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Abstract

Background: Proteomics research is enabled with the high-throughput technologies, but our ability to identify
expressed proteome is limited in small samples. The coverage and consistency of proteome expression are critical
problems in proteomics. Here, we propose pathway analysis and combination of microproteomics and
transcriptomics analyses to improve mass-spectrometry protein identification from small size samples.

Results: Multiple proteomics runs using MCF-7 cell line detected 4,957 expressed proteins. About 80% of expressed
proteins were present in MCF-7 transcripts data; highly expressed transcripts are more likely to have expressed
proteins. Approximately 1,000 proteins were detected in each run of the small sample proteomics. These proteins
were mapped to gene symbols and compared with gene sets representing canonical pathways, more than 4,000
genes were extracted from the enriched gene sets. The identified canonical pathways were largely overlapping
between individual runs. Of identified pathways 182 were shared between three individual small sample runs.

Conclusions: Current technologies enable us to directly 10% of expressed proteomes from small sample comprising
as few as 50 cells. We used knowledge-based approaches to elucidate the missing proteome that can be verified by
targeted proteomics. This knowledge-based approach includes pathway analysis and combination of gene expression
and protein expression data for target prioritization. Genes present in both the enriched gene sets (canonical
pathways collection) and in small sample proteomics data correspond to approximately 50% of expressed proteomes
in larger sample proteomics data. In addition, 90% of targets from canonical pathways were estimated to be
expressed. The comparison of proteomics and transcriptomics data, suggests that highly expressed transcripts have

with the expressed transcripts.

high probability of protein expression. However, approximately 10% of expressed proteins could not be matched

Background
Proteomics is the large-scale study of proteins expressed in
an organism, tissues, or cells.

Protein expression changes over time in response to var-
ious stimuli or to change of conditions. Cellular proteome
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is a set of proteins expressed in a specific cell type, across
various subcellular locations, whereas human proteome is
a set of proteins encoded by some 25,000 protein-coding
genes of human genome [1]. High-throughput sequencing
has shown that more than 95% of human protein coding
genes produce splice variant transcripts [2]. More than
260,000 protein variants resulting from alternative splicing
have been annotated to date [3]. A wide variety of
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post-translational modifications (PTM) occur in proteins,
often changing their structure and function. PTMs include
phosphorylation, ubiquitination, glycosylation, methyla-
tion, acetylation, sulfation, oxidation, and nitrosylation,
among many others [4]. A widely accepted estimate is that
more than 2 million protein variants make the posttrans-
lated human proteome in any human individual [5]. This
estimate excludes natural recombinant proteins such as
T cell receptors and antibodies and the majority of PTMs.

High-throughput technologies

Molecular profiling of samples representing healthy or dis-
eased states, pre- and postintervention, or time series dur-
ing disease progression is important research topic in
biomedicine. Such profiling supports the discovery and
evaluation of cellular-level pathways of disease progres-
sion, characterization of biomarkers, identification of ther-
apeutic targets, and their applications for improved
diagnosis, prognosis, monitoring, and selection of thera-
pies. This quest is supported by the emerging technologies
of genomics, transcriptomics, and proteomics. Genomics
technologies help identify variation of human genome and
its role in disease associations, but they do not provide
information about availability of transcripts (RNA expres-
sion). Transcriptomics studies the RNA transcribed from a
particular genome under various conditions. Transcrip-
tomic studies link the analysis of genome and proteome
because they provide critical information about gene regu-
lation and also about availability of mRNA for protein
translation. Principal strengths of genomics and transcrip-
tomics lay in the ability to amplify genetic material for
extraction of genetic and transcript profiles even from a
single cell [6]. On the contrary, proteomics profiling
requires utilization of larger numbers of cells. Identifica-
tion of proteome from a single cell is currently available
for the analysis of cell lines [7] as it allows for a very lim-
ited proteome analysis [8]. Currently a single cell pro-
teome analysis is not a viable option for clinical
applications. Larger samples yield better proteome cover-
age, while smaller samples yield progressively smaller cov-
erage of the expressed proteome. On the other hand,
transcriptome analysis provides limited information: pat-
terns of changes in gene expression do not necessarily cor-
relate well with patterns of changes in protein expression
[9]. The limited correlation of transcript and protein
expression is particularly notable in the study of human
clinical samples. The reasons for such discrepancies
include errors in measurement, noise in regulation of gene
expression, presence of posttranslational modifications,
variation in gene-specific regulation of translation, and
varying dynamics of protein degradation under different
conditions [10]. Furthermore, genomic and transcriptomic
studies cannot provide information on PTMs, and
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quantity of proteins. About a third of transcripts, although
expressed, do not get translated into proteins [11] and the
lifetime of proteins can differ by orders of magnitude even
for proteins that have similar translation rates [9]. Because
of their limitations, genomics, transcriptomics, and proteo-
mics complement each other - each of them provides a
valuable but incomplete insight into molecular profiles
that characterize healthy and diseased states represented
by the studied sample.

To achieve clinical goals of proteomics, we need to tar-
get samples that often comprise extremely low numbers of
cells. These include, among others, circulating tumor cells
[12,13], circulating endothelial cells [14-16], samples col-
lected using fine needle aspirates [17], and samples col-
lected by laser capture microdissection [18]. Limited
numbers of cells are available from samples that contain
mixed normal and transformed (tumor) cells, which is a
particular problem in tissue samples with early stage can-
cer [19]. The latest microproteomics methods enable pro-
teome profiling from tiny samples (less than 1,000 cells)
and are thus suitable for moving the frontier of clinical
applications. Such proteome studies can yield a few thou-
sand proteins [20,21], which was confirmed in this report.
Deep proteomics can yield more than 10,000 proteins
from cell line samples [7], but the number of proteins
identifiable from clinical samples is usually much smaller.

Technological advances

Significant improvements in instrumentation (sensitivity,
throughput, resolution of separation) [9], sample proces-
sing [11], and bioinformatics [22,23] help comprehensive
proteome profiling. Nevertheless, proteome profiling suf-
fers from problems of incomplete data coverage and
inconsistencies between individual runs [24]. While this
problem is less pronounced in protein identification using
large samples derived from cell lines where vast majority
of proteins are expressed ubiquitously [11,25] this problem
is pronounced when small samples are used. Goh et al.
[24] have argued that biological networks analysis provides
robust models and interpretations that increase coverage
while the analysis of protein interaction groups and biolo-
gical pathways help improve coverage of proteins and
complement quantitative proteomics data. They defined
biological networks as groups of genes or proteins that are
linked through a shared set of functional relationships and
pathways as well-described biological networks involved in
metabolic and regulatory processes. Several methods for
utilization of biological networks for improvement of iden-
tification (coverage) have been described, including analy-
sis of overlaps, clique enrichment analysis, proteomics
expansion pipeline, Maxlink, and shortest-path methods
(reviewed in [24]). The improvement of inconsistencies
between different runs can be pursued using overlap
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analysis, direct group analysis, and network-based analysis
(reviewed in [24]). Gene expression profiles and pathway
analysis can be used to define candidates for targeted pro-
teomics [26] discovery and improve identification sensitiv-
ity of expressed proteins. Targeted proteomics is more
sensitive than unbiased screening - the sensitivity of speci-
fic protein identification using targeted proteomics can be
an order of magnitude larger than sensitivity of unbiased
screening [27].

Here, we compared newly measured MCF-7 proteomics
data from several small-size samples. The detected pro-
teins were mapped to standardized gene names. The target
proteins were predicted to be present in samples using
enriched gene sets among canonical pathways collections
in MSigDB [28]. In addition, the expanded gene sets were
compared to the transcriptomics data extracted from the
literature. We benchmarked the consistency and coverage
of proteomes identified in different small-sample runs and
defined a strategy for proteome profiling and quantitation
using the analysis of expressed canonical pathways.

Methods

The overall design of this study is shown in Figure 1. Small
sample, as few as 50-cell, and larger sample (500, 1000,
2500, and 5000-cell) proteomics data from MCF-7, an
estrogen receptor positive (ER+) breast cancer cell line
(ATCC number: HTB-22) [29] were compared to gene sets
from MSigDB and to transcriptomics data. The enrich-
ment of detected targets among gene sets from canonical
pathways (CP collection in MSigDB) collection were calcu-
lated. The genes from enriched gene sets were used for
identification and assessment of possible protein expres-
sion in the sample. The detected targets and their enriched
gene sets were compared to MCF-7 transcriptomics data.
The initial validation was performed by comparison to the
partial proteome estimated to cover 50% of expressed pro-
teins in runs comprising as much as 5,000 cells.

Data set acquisition

Proteomics data

107 of MCF-7 human breast adenocarcinoma cells (ATCC,
Manassas, VA) were rinsed twice with 1 mL volumes of
DPBS and lysed with sonication on ice in 8 M urea, 2 M
thiourea, 5 mM TCEP in 25 mM ammonium bicarbonate
(ABC), pH 8.4 for 15 min. Extracted proteins were pro-
cessed using a previously described protocol[30]. In brief,
the extract was reduced in 5 mM TCEP for 30 min at
room temperature and alkylated in 20 mM iodoacetamide
(IAA) for 30 min in the darkness. Prior to digestion, the
resulting lysate was diluted 10-fold with 25 mM ABC, pH
8.4 to bring the concentrations of urea and thiourea to 0.8
M and 0.2 M, respectively. Protein digestion was per-
formed with endoproteinase Lys-C (sequencing grade, Pro-
mega, Madison, WI) for 4h at an enzyme/substrate (E:S) of
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Figure 1 The overall design of the study. This study used three
data sets: proteomics data, gene sets from MSigDB, and gene
expression data. Proteomics data sets utilized data from small
samples. This study focused on developing methods for elucidation
of proteins that are present in actual samples from small sample
data.

approximately 1:50 and followed by an addition of sequen-
cing grade trypsin (Promega) at an E:S ratio of approxi-
mately 1:50 and overnight digestion in a shaker at 37 °C.
The total volume of the resulting digest was 1000 pL.

The monolithic microSPE and analytical porous layer
open tubular (PLOT) columns were polymerized as
described in [31]. For LC separation, 5 cm of 50 um i.d.
PS-DVB monolithic SPE precolumn was connected with a
4.2 m PLOT using a PicoClear Tee (NewObjective,
Woburn MA). Digested lysates were first loaded on the
monolithic SPE precolumn at a flow rate of 200 nL/min
using a NCS 3500 RS pump (Dionex, Sunnyvale, CA).
Then, entrapped and desalted digests were eluted off the
precolumn and separated on the PLOT column using a
linear solvent gradient at a 20 nL/min flow rate. The
separation was performed using a 4-hour gradient of 0%-
27% mobile phase B (mobile phase A: 0.1% FA in water;
mobile phase B, 0.1% FA in ACN). Nano ESI spray was
enabled using an electrospray voltage of 1.1 kV and a dis-
tal coated tip (NewObjective) butt-to-butt connected with
an outlet of the PLOT column via a zero dead volume
PicoClear union (New Objective). Ion transfer tube tem-
perature was set for 275 °C.

MS detection was performed using a top 12 MS/MS
data-dependent scans on the Q Exactive (Thermo Fisher
Scientific) mass spectrometer. Full MS scans were
acquired over the range of m/z 380-1600 Th with resolu-
tion set to 70,000 and an automatic gain control (AGC)
target set to 3x10°. The 12 most intense parent ions
excluding singly charged ions and ions with unassigned
charges were selected for higer-energy collisional dissocia-
tion (HCD) fragmentation with a normalized collision
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energy (NCE) set to 28%. The MS/MS spectra were ana-
lyzed in the Orbitrap mass analyzer using resolution set to
17,500 and AGC set to 1x10°. The isolation window was
set to 2 m/z and dynamic exclusion was set to 60 s. The
maximum ion injection time was set to 20 ms for full MS
scans and 120 ms for MS/MS.

LC-MS/MS raw data files were analyzed using Proteome
Discoverer 1.4 (Thermo Fisher Scientific) by two search
engines Sequest HT (Thermo) and Mascot (Matrix
Science) against the UniProt human database (2013 Jan
version, containing 139905 sequences).

Carbamidomethylation (57.021 Da was set as a fixed
modification and N-terminal acetylation, methionine
oxidation and deamidation (NQ) were set as variable
modifications. The precursor peptide mass tolerance
was set to 10 ppm and fragment tolerance to 0.05 Da.
The results of the searches were combined and validated
using the Percolator module with filters set to high pep-
tide identification confidence to achieve a false discovery
rate (FDR) <1% for SEQUEST and <0.5% for Mascot.
The proteomics data sets used in this study include pro-
teome profiles from MCF-7 cell line. Proteins were iden-
tified from three 240 min gradient runs comprising 50
cells each. These results were compared to data sets
comprising triplicate runs with samples comprising 100,
500, 1000, and 5000 MCE-7 cells.

Transcriptomics data

Gene expression data of MCF-7 cells (GEO accession:
GSE21946) studied in Patacsil et al.’s work [32] were
downloaded from Gene Expression Omnibus (GEO) [33].
The platform used in this study was Affymetrix Human
Genome U133A 2.0 Array. Gene symbols were extracted
from the platform data. The data from the Patacsil study
was selected because it has both treated and control sam-
ples that show good reproducibility of results.

There were 8 samples in the array data and the expres-
sion levels of these 8 samples were averaged for each
probe. For the genes with multiple probes, the highest
average measurement was kept. The variation of gene
expression between samples was minimal and we consider
these data highly reproducible. For example, 97.7% of all
transcripts showed the ratio of signals across 8 samples
(max-min)/average at 0.2 (+10%) and 99.6% at 0.3 (£15%).
3) Gene sets/pathways data

Canonical pathways used in this study were downloaded
from MSigDB 3.1 [28]. There are 1452 gene sets included
in this canonical pathways collection (CP collection).
These gene sets represent well-described biological pro-
cesses compiled by domain experts, which include gene
sets derived mainly from BioCarta pathway database [34],
KEGG pathway database [35], and Reactome pathway
database [36]. These canonical pathways mainly include
metabolic and signalling pathways that are shared by all
cell types.
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Protein/gene pre-processing

cRAP proteins

The Common Repository of Adventitious Proteins [37]
include proteins used in proteomics experiments, con-
taminants, or proteins used as quantitation standards. Pro-
teins that were removed from proteomics data were:
ALBU_BOVIN, ALDOA_RABIT, CAH2_BOVIN, CASI_-
BOVIN, CAS2_BOVIN, DHE3_BOVIN, LYSC_LYSEN,
TRY1_BOVIN and TRYP_PIG.

Proteins without gene annotation

The gene symbols were extracted from the proteomics
data report. Proteins without gene annotation were
searched in UniProt [38,39] for their gene symbols, if
available.

HGNC Gene Nomenclature

The gene names/symbols in proteomics data, transcrip-
tomics data and gene sets in MSigDB are inconsistent in
many cases. To solve this problem, all the approved gene
symbols and their previous gene symbols/synonyms were
downloaded from the HUGO Gene Nomenclature Com-
mittee - HGNC [40] on 8" April, 2013. We screened all
genes in above datasets and all gene names/symbols were
mapped to the names approved by HUGO.

Overlapping genes between proteomics and
transcriptomics data

The genes names in the transcriptomics data were sorted
in descending order of their RNA expression levels. The
genes that were also detected in proteomics data were
marked as 1, while the others were marked as 0. Sliding
window of size 50 was applied here: the scores were added
up for every consecutive 50 genes on the list. This method
enables inspection of the overlaps between proteomics data
and the transcriptomics data and find out protein content
distribution relative to the transcript expression level.

Gene set enrichment analysis

Hypergeometric distribution was applied to calculate the
gene set enriched with proteins observed in 50-cell sam-
ples. For example, to investigate the gene set enrichment
of a group of protein set PS in gene set A, probability will
be calculated as:

()5
k n—~k
P(X=k)=
(=) N
n

where N is the number of genes in gene sets collections,
K is the number of genes in gene set A, n is the number of
proteins in PS, k is the number of proteins in PS that over-
lap with gene set A. The p-value of “if PS is enriched in A”

will be calculated by summing up the probability from P
(X=k) to P(X=n).
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>Gene set enrichment analysis was done for each run
of proteomics data from 50-cell samples and the gene
set used was CP collections. Gene sets with p-value
below 0.01 were kept for further analysis.

Verification of predicted genes

Genes in mapped gene set were compared to the
detected targets in each run and all detected targets in
proteomics data as well.

Results

Proteins/genes detected in proteomics data

Mass spectrometry proteomics analysis was performed in
experiments that used samples of 50-, 100-, 500-, 1500-,
and 5000-cell sample sizes. Each sample was run in tripli-
cate. The Common Repository of Adventitious Proteins
(cRAP) collects proteins that are commonly found in pro-
teomics experiments due to accidents or contamination of
protein samples and was used to eliminate these proteins.
After removing cRAP and duplicate proteins from the
lists, a total of 5,032 proteins were detected from the pro-
teomics data.

The detected protein names were mapped to the
approved gene symbols according to HGNC nomenclature
(referred to as the approved gene symbols in the following
text) [39], resulting in 4,957 identified and annotated pro-
teins. The numbers of proteins identified in individual runs
are shown in Figure 2. Larger samples yielded larger num-
bers of identified proteins, except for runs with 5,000-cell
samples. This decline is the artefact of saturation of specific
plot column [41] that was used this set of proteomics runs.

In three individual mass spectrometry runs with 50-cell
samples, there were 1170, 972, and 909 proteins that
could be mapped to the approved gene symbols. The
numbers of proteins within the “intersection”, “twice” (list
of proteins identified in at least two of three runs), and
“union” groups were 682, 995, and 1373 respectively.
Assuming that the expressed proteome comprises
approximately 10,000 expressed proteins [7], we can make
a rough estimate of proteome coverage from small sample
runs. The small sample runs (50-cell samples), therefore
yielded approximately 1,000 proteins representing 10% of
the expressed proteome, while total number of proteins
identified in all runs (50-, 100-, 500-, 1500-, and 5000-cell
samples) was close to 5,000 (4,957 identified and anno-
tated proteins) representing approximately 50% of
expressed proteome (Table 1).

Genes and their expression level in transcriptomics data

Transcriptomics data from the Patacsil study [32] con-
tained 13,187 unique transcripts that could be mapped to
the approved gene symbols. These non-redundant tran-
scripts were sorted from high to low expression ranging
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Figure 2 Numbers of proteins identified in individual
experiments and triplicate runs. The “intersection” stands for
proteins detected in all three runs, “twice” stands for proteins
identified in at least two of all three runs, while “union” stands for

proteins detected in any one run of all three runs.

from 14.48 to 2.80 units (Figure 3). We selected 6.00 units
as the tentative positive threshold.

Mapping of proteomics data onto transcriptomics data
The analysis of the overlap between proteomics and
transcriptomics data resulted in 3,989 proteins, repre-
senting 80.47% of the identified proteome. The remain-
ing 19.53% of identified proteome was not available for
transcript analysis (Table 1).

Cumulative analysis

From the cumulative result of protein presence in the
sorted transcript list (Figure 4), it can be seen that the
cumulative sum initially rises quickly and then plateaus
as the level of RNA expression decreases.

Sliding window analysis

To assess the relationship of transcript expression and
presence of expressed proteins we analysed the presence
of expressed proteins in the sliding window of 50 tran-
scripts sorted from the highest to the lowest expression
level. Transcripts that had high expression level were
more likely to have their corresponding protein expressed
ranging from 98-100% (transcript expression level >14) to
approximately 10% (transcript expression level <6) (Figure
4). The protein presence numbers within the 50-member
transcript sliding window drops linearly from the highest
expression transcripts to become stable after around
~7,500 transcripts in the sorted list. This corresponds well
with the selected threshold for the positives of transcript
expression (26 units with 7,757 individual transcripts were
deemed positive).

Enrichment of proteomics data in expression-level-
grouped transcriptomics data

Given the results of concordance of protein and transcript
expression shown in Figure 3, RNA expression level 6.0
was chosen as a threshold to cluster genes in transcrip-
tomics data: higher expression group (genes with highest
RNA expression level above or equal to 6.0) and lower
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Table 1 Enrichment of proteomics data in expression level-grouped transcriptomics data.

Threshold Number of proteins Number of % of proteins mapped to transcript % of all protein detected (within
transcripts mapped data 4,957)

>2.8 13,187 3,989 27.14% 80.47%

>6.0 7,757 3,579 46.14% 72.20%

<6.0 5430 410 7.55% 827%

Absent NA 968 NA 19.52% transcript set

from

RNA expression level 2.8 and 6.0 were used as thresholds.

expression group (genes with highest RNA expression
level below 6.0).

The gene presence of proteomics data were further ana-
lysed in these two expression groups (Table 1). Proteomics
data in genes with higher RNA expression level (greater
than or equal to 6.0) is obviously more enriched than
those in genes with lower RNA expression level.

Mapping of proteins from small samples to canonical
pathways (CP collections)
For each single run using a 50-cell sample, all proteins that
could be mapped to the approved gene symbols were
compared to all the gene sets in canonical pathway collec-
tions. Gene sets in the canonical pathways collection
enriched with the expressed proteins detected by mass
spectrometry were mapped, and all genes present in these
gene sets were extracted. The detailed results are summar-
ized in Table 2. The numbers of mapped gene sets are
similar across three runs indicating that similar canonical
pathways were deduced from protein expression results of
individual runs. Among the 225, 227 and 221 gene sets
mapped from “intersection” Runs 1, 2 and 3, 192 were
identical, representing common canonical pathways
shared between three runs. For the “twice” and “union”
sets, larger number of canonical pathways were mapped
resulting in a larger number of mapped genes.

The number of proteins in the smallest set, comprising
proteins that were detected in each of the three runs, was
682 constituting 58.5%, 70.2% and 75.0% of proteins
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Figure 3 The sorted RNA expression level in transcriptomics

data. In total, 13,187 genes were sorted from highest to lowest

according to their respective highest RNA expression level.

detected in the Runs 1, 2, and 3. The number of gene sets
identified from each small sample proteomic run is very
similar, 221-227, and they are similar to the “twice” group.
Intersection yields the smallest number of mapped path-
ways, 190, while “union” group yielded 244 gene sets.
These sets are largely overlapping indicating the subsets of
the same proteomes have been captured in each run.

Verification of mapped genes derived from small sample
From mapped genes to proteomics data

For the targets derived from each single run of 50-cell pro-
teomics samples, 17.42%, 15.28% and 13.78% (737 of 4,231
in Run 1, 614 of 4,019 in Run 2, and 570 of 4,137 in Run
3) were directly detected (Figure 5). Mapping the genes
using union of the three runs, resulted in capturing of
approximately 20% of expressed proteome. Approximately
45% of target genes identified by pathway analysis were
present in the detected proteome. Assuming that the
detected proteome represents 50% of actual proteome, we
deduced that 90% of the proposed target genes identified
from CPs (approximately 3,800 genes) were be expressed
as protein products in the actual proteome. This hypoth-
esis will need to be validated experimentally. We expect
that the analysis of canonical pathways, therefore, will
identify about 45% of the total proteome present in the
samples. These canonical pathways mainly include meta-
bolic and signalling pathways that are shared by all cell
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Figure 4 Mapping of detected proteins in the transcriptomics
data in MCF-7 samples. The X-axis represents the number of
transcripts sorted from the highest to the lowest expression level.
The red line represents cumulative sum of identified proteins within
the transcriptomics data. The blue line represents the number of
proteins present as transcripts within the 50-member sliding
window of transcript data.
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Table 2 Gene sets mapping from CP collections.
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# proteins/genes detected exist in CP' # mapped gene sets # genes in mapped gene sets

Run 1 1,170 864 225 4,231
Run 2 972 728 227 4,019
Run 3 909 677 221 4137
Common pathways 682 536 192 3,828
for 3 runs

Intersection 682 536 190 3,561
Twice 996 753 229 4,119
Union 1,373 980 244 4,273

“Gene sets” represent genes defined in CPs. The number of genes represents the sum of different genes across mapped CP.
! Not all proteins detected in 50-cell sample are present in the gene sets within the CP collection. The number of proteins found in the CP collections is shown

here.

types. The remaining 55% of actual proteome will include
proteins that do not have defined transcripts, or those that
are defined by tissue-, process-, or disease-specific
pathways.

From mapped genes to transcriptomics data
Approximately 83% of the mapped genes from CPs from
any single run of 50-cell samples can be found in tran-
scriptomics data (Table 3). Furthermore, of the proteins
detected in any of the proteomic runs from our data, 80%
can be found in transcriptomics data. The proportion of
detected proteins that can be found in transcriptomic
data, therefore, is similar for small and larger samples.
However the overlap between the mapped genes and
detected proteins is only 45% (e.g. 1915 mapped genes
from run 1 were present in the set of all detected proteins,
see Figure 5). Our results might be biased since mapped

i In each single run of 50-cell sample
Inall 3 runs from 50-cell sample
s In all proteomic runs

1915 52 1876 1881 1943
1738 P

73525 804 812 768 812 8229

= 614 570 640§

J l‘ | ] 4 QI‘ u

N A 3 N
,‘}0 o \"5‘\ (,‘\.*\\ .\\\\ e
N » N 5 0 v
& o A & & K
o ~ g

& & & & <& &

&
&

Figure 5 The numbers of mapped genes (from enriched gene
sets in canonical pathway collection) generated from 50-cell
proteomics data. The six groups of bars represent the result of
each run in 50-cell sample, intersection of three runs, at least shown
in two runs, and union of three runs. The numbers in brackets after
group name are the numbers of mapped genes in enriched gene
sets derived from detected targets in six groups. In each group, the
bars represent the number of overlapping genes between mapped
genes and 1) detected targets in respective group(blue bars), 2)
detected targets in all three runs of 50-cell sample (green bars), and
3) detected targets in all proteomics runs, including 100-, 500-,
1500-, 5000-cells samples (purple bars).

genes are members of the canonical pathways, while this
bias does not exist in protein detection. Furthermore, tran-
scriptome profiling was done in a different study and,
although transcript and protein expression of MCF-7 cell
line is expected to be relatively stable, our results are likely
to capture the study-specific differences.

The mapping data was further compared to the two
RNA expression groups >6.0 and <6.0 (Table 1). Looking
at data from run 1 in 50-cell sample for example, the
number of proteins detected in run 1, gene expression
data, and proteins detected in all proteomic runs were
compared (Figure 6). Only 2.48% (29 proteins in 1170)
that were detected in 50-cell run 1 have transcript expres-
sion of less than 6.0. Of all detected proteins, 8.27% (410
proteins in 4,957) have transcript expression of less than
6.0. This result is consistent with the sliding window ana-
lysis (see Figure 4) where approximately 10% (5 of 50) of
proteins were shown to have low RNA expression (the
horizontal part after first 7,500 transcripts). For mapped
proteins in Run 1, this proportion is 21.89% (926 proteins
from 4,231) indicating that some of the targets deduced
from CPs, possibly 10% of the total, do not have protein
product.

Alternatively, these differences may be attributed to dif-
ferences in samples used in transcriptomic and proteomic
experiments, but may also represent the products that are
part of canonical pathways that do not have protein
expression in the studied samples.

Discussion and conclusions
Small sample analysis of expressed proteome is critical for
many clinical samples since they represent points in time
for disease progression in individual patients. We used the
MCE-7 breast cancer cell line to benchmark the number
of proteins that can be detected by using microscale pro-
teomics and have developed strategies to increase the cov-
erage of protein detection.

Proteomics data suffer from problems of coverage and
consistency. The problem becomes worse as the sample
size diminishes. In this study, pathway analysis has been
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Table 3 The overlapping numbers of mapped genes from 50-cell sample, detected proteins in all proteomic runs to

transcriptomics data.

# mapped genes

Presence in transcriptomics data

Run 1
Run 2
Run 3
Intersection

50-cell sample

Twice
Union

4,231 3,519 (83.17%)
4,019 3,344 (83.20%)
4,137 3,437 (83.08%)
3,561 2,967 (83.32%)
4,119 3,423 (83.10%)
4,273 3,560 (83.31%)

# detected proteins

All proteomic runs

4,957 3,989 (80.50%)

confirmed as a useful method for improving protein iden-
tification in proteomics data. Approximately 1,000 pro-
teins were detected in each small sample run followed by
the identification of approximately 4,000 possible
expressed protein targets. The proteomics data from larger
samples experimentally validated approximately half of
these probable targets in this study. Comparing these
4,000 possible targets to transcriptomics data, more than
80% of targets are highly likely to be present, especially
enriched in the group of higher RNA expression. Our esti-
mate is that only 10% of predicted proteome by canonical
pathways may represent false positives. In addition, it
appears that the predicted proteomes based on each indi-
vidual run, intersection of proteins from three runs, or
union of proteins from all three runs will produce very
similar predicted proteomes. This indicates a remarkable
robustness of the method reported in this study.

Naming conventions and nomenclature raise a pro-
blem when processed data are derived from multiple
sources. It is also a problem when data are derived from
a single source at different time points because of the
changes and updates of gene and protein names. We

i # of detected proteins in run 1, 50-cell sample
# of mapped genes (from CP gene sets) from run 1, 50-cell sample
# of detected proteins in all proteomic runs
3579

2593

926 968

iid 712 l
3.%.1'1 55— | |

<6.0 (5430)

>=6.0 (7757) absent from transcripts

set

RNA expression level
Figure 6 The numbers of targets present in different RNA
expression level groups: detected proteins in 50-cell run 1
(blue bars), mapped genes from 50-cell run 1 (purple bars),
and detected proteins from all proteomic runs, including 100-,
500-, 1000-, 5000-cell samples (green bars). The overlap of the
above targets in higher RNA expression group, lower RNA
expression group, and absent from transcript set are shown
separately from left to right. The numbers in brackets after RNA
expression level groups represent the numbers of transcripts in
each group.

have used the standardized symbols and have mapped
proteomics, transcriptomics, and gene set (pathway)
data to the common list of HUGO gene symbols.
Approximately 20% of detected proteome could not be
mapped to the HUGO gene symbols because these pro-
teins either did not have corresponding gene symbols,
the names were ambiguous and could not be resolved,
or the products have been removed from the recent
database update as obsolete or redundant.

Proteomics technology has improved and we can
detect a significant proportion of the expressed pro-
teome from small samples, such as 50 cells samples.
However this detection initially amounts to only 10% of
the estimated total expressed proteome. Knowledge-
based approaches are needed to elucidate the likely pre-
sence of proteins that can be subsequently detected by
targeted proteomics. These KB-approaches include ana-
lysis of pathways and combination of gene expression
and protein expression data. Using meta-analysis, we
have shown that most of the proteins, perhaps 90%,
identified as members of canonical pathways - pathways
common for all cell types - are likely to be expressed as
proteins. These proteins represent approximately 50% of
the expressed proteome. The remaining proteins can be
elucidated by the analysis of tissue-, organ-, process-, or
disease-specific pathways. Furthermore, targets that are
represented by highly expressed transcripts are more
likely to be expressed as proteins (98-100% for tran-
scripts that show highest expression levels). Approxi-
mately 10% of transcripts that show low or no
expression have their proteins expressed, as detected in
the proteomics runs. This may include a number of
false positives due to different sources used in this study
for the analysis of transcriptome and proteome, but it is
highly likely that the majority of expressed proteins are
real.

In summary, proteomics detection of protein expression
from small samples can be enriched by pathway analysis
followed by targeted proteomics. Furthermore, gene
expression data can be used for prioritization of potential
targets for deep proteomics screening. This study has pro-
vided benchmark results that will facilitate proteogenomics



Sun et al. BMC Genomics 2014, 15(Suppl 9):S1
http://www.biomedcentral.com/1471-2164/15/S9/S1

studies for detecting expressed proteomes from samples
comprising small numbers of cells.
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