, the nodes represent contigs and
the edges represent reads that span connected contigs. In
metagenomic datasets, multiple edges indicate sequence
divergence of the same or related species and, as with De
Bruijn graphs, these edges typically reconverge forming
bubble structures. The MARYGOLD approach is to

identify these regions and collapse them to form contigs
representing multiple alleles. The contigs are output in a
graph structure that represents the multiple alleles and
output in Circos format is also supported.

Implementations
There are already a number of tools already available for
reference-free SNP calling (see Table 1). The most sig-
nificant tool yet implemented for reference free analysis
is Cortex - in which Iqbal et al implemented fast and
highly memory efficient data structures and algorithms
for general variant detection, and is the first implemen-
tation that makes use of explicitly coloured De Bruijn
graphs and incorporates a de novo assembly algorithm.
Given a specific genome of interest, a variant-size and a
k-mer size, the power to detect variants was modelled,
interestingly the authors noted that without a reference,
it was difficult to distinguish read errors and repeats
from genuine SNPs. An extension module to Cortex
named Bubbleparse handles this problem explicitly by
incorporating extra information on genetic background
and applying a maximum likelihood heuristic to rank
candidate bubbles and thereby increase accuracy of SNP
calling so that false-postive calls can be reduced by five-
fold relative to the base algorithm, moving from 50 - 60
% false positive unranked to5 - 10 % after ranking. Bub-
bleparse can also select and prioritise SNPs that satisfy
prior information about genetic background, meaning
that it is particularly suited to the identification of SNPs
de novo from specific genetic crosses.
Pipelines have also been developed for the identifica-

tion of polymorphisms de novo and for tracking of
genetic loci from populations sequenced using the RAD
tag approach, a reduced representation sequencing pro-
cess, Stacks [15] is a comprehensive toolkit that uses a
non De Bruijn graph method and instead uses sample
categorisation (equivalent to colours in a De Bruijn
graph) to group reads from the tags that are decom-
posed into a k-mer list, or stack. A similarity graph
between stacks is created to reduce their number and to
merge stacks to give the potential SNP loci. A maximum

Table 1 de novo reference-free analysis software and
availability.

Cortex http://cortexassembler.sourceforge.net/

Bubbleparse https://github.com/richardmleggett/
bubbleparse

Bubbleparse
accessories

https://github.com/danmaclean/Bubble-Parse

2k +2 http://sourceforge.net/projects/twokplustwo/

NIKS http://sourceforge.net/projects/niks/

discoSnp http://colibread.inria.fr/discosnp/

Stacks http://creskolab.uoregon.edu/stacks/

MaryGold http://sourceforge.net/projects/metavar/
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likelihood consensus is used to infer the SNPs and
genetic cross data is incorporated to construct haplo-
types and create comprehensive, dense genetic maps.
The more recent NIKS, needle in a k stack, tool [21] is

a related but much more directed procedure that does
not aim to call a wide range of SNPs or produce a map.
Rather it aims to narrow down the SNPs that corre-
spond to mutations induced after a mutant screen and
sequencing from simple genetic back crosses, especially
those performed for purifying a mutation after EMS
mutagenesis of the model plant Arabidopsis thaliana.
Non-candidate SNPs are discarded by the method.
The ‘mouth’ work of Peterlongo et al resulted in the tool

kisSnp, which evolved into kisSnp2 and is now part of dis-
coSnp [14,22]. discoSnp combines the SNP predictions
from kisSnp2 with a second module which computes
mean coverage and average quality per read set of the
reads generating the SNP.

Impact of reference-free SNP calling on the
biomedical sciences
The impact of reference-free SNP calling promises to be
significant. Genetic studies in non-model organisms will be
facilitated greatly - with these methods it is now possible to
start assaying genetic variability across many samples with-
out the time and expense of building a reference genome.
This alone brings the technology to smaller groups with
fewer resources but also allows new questions to be asked
across wider phylogenetic groupings than is possible.
Although the reference free methods are just as sensitive to
nucleotide distance between samples and large genetic dis-
tances cannot be assayed any more effectively than with
alignment based methods, virtually any organism can be
compared against close relatives with just the sequencing
and much lower computational overhead. Since many of
the reference-free tools are based on the same De Bruijn
graph structure as de novo short read assemblers the SNP
calls generated can be embedded in a long species-specific
contig, an attribute that promises to have great use in the
field of plant breeding. Domesticated crop species typically
have very large, highly repetitive genomes that have been
refractory to attempts to generate completed genome
sequences. A key aim in plant breeding is to identify the
genetic variation that contributes to agronomically impor-
tant traits so that it can be selected effectively and intro-
duced into commercially important crop lines. Closely
related wild relatives of crop species, a great example is
wheat and related wild grasses, are reservoirs of genes that
can confer resistance to pathogens. By using reference-free
SNP approaches plant breeders can access a much wider
pool of resistance related genes since the alleles that associ-
ate with resistance in some individuals or populations can
be assayed much more quickly. The ability to generate con-
tigs with trait linked SNPs embedded means standard tools

like BLAST can be used to identify the candidate function
of the gene from which that contig arose, even when no
specific genetic resources are available.
Application of reference-free SNP detection methods

and data structures could help to resolve the data sto-
rage and access issues associated with alignment-based
methods meaning that true genome wide SNP and var-
iant searches can be more easily commoditised for the
medical and clinical markets and therefore be a crucial
element in the deployment of personal genomics based
medicine. Plummeting sequence prices are starting to
make individual personal genome sequencing a diagnos-
tic reality. The small data overhead incurred for each
new sample sequenced means much more information
can be stored for similar cost which brings new diagnos-
tic and research possibilities much closer. Being able to
work with sequence regions not present in the available
reference genomes and the SNPs in those regions means
that new associations between disease and genetic varia-
tions can be collected, and the reference free framework
is fit to make this research possible directly from the
clinic. Variant detection absolutely de novo like this
means that the complex mutations that make up the
genomic pathologies of cancers, for example, can be
uncovered much more easily for each patient and case
and the changes cross-referenced with the patients own
individual reference. Furthermore the recent realisations
that our genomes vary even within us, perhaps from tis-
sue to tissue is much more tractable in the reference-
free framework.
We are learning that individual organisms genomes

can be incredibly diverse and capturing that diversity
will become vital in future research. The reference-free
SNP detection methods are among the first steps in a
new approach that will help relieve us from the limiting
prior information in the reference genome.
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