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Abstract

Background: Non-small cell lung cancer (NSCLC) remains lethal despite the development of numerous drug therapy
technologies. About 85% to 90% of lung cancers are NSCLC and the 5-year survival rate is at best still below 50%.
Thus, it is important to find drugable target genes for NSCLC to develop an effective therapy for NSCLC.

Results: Integrated analysis of publically available gene expression and promoter methylation patterns of two
highly aggressive NSCLC cell lines generated by in vivo selection was performed. We selected eleven critical genes
that may mediate metastasis using recently proposed principal component analysis based unsupervised feature
extraction. The eleven selected genes were significantly related to cancer diagnosis. The tertiary protein structure of
the selected genes was inferred by Full Automatic Modeling System, a profile-based protein structure inference
software, to determine protein functions and to specify genes that could be potential drug targets.

Conclusions: We identified eleven potentially critical genes that may mediate NSCLC metastasis using bioinformatic
analysis of publically available data sets. These genes are potential target genes for the therapy of NSCLC. Among the
eleven genes, TINAGL1 and B3GALNT1 are possible candidates for drug compounds that inhibit their gene
expression.

Background
Currently, there is no effective therapy for non-small cell
lung cancer (NSCLC), thus NSCLC remains lethal [1].
The 5-year survival rate is at best still below 50%. In addi-
tion, NSCLC consists of several subtypes that require dis-
tinct therapies. Thus, from both a diagnosis and therapy
point of view, the identification of genes critical to NSCLC
is urgent. Few studies have identified NSCLC critical
genes. Fawdar et al [2] recently found that mutations in
FGFR4, MAO3K and PAK5 have critical roles in lung can-
cer progression. Li et al [3] also recently identified EML4-
ALK fusion gene and EGFR and KRAS gene mutations
were associated with NSCLC. Takeuchi et al [4] also

reported that RET, ROS1 and ALK gene fusions were
observed in lung cancer. However, it is likely that other
critical gene candidates for NSCLC exist.
In this study, we attempted to identify new critical can-

didate genes important for NSCLC using recently pro-
posed principal component (PCA) based unsupervised
feature extraction (FE) mediated integrated analysis [5-8]
of publically available promoter methylation and gene
expression patterns of two NSCLC cell lines with and
without enhanced metastasis ability.
In contrast to the standard usage of PCA, PCA based

unsupervised FE does not embed samples but features
(that is, probes in this study) into a low dimensional space.
Then, features identified as outliers are extracted (for
details, see method). Empirically this methodology was
successful and identified biologically significant features
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[5-8] even when other conventional methods tested in the
current study failed.
Most of the genes identified in the present study by

this methodology were also previously reported as sig-
nificant cancer-related genes. To understand the func-
tionality of the selected genes, we predicted the tertiary
structures of selected genes by Full Automatic Modeling
System (FAMS) [9] and phyre2 [10] profile-based pro-
tein structure prediction software. This system also
allowed the identification of drug target candidate genes.

Results
The first principal components show no significant
difference between samples
Since conventional methodology was not useful for the
identification of differences between samples, we decided
to employ PCA based unsupervised FE to extract biologi-
cally relevant genes (probes) when cell lines with and
without metastasis were compared. Since it was not our
main purpose to emphasize novelty and superiority of the
present method compared with the conventional meth-
ods, but to identify critical genes for NSCLC metastasis,
how the conventional methods failed to identify critical
genes in NSCLC metastasis will be discussed in Discus-
sion sections below (the section “Superiority and novelty
of the proposed method”). Figure 1 shows two-dimen-
sional embeddings of probes using PCA for gene expres-
sion and promoter methylation. To apply PCA based
unsupervised FE, first we identified PCs to be used for
FE. To determine what each principal component (PC)
represented, the contributions of samples to the first PC
(PC1) are shown (Figure 2). As previously observed [6,8],
the first PC did not identify distinct features among the
samples, although they had major contributions (97% for
gene expression and 87% for promoter methylation).
Contributions of samples to PC1 are almost constantly
independent of samples for gene expression and promo-
ter methylation. Thus, we concluded that PC1 did not
exhibit any significant differences among samples. It

should be noted that this does not always mean that
PC1s are biologically meaningless, but rather that most
gene expression and promoter methylation is sample
independent; thus, the cell lines are very similar to each
other independent of their ability for metastasis. This is
not surprising, as they are similar NSCLC cell lines;

Figure 1 Two-dimensional embeddings of probes using PCA.
Two-dimensional embeddings of probes (left: gene expression,
right: promoter methylation) spanned by the first (horizontal axes)
and the second (vertical) axes.

Figure 2 Contributions of samples to PCs. Contributions of
samples (black open circles: A549 without metastasis, red triangles:
A549 with metastasis, green crosses: HTB56 without metastasis, blue
crosses: HTB56 with metastasis) to PCs. Left column: gene
expression, right column: promoter methylation. “cor” indicates
Pearson correlation coefficients of PCs between gene expression
and promoter methylation averaged within each of four categories
and “P” is attributed to “cor”.
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therefore, significantly different outcomes caused by sam-
ple dependence and/or metastasis presence would be
unusual.

The second PCs demonstrates distinction between cell
lines
Because the first PCs did not distinguish between samples,
we next considered second PCs (PC2s). As can be seen by
two-dimensional embeddings of probes (Figure 1), the sec-
ond PCs had a relatively smaller contribution. However,
this does not always mean that PC2s are biologically
meaningless, since PC2 having common values for all
samples simply means that all samples behave similarly
which does not always contradict with biological signifi-
cance if all samples are equally biologically significant in
the very similar fashions. The second PC of gene expres-
sion has only a 1.7% contribution, while for promoter
methylation it is 9.6%. These values for contributions,
especially for gene expression, can usually be ignored.
However, in this case, since the samples were similar
NSCLC cell lines, differences between samples were
expected to be small. Thus, PCs with small contributions
may represent biologically critical differences between
samples, as shown in Figure 2, where the contributions of
samples to PC2s are demonstrated. PC2s did not distin-
guish between samples with and without metastasis ability,
but did distinguish between A549 and HTB56 cell lines.
Because we are interested in metastasis-causing genes in
HSCLC, what PC2 expresses is out of the scope of the pre-
sent study. However, it is useful to identify genes asso-
ciated with PC2 to determine which genes are different
between the two cell lines, A549 and HTB56. PC2s
showed good correlation between gene expression and
promoter methylation (Figure 3). Thus, integrated analysis
using PCA based unsupervised FE is applicable. Selected
genes are shown in Table 1. Figure S1 (Additional file 1)
shows the gene expression and promoter methylation of
selected genes. If analysis is successful, genes selected
based on mRNA expression and those based on promoter
methylation should overlap significantly. Indeed, P-values
attributed to selected genes common between gene
expression and promoter methylation were 4.1×10-9 and
5.1×10-12, respectively. Thus, integrated analysis using
PCA based unsupervised FE was successful. In contrast to
expectations, the selected genes were frequently and sig-
nificantly related to cancers by the Gendoo server [11]
(Table 1), which was used because it attributed P-values to
each association between genes and disease. Thus, the
reliability of associations can be more easily identified. The
successful identification of associations between genes and
disease by the Gendoo server suggests that HTB56 and
A549 cell lines are potentially distinct to each other and
should be considered separately. This is coincident with
findings that when distinct genes are present between

samples with and without metastasis, they can also reflect
differences between the HTB56 and A549 cell lines. Con-
versely, in contrast to the high correlation of PC2 for gene
expression and promoter methylation, correlations
between gene expression and promoter methylation of
individual genes were not significant (Fig S1). This might
be because of the too small contribution of PC2s.

The third PCs distinguish differences between samples
with and without metastasis for HTB56 but not for A549
Because no PCs reflected differences between samples with
and without metastasis, we considered additional PCs.
Figure 2 shows the contributions of samples to the third
PC (PC3). Although PC3s have even smaller contributions
(0.2% for gene expression and 1.5% for promoter methyla-
tion) than PC1s or PC2s (Figure 3) their correlation is
high. Thus, genes associated with PC3 represent differences
between samples with and without metastasis and we
finally identified a useful PC. Interestingly, PC3 exhibited
differences between samples with and without metastasis
only for the HTB56 cell line. However, since the two cell
lines are distinct in terms of their oncogenic potential, it is
not surprising that genes that exhibit differences between

Figure 3 Scatter plots of contributions of samples to PCs
between gene expression and promoter methylation. Scatter
plots of PCs averaged within each of four categories. Contributions
of samples (black open circles: A549 without metastasis, red
triangles: A549 with metastasis, green crosses: HTB56 without
metastasis, blue crosses: HTB56 with metastasis) to PCs. Left column:
gene expression, right column: promoter methylation. “cor”
indicates Pearson correlation coefficients of PCs between gene
expression and promoter methylation averaged within each of four
categories and “P” is attributed to “cor”.
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samples with and without metastasis for HTB56 did not
exhibit differences between samples with and without
metastasis for A549. Thus, we further applied integrated
analysis using PCA based unsupervised FE. Selected genes
are shown in Table 1. Figure S2 (Additional file 2) shows
gene expression and promoter methylation of the selected
genes. Again, whether genes selected based on mRNA
expression and those based on promoter methylation were
significantly overlapped was analyzed and P-values attribu-
ted to selected genes common between gene expression

and promoter methylation were 3.5×10-5 and 5.1×10-4.
Thus, integrated analysis using PCA based unsupervised
FE successfully identified genes with both aberrant mRNA
expression and promoter methylation. The association of
cancer disease and the selected genes were investigated by
the Gendoo server, and the results are shown in Table 1.
As expected, most of the selected genes were significantly
associated with cancer disease. Correlations between gene
expression and promoter methylation of individual genes
were not significant (Fig. S2).

Table 1 Cancer disease association with genes selected in the present study based on Gendoo server.

Gene
Symbol

RefSeq
mRNA

Cancer associations
(P-value)

PC2 vs PC2

SLC22A3 NM_021977 Gonadoblastoma (0.0002), Dysgerminoma (0.00075), Testicular Neoplasms (0.00456), Ovarian Neoplasms (0.0297), Cell
Transformation, Neoplastic (0.0384)

DFNA5 NM_004403 Melanoma (0.006),

SPG20 NM_015087 Hepatoblastoma (0.0033), Liver Neoplasms (0.00496)

CYP1B1 NM_000104 Breast Neoplasms (1.13 × 10-45), Endometrial Neoplasms (2.44 × 10-12), Lung Neoplasms (1.56 × 10-9), Prostatic Neoplasms
(4.65e-9), Adenocarcinoma (6.03 × 10-6), Ovarian Neoplasms (1.35 × 10-5) Carcinoma, Squamous Cell (0.00018), Colorectal
Neoplasms (0.000337), Head and Neck Neoplasms (0.00052), Adenoma, Liver Cell (0.0072), Urinary Bladder Neoplasms
(0.012), Neoplasms (0.019), Carcinoma, Small Cell (0.028), Carcinoma, Non-Small-Cell Lung (0.0326)

ALX1 NM_006982 Carcinoma (0.000305), Chondrosarcoma (0.00129), Bone Neoplasms (0.0106), Uterine Cervical Neoplasms (0.011)

TFPI2 NM006528 Uterine Neoplasms (2.6 × 10-21), Neoplasm Invasiveness (1.18 × 10-14), Choriocarcinoma (2.33 × 10-13), Fibrosarcoma (7.98
× 10-9), Glioma (2.50 × 10-8), Cystadenocarcinoma (1.68 × 10-5), Lung Neoplasms (6.74 × 10-5), Carcinoma, Non-Small-Cell
Lung (0.00559)

HOXA9 NM_152739 Leukemia, Myeloid (2.0 × 10-48), Leukemia, Myeloid, Acute (9.24 × 10-30), Cell Transformation, Neoplastic (4.64 × 10-29),
Leukemia (9.46 × 10-19), Leukemia, Myelogenous, Chronic, BCR-ABL Positive (2.64 × 10-14), Precursor Cell Lymphoblastic
Leukemia-Lymphoma (2.46 × 10-8), Precursor B-Cell Lymphoblastic Leukemia-Lymphoma (1.65 × 10-6), Myoma (0.00046),
Leukemia, T-Cell (0.0012), Endodermal Sinus Tumor (0.0079), Seminoma (0.0157),

HOXA11 NM_005523 Uterine Neoplasms (8.23 × 10-7), Choriocarcinoma (3.97 × 10-5), Carcinoma, Endometrioid (0.0065), Adenocarcinoma, Clear
Cell (0.00662), Wilms Tumor (0.0076),

PCSK1 NM000439 Bronchial Neoplasms (0.0022), Adenoma (0.0030), Adenoma, Islet Cell (0.0035), Bile Duct Neoplasms (0.011)

SPARC NM_003118 Neoplasm Invasiveness (8.42 × 10-14), Glioma (1.35 × 10-8), Brain Neoplasms (1.01 × 10-7), Melanoma (2.99 × 10-7), Lung
Neoplasms (1.43 × 10-5), Carcinoma (0.00013), Carcinoma, Non-Small-Cell Lung (0.0009)

PC3 vs PC3

HOXB2 NM_002145 Lung Neoplasms (0.000159), Leukemia, Myeloid (0.000326), Pulmonary Emphysema (0.00139), Carcinoma, Embryonal
(0.0025), Adenocarcinoma (0.0054), Leukemia, Erythroblastic, Acute (0.0096), Leukemia, Promyelocytic, Acute (0.0124),
Carcinoma, Small Cell (0.0148), Carcinoma, Non-Small-Cell Lung (0.0387)

CCDC8 NM_032040

ZNF114 NM_153608

DIO2 NM_000793 Choriocarcinoma (0.000616), Carcinoma, Papillary (0.00366), Hemangioma (0.0099), Adenoma (0.019), Neuroblastoma
(0.025)

LAPTM5 NM_006762 Carcinoma, Hepatocellular (0.000396), Liver Neoplasms (0.000495), Multiple Myeloma (0.00947), Neoplasm Recurrence
(0.010), Cell Transformation, Neoplastic (0.032)

RGS1 NM_002922 Burkitt Lymphoma (3.55 × 10-5), Lymphoma, B-Cell (9.14 × 10-5), Leukemia-Lymphoma, Adult T-Cell (0.0076), Lymphatic
Metastasis (0.0329), Skin Neoplasms (0.0364), Stomach Neoplasms (0.0454), Melanoma (0.0455)

B3GALNT1 NM_003781 Neuroblastoma (0.0034)

PC5 vs PC4

TINAGL1 NM_022164 Carcinoma, Hepatocellular (0.000119), Neoplasms (0.0295)

PMEPA1 NM_020182 Prostatic Neoplasms (2.30e-12), Carcinoma, Renal Cell (0.0233), Kidney Neoplasms (0.032)

CX3CL1 NM_002996 Neuroblastoma (0.0014)

ICAM1 NM_000201 Melanoma (0.00305), astrocytoma (0.00644), Granular Cell Tumor (0.0166), Colonic Neoplasms (0.0233), Lymphoma, AIDS-
Related (0.023), Adenoma, Oxyphilic (0.0433)
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The fourth PC of promoter methylation and the fifth PC
of gene expression represent differences between
samples with and without metastasis for A549 but not for
HTB56
We further sought PCs that exhibited differences between
samples with and without metastasis for A549. The fourth
PC (PC4) of promoter methylation and the fifth PC (PC5)
of gene expression demonstrated differences between sam-
ples with and without metastasis for the A549 cell line
(Figures 2 and 3). Because the correlation between PC4 and
PC5 were very high despite their small contributions (0.6%
for PC4 of promoter methylation and 0.09% for PC5 of
gene expression), integrated analysis using PCA based
unsupervised FE could still be used. Selected genes are
shown in Table 1. Figure S3 (Additional file 3) shows gene
expression and promoter methylation of the individual
genes.
P-values attributed to selected genes common between

gene expression and promoter methylation were 9.8×10-8.
Thus, integrated analysis using PCA based unsupervised
FE was successful. Cancer diseases associated with the
selected genes are listed in Table 1, and more than 50%
were reported to be associated with cancer-related dis-
eases. However, correlations between gene expression and
promoter methylation of individual genes were not signifi-
cant (Fig. S3).

Discussion
Although the association of cancer-related disease and
the selected genes were annotated by the Gendoo server,
more detailed information, regarding whether genes are
expressed or repressed in cancers, will be useful. In
addition, since the Gendoo server was last updated in
April 2012, recent information might be missing. To fill
these gaps, we will discuss the selected genes individu-
ally citing actual studies.

HOXB2
HOXB2 has a Homeobox domain in the central region.
Figure S4 (Additional file 4) shows the tertiary structure of
the homeobox domain in HOXB2 predicted by FAMS.
The homeodomain fold is a protein structural domain that
binds to DNA or RNA and is commonly found in tran-
scription factors. HOXB2 was upregulated in pancreatic
cancer [12] as a part of the retinoic acid (RA) signaling
pathway, which is generally regarded to be a potential
anti-tumor agent [13]. HOXB2 also promotes the invasion
of lung cancer cells by regulating metastasis-related genes
[14]. Considering these studies, it was not surprising that
HOXB2 might also have a critical role in NSCLC.

CCDC8
Neither FAMS nor phyre2 predicted a significant ter-
tiary structure for CCDC8, which is reported to be a

cofactor required for p53-mediated apoptosis through
interactions with OBSL1 [15]. Thus, because p53 protein
is a typical tumor suppressor, it is likely that CCDC8
has a critical role in NSCLC.

ZNF114
ZNF114 has one KRAB box and four Zinc-finger double
domains. Figure S5 (Additional file 4) shows the Zinc-fin-
ger domains as predicted by FAMS. Since the Zinc-finger
double domain functions in DNA binding, ZNF114 might
also be a DNA binding protein. KRAB is a transcription
repression domain, thus ZNF114 might be a transcription
suppressor. Unfortunately, very few studies of ZNF114
have been published. However, mutation of CTCF that
has seven Zinc-finger double domains was reported to be
associated with tumors [16]. GC79 that has multiple Zinc-
finger double domains was reported to be associated with
apoptosis of prostate cancer cells [17]. Studies related to
proteins with Zinc-finger double domains indicate
ZNF114 might also have a role in NSCLC.

DIO2
Figure S6 (Additional file 4) shows the tertiary structure
of DIO2 as predicted by FAMS. DIO2 belongs to the
iodothyronine deiodinase family and is underexpressed
in benign and malignant thyroid tumors [18]. DIO2
expression was also shown to be higher in most brain
tumors [19]. Thus, although it is unclear whether DIO2
is generally oncogenic or tumor suppressive, it appears
to be related to cancer. Therefore, DIO2 is likely to be
related to NSCLC.

LAPTM5
Neither FAMS nor phyre2 predicted a significant tertiary
structure for LAPTM5, a transmembrane protein that was
reported to be associated with spontaneous regression of
neuroblastomas [20]. Inactivation of the E3/LAPTM5 gene
by chromosomal rearrangement and DNA methylation in
human multiple myeloma was observed [21]. Expression
of LAPTM5 was also elevated in human B lymphomas
[22]. Although there have been no reports indicating a
relationship between LAPTM5 and NSCLC, LAPTM5
might have a critical role in NSCLC.

RGS1
RGS1 contains a regulator of G protein signaling
domain. The tertiary structure of RGS1 is available in
the Protein Data Bank (PDB) (Fig. S7 in Additional file
4). Regulator of G-protein signaling (RGS) proteins are
related to cancer biology [23] and genetic variations in
these genes are associated with survival in late-stage
NSCLC [24]. RGS1 was overexpressed in a gene expres-
sion-profiling study of melanoma [25]. RGS is thought
to be related to the functionality of G protein-coupled
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receptors [26] that are often drug targets. Thus, RGS
might be a promising drug target candidate for therapy
of NSCLC.

B3GALNT1
B3GALNT1 is a galactosyl transferase that catalyzes the
transfer of galactose. Fig. S8 (Additional file 4) shows
the tertiary structure of B3GALNT1 as predicted by
FAMS. Numerous studies have suggested a relationship
between galactosyl transferase and cancer, including the
use of galactosyl transferase as a tumor biomarker for
ovarian clear cell carcinoma [27,28]. Alternatively, can-
cer-associated isoenzymes of serum galactosyl transfer-
ase were reported in various cancers [29]. Thus,
B3GALNT1 might have a role in NSCLC progression,
although no reports have demonstrated a specific rela-
tionship between B3GALNT1 and cancer.

TINAGL1
TINAGL1 is papain family cysteine protease that
degrades proteins. Figure S9 (Additional file 4) shows
the tertiary structure as predicted by FAMS. TINAGL1
is a Sec23a-dependent metastasis suppressor [30] and
was reported to be upregulated in highly metastatic
tumors [31]. Thus, it was reasonable that it was selected
as a cancer-related gene candidate by our methodology.

PMEPA1
Neither FAMS nor phyre2 predicted a significant ter-
tiary structure for PMEPA1, a transmembrane prostate
androgen-induced protein that enhances tumorigenic
activity in lung cancer cells [32]. It was also reported to
be upregulated in ovarian cancer [33], colon cancer [34]
and renal cell carcinoma [35]. Considering these studies,
PMEPA1 was reasonably selected as a NSCLC-related
gene by PCA based unsupervised feature extraction (FE)
mediated integrated analysis.

CX3CL1
CX3CL1 contains a small cytokine (intecrine/chemo-
kine) interleukin-8 (IL-8)-like domain. Figure S10 (Addi-
tional file 4) shows the tertiary structure of the IL-8
domain as predicted by FAMS. The IL-8 pathway was
reported to be important in cancer [36] and CX3CL1
expression was associated with a poor outcome in breast
cancer patients [37] as it promotes breast cancer via
transactivation of the epidermal growth factor pathway
[38]. A complex role for CX3CL1 in cancer has been
reported [39]. Thus, it was reasonable that CX3CL1 was
selected by our methodology.

ICAM1
Intercellular adhesion molecule (ICAM) contains an N-
terminal domain and three immunoglobulin domains.

The tertiary structure of ICAM1 was available in PDB
(Fig. S11 in Additional file 4). Many studies have
reported a relationship between ICAM1 and cancer.
ICAM1 expression was reported to determine the malig-
nant potential of cancer [40], to have a role in the inva-
sion of human breast cancer cells [41], and upregulated
endogenous ICAM-1 reduced ovarian cancer cell growth
in the absence of immune cells [42]. Thus, it is reason-
able that ICAM1 was selected as a potential NSCLC
therapy target by our methodology.

TINAGL1 as a drug target gene candidate
In this study, we selected multiple genes that might be
involved in the progression of NSCLC metastasis. Most
of selected genes are potential cancer-related genes.
Thus, it is reasonable to regard these genes as therapy
targets. Among those selected, we investigated TINAGL1
as a potential drug target gene, because although
TINAGL1 is regarded to be a tumor suppressor, in this
study it was upregulated in a metastasis-enhanced cell
line. Naba et al [31] also reported that TINAGL1 was
up-regulated in highly metastatic tumors. Thus, inhibi-
tion of TINAGL1 might be a potential therapeutic target
for the treatment of metastatic NCSLC. Furthermore,
although we used a profile based drug discovery soft-
ware, chooseLD (Insilico Science Co., Tokyo, Japan)
[43], for in silico drug screening, it required the tertiary
structure of the target protein and multiple ligand com-
pounds whose binding structure to the protein were
known. TINAGL1 satisfied these requirements as fol-
lows. To infer the tertiary structure of TINAGL1, we
uploaded the amino acid sequence NP_071447.1
retrieved from RefSeq to FAMS and phyre2. Because
there was no significant difference between tertiary
structures inferred by FAMS and phyre2, hereafter we
used the structure inferred by FAMS.
Based on FAMS, TINAGL1 has many tertiary structures

registered in PDB that can be used for tertiary structure
predictions. Among them, the “A” chain of PDB ID: 2DCC
(2DCC_A) has a 32% sequence similarity with TINAGL1
and is accompanied by multiple highly similar (> 95%
sequence similarity) tertiary structures registered in PDB
(PDB ID: 1IT0_A, 1QDQ_A, 2DC6_A, 2DC7_a, 2DC8_A,
2DC9_A, 2DCA_A, and 2DCD_A). Because all of these
structures have more than one ligand that binds to pro-
tein, we had a large number of ligand-protein binding
structures that could be used for in silico drug screening
using chooseLD. We selected 2DCC_A, a protein struc-
ture of TINAGL1 from aa 204 to 455 for modeling by
FAMS. Because 2DCC_A is cathepsin, hereafter we called
this structure the cathepsin domain. To confirm that
chooseLD could predict ligand binding to the cathepsin
domain, we attempted to identify a known ligand that
binds to the cathepsin domain. ChEMBL [44] was
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identified by a BLAST search using the cathepsin domain
amino acid sequence. Thus, Plasmodium falciparum 3D7
(CHEMBL1250370), a putative protease, was found to
have 47.22% sequence similarity with the cathepsin
domain. There were five assay experiments for this pro-
tein. Among them, CHEMBL1244076 was employed to
list candidate binding ligands. Three ligands were reported
to inhibit Plasmodium falciparum 3D7. Among them,
CHEMBL1242746 and CHEMBL1242747 (Fig. S12 in
Additional file 4) were employed as potential binding
ligands to TINAGL1. Then chooseLD was used to test the
two ligands using 15 template ligand proteins 3S3Q_C1P,
3S3R_0IW_00, 3AI8_HNQ_01, 1GMY_hld_00, 2DCC_
77B, 1ITO_E6C, 1QDQ_074, 2DC6_73V, 2DC7_042,
2DC8_59A, 2DC9_74M, 2DCA_75V, 2DCB_76V,
2DCD_78A, and 3PDF_LXV. Fig. S13 (Additional file 4)
shows the binding of CHEMBL1242565 and CHEM
BL514348 to TINAGL1 (Additional file 5 for template
ligand binding to TINAGL1).
Binding affinity of ligands to TINAGL1 was evaluated by

Cyscore [45] (Table 2). All template ligands had negative,
thus better, Cyscores. Although CHEMBL1242746 or
CHEMBL1242747 did not achieve a negative Cyscore,
CHEMBL1242747 had a low positive Cyscore that was
lower than the lowest template ligands. If we consider
these two were only reported to bind to proteins with a
TINAGL1 sequence similarity of 45%, the Cyscore attribu-
ted to CHEMBL1242746 or CHEMBL1242747 was good
and demonstrated the ability of chooseLD to infer proper
binding configurations of potential ligands. Since choo-
seLD inferred suitable binding modes for two potential

ligands, we concluded that in silico drug discovery is possi-
ble for TINAGL1, which might be a promising candidate
drug target.

B3GALNT1 as a candidate drug target gene
Another potential drug target gene is B3GALNT1. Sub-
strates such as UDP-galactose and UDP-N-acetylglucosa-
mine bind to B3GALNT1 and after various catalytic
reactions, UDP remains bound to B3GALNT1. Thus, if
compounds that inhibit UDP binding to B3GALNT1 that
compete with UDP can be identified, the function of
B3GALNT1 can be inhibited. B3GALNT1 is a galactosyl
transferase, which is often reported to be upregulated in
various cancers. Thus, inhibition of B3CALNT1 might be
a potential therapeutic target for NSCLC. Fig. S14 (Addi-
tional file 4) shows the UDP and UDP-N-acetylglucosa-
mine binding to B3GALNT1 predicted by chooseLD.
Because both bind to the same pockets of B3GALNT1,
chooseLD can be used to identify other compounds that
bind to and inhibit B3GALNT1.

Inconsistency between gene expression and promoter
methylation of individual genes
Although Figs. S1, S2 and S3 show the gene expression
and promoter methylation of individual genes associated
with selected PCs, coincidence between gene expression
and promoter methylation is relatively poor. Gene selec-
tion was reliable because P-values attributed to the simul-
taneous selection of genes for gene expression and
promoter methylation PCs were significant and the
selected genes were associated with cancer-related genes
(Table 1). To resolve the discrepancy between the signifi-
cant selection of genes and poor coincidence of individual
genes between gene expression and promoter methylation,
we considered promoter methylation by sequencing tech-
nology, which was performed simultaneously with micro-
array measurements. Figure S15 (Additional file 6) shows
the promoter methylation profile of selected genes by
sequencing technology. Although measurements were
unfortunately not available for all observations, promoter
methylation measured by sequencing technology was
more coincident (negatively correlated) with gene expres-
sion than by microarray. Since sequencing technology is
more reliable than microarray, poor consistency between
gene expression and promoter methylation might be
explained by the poor ability of microarray to measure
promoter methylation. Thus, discrepancies are expected to
be resolved when promoter methylation is measured with
high accuracy.

Superiority and novelty of the proposed method
The novel method employed in the current study has
a number of advantages compared with existing conven-
tional methodologies. To demonstrate failure of the

Table 2 Inference of ligand binding affinity to TINAGL1.

Hydrophobic Vdw HBond Ent Cyscore

1GMY_hld -0.4156 -1.77 0 0.378 -1.8086

1ITO_E6C -0.3024 -0.56 0 0.42 -0.4461

1QDQ_074 -1.3611 -1.88 0 0.42 -2.8243

2DC6_73V -0.552 -1.79 0 0.63 -1.7081

2DC7_042 -0.5374 -1.56 0 0.588 -1.514

2DC8_59A -0.5766 -1.6 0 0.462 -1.717

2DC9_74M -1.3254 -1.24 0 0.462 -2.1026

2DCA_75V -1.1413 -1.52 0 0.546 -2.1103

2DCB_76V -1.6095 -1.76 0 0.63 -2.7419

2DCC_77B -0.5932 -2.07 0 0.63 -2.0373

2DCD_78A -1.5344 -1.65 0 0.42 -2.7627

3AI8_HNQ -0.7476 0.635 0 0.042 -0.0704

3PDF_LXV -0.6498 -0.96 0 0.168 -1.4434

3S3Q_C1P -1.2913 -1.61 0 0.504 -2.4019

3S3R_0IW -1.0358 -0.97 0 0.504 -1.5028

CHEMBL1242746 -1.3699 2.768 0 0.42 1.8177

CHEMBL1242747 -1.561 1.431 0 0.336 0.206

Cyscore and Hydrophobic, Vdw (van der Waals), Hbond (hydrogen bond), and
Ent (entropy) computed by Cyscore programs of 15 template ligands and two
drug candidate compounds.
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conventional approaches, first we tried detect genes that
have a negative correlation between mRNA expression
and promoter methylation. Pairs of mRNA expression
microarray probes and promoter methylation probes to
which common mRNA RefSeq IDs are attributed were
collected. Then Pearson correlation coefficients were
computed for all pairs as in Figure 3. The obtained
P-values were adjusted by Benjamin-Hochberg criterion
since there were more than twenty thousand pairs. Only
one gene had an adjusted P-value <0.05. This clearly
demonstrates the usefulness of applying PCA, without
which almost no significant correlations would be
detected.
Next, we used the t-test to detect significant differ-

ences between samples with and without metastasis.
The t-test was applied to all probes and obtained
P-values were again adjusted by Benjamin-Hochberg cri-
terion to suppress failed positives because of high num-
bers of observations. For comparison between A549 cell
lines with and without metastasis, no probes had
adjusted P-values <0.05 for either mRNA expression or
promoter methylation. For comparison between HTB56
cell lines with and without metastasis, although as many
as 434 probes had adjusted P-values <0.05 for mRNA
expression, there were no probes for promoter methyla-
tion. This also suggests the usefulness of applying PCA
without which no significant aberrant promoter methy-
lation or mRNA expression would be detected.
These difficulties for the detections of significant cor-

relations and aberrant mRNA expression/promoter
methylation were caused by the small number of repli-
cates in the study (three replicates for each mRNA
expression and two replicates for each promoter methy-
lation). Since PCA can detect the behavior of a group of
probes, this difficulty can be compensated for and
explains why only applying PCA can detect significant
outcomes.
Finally, we would like to emphasize some of the novel-

ties of the PCA based methodology. Although PCA itself
is a frequently used method, the current study applied
PCA differently from conventional methodology. First,
PCA is usually used to embed samples into low dimen-
sional space to demonstrate the groupings of samples,
while this study used embedded probes. This enabled
the identification of what each PC discriminates as in
Figure 2. To our knowledge, PCA has rarely been used
this way. Second, we did not ignore PCs to which only
tiny contributions were attributed (PC2, PC3, PC4 and
PC5 investigated in this study had at most 10% contri-
butions), while standard procedures recommend ignor-
ing such PCs since it is impossible to distinguish them
from background noise. The reason why such small a
contribution can have meaning is because of the huge
number of probes used. Since as many as twenty to

thirty thousand probes are analyzed, contributions as lit-
tle as 0.1% can correspond to several tens of probes.
This is a new concept, and thus it is not generally
recognized that small contributions can have meaning.
Therefore, although the usage of PCA itself is not novel,
the method used in this study is new.

Comparison with tissue samples associated with
metastasis
Although we detected many significant results in this
study, the original observation of the analysis was cell
lines. Since cell lines have a greater tendency to exhibit
clear outcomes than tissues, it is unclear whether the
study results could be observed using more relevant
samples, such as tissues. To confirm this, we consulted
a database that stores the expression of tissues with and
without metastasis. Unfortunately, we could not find a
data set where NSCLC tissues were treated. Thus, we
compared melanoma with and without metastasis (GEO
ID: GDS3966 [46]). Because metastasis is commonly
caused by similar factors, e.g, the loss of cell adhesion,
independent of the type of cancer, comparison of mela-
noma with and without metastasis was expected to
share aberrant mRNA expression with NSCLC with and
without metastasis (Table 3). Although not all eleven
genes were observed, among seven of the genes
included, six had a P-vales <0.05 by Kolmogorov-Smir-
nov (KS) test. The KS test was used because it is more
robust (non-metric) than the t-test, thus was more sui-
table for samples with a high background noise such as
tissues. The results shown in Table 3 suggest that the
findings in this cell line might also be observed in tissue
samples.

Transcription factor aryl hydrocarbon receptor targets
selected eleven genes
Although the biological significance of individual genes
was confirmed, it would be more useful if biological rea-
sons for the commonality between the genes could be
identified. We uploaded mRNA RefSeq IDs for eleven

Table 3 P-values that represent significant differences of
melanoma tissue samples between those with and
without metastasis.

Gene Metastasis > no metastasis No metastasis >metastasis

HOXB2 3 × 10-3 1

LAPTM5 5 × 10-2 8 × 10-1

RGS1 1 × 10-1 4 × 10-2

TINAGL1 9 × 10-1 3 × 10-2

PMEPA1 6 × 10-1 5 × 10-3

CX3CL1 1 1 × 10-1

ICAM1 3 × 10-3 1

Values were computed using the Kolmogorov-Smirnov test. P-values <0.05
highlighted in bold.
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genes to DAVID [47] and found that all eleven genes
were targets of the transcription factor aryl hydrocarbon
receptor (AHR), reported to be primary factor that
causes lung cancer [48]. AHR was also suggested to pro-
mote metastasis [48]. Given that promoter methylation
is primarily related to transcription factors binding to
promoters, it is reasonable that AHR was identified by
the integrated analysis of mRNA expression and promo-
ter methylation. This also suggests that our methodol-
ogy and analysis are suitable for identification of
potential cancer causing genes for NSCLC.

Conclusions
This study performed the integrated analysis of promoter
methylation and gene expression using PCA based unsu-
pervised FE. It selected eleven genes that were differently
expressed and which had different promoter methylation
patterns between cell lines with and without metastasis
ability. P-values attributed to the simultaneous selection
between gene expression and promoter methylation were
significant and many cancer-related diseases were asso-
ciated with the eleven genes selected. Two of the eleven
genes selected, B3GALNT1 and TINAGL1, were identi-
fied as drug target candidates that might suppress metas-
tasis in NSCLC. Further detailed and advanced studies
are required to confirm these findings.

Methods
Promoter methylation and gene expression profiles
Promoter methylation profiles were downloaded from
Gene Expression Omnibus (GEO) with GEO ID:
GSE52144 that included two replicates of HTB56 cell lines
with (H3R_d0) and without (H0R_d0) metastasis ability
and A549 cell lines with (A3R_d0) and without (A0R_d0)
metastasis ability. Gene expression profiles were down-
loaded from GEO with GEO ID: GSE52143 that included
three replicates of the samples in GSE52144. For these
two cell lines, data sets deposited in the “Series Matrix
Files” were retrieved. Promoter methylation measured by
sequencing was obtained from GEO with GEO ID:
GSE52140. Within GSE52140_RAW.tar, eight files corre-
sponding to those in GSE52144, (two replicates of
H0R_d0. H3R_d0, A0R_d0 and A3R_d3) were used.

Retrieval of promoter methylation from sequencing data
Information of genes annotated by RefSeq mRNA, (tran-
scription start and end sites, strand, chromosome name)
in hg19 human genome were retrieved using the Table
browser of the Genome Browser [49]. Using this infor-
mation, methylation sites between 1500 bps upstream
and 500 bps of transcription start sites were collected.
Mean b-values, (the ratio of methylated sites among the
total number of methylation sites), were employed as
promoter methylation for each RefSeq gene.

Integrated analysis of gene expression and promoter
methylation using PCA based unsupervised FE
First, PCA was applied to gene expression and promo-
ter methylation and each probe was embedded into a
two dimensional space spanned with the first and the
second PC scores. Then contributions of each probe to
each PC were investigated and biologically meaningful
PCs were selected. The 100 top outlier probes with lar-
ger (positively larger) or smaller (negatively larger) PC
scores were extracted for each PC. The coincidence
between selected probes for gene expression and pro-
moter methylation was estimated as follows. If contri-
butions of each probe to PCs were positively correlated
between gene expression and promoter methylation,
then intersections between gene expression outlier
probes having larger (smaller) PC scores and promoter
methylation outlier probes having smaller (larger) PC
scores were sought, since gene expression and promo-
ter methylation were expected to be negatively corre-
lated with each other. Conversely, if contributions of
each probe to PCs were negatively correlated between
gene expression and promoter methylation, intersec-
tions between gene expression outlier probes having
larger (smaller) PC scores and promoter methylation
outlier probes having larger (smaller) PC scores were
sought. P-values attributed to simultaneous selection of
probes between gene expression and promoter methy-
lation were computed by distribution that obeyed bino-
mial distribution as follows:

1− P(x, 100, 100/y)

where × is the number of commonly selected probes
between the top 100 outliers of gene expression and
promoter methylation, y is total number of probes on
the microarray, and P is the cumulative frequency of
binomial distribution.

Cancer-related disease association of selected genes by
Gendoo server
Cancer-related disease association was identified using
the Gendoo server. RefSeq mRNA was transformed to a
gene symbol, which was uploaded to the Gendoo server
with “human” as the target species. Among the asso-
ciated diseases, those related to cancer and with P-
values <0.05 are listed in Table 1.

Tertiary protein structure prediction using profile based
inference servers
Amino acid sequences retrieved from Uniprot (Addi-
tional file 7) were uploaded to two profile based tertiary
structure databases, FAMS and phyre2. Because no sig-
nificant differences were observed between the two data-
bases, inferences by FAMS were used for all further
analyses.
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Domain annotation by Pfam
To annotate domains included in each gene, we uploaded
amino acid sequences to pfam [50], and determined the
domains contained in each amino acid sequence.

Ligand-protein docking inference by chooseLD
ChooseLD is a profile-based ligand-protein docking affi-
nity evaluation software. ChooseLD requires well-pre-
dicted or observed tertiary structures of target genes
and known binding configurations of multiple com-
pounds to which drug candidate compounds can be
aligned. For the TINAGL1 gene, there are 15 known
ligands that bind TINAGL1 or highly similar proteins (>
95% sequence similarity). Thus, in silico drug discovery
was performed for TINAGL1. However, UDP is the only

ligand with a known configuration that can bind to
B3GALNT1. Fortunately, B3GALNT1 can bind sub-
strates in contrast to other proteins that only bind to
other proteins, thus in silico drug discovery is easier
since compounds that bind to B3GALNT1 by substitut-
ing UDP can be determined. Therefore, TINAGL1 and
B3GALNT1 might be potential drug candidate genes.

Ligand-protein docking affinity evaluation by Cyscore
Cyscore was used to evaluate binding affinity to
TINAGL1, [45]. Hydrogen was added to PDB files of
TINAGL1 by pymol [51] using the “h_add” command
and was added to mol2 files of ligands by babel [52]
using the “-h” option. Then, Cyscore was applied to the
PDB file of TINAGL1 and mol2 files of ligands.
Although pdb2pqr [53] (default settings) was used to
add hydrogen to TINAGL1, the resulting Cyscore was
not improved. Thus, we decided to use pymol. These
processes are shown in Figure 4.

Additional material

Additional file 1: Fig. S1 Gene expression and promoter
methylation associated with PC2. Gene expression and promoter
methylation associated with PC2. Left column: gene expression, right
column: promoter methylation. NM_021977 (SLC22A3), NM_004403
(DFNA5), NM_015087 (SPG20), NM_000104 (CYP1B1), NM_006982 (ALX1),
NM_006528 (TFPI2), NM_152739 (HOXA9), NM_005523 (HOXA11 ),
NM_000439 (PCSK1), NM_003118 (SPARC). (Black open circles: A549
without metastasis, red triangles: A549 with metastasis, green crosses:
HTB56 without metastasis, blue crosses: HTB56 with metastasis). Left
column: gene expression, right column: promoter methylation. “cor”
indicates Pearson correlation coefficients between gene expression and
promoter methylation averaged within each of four categories and “P” is
attributed to “cor”.

Additional file 2: Fig S2 Gene expression and promoter methylation
associated with PC3. Gene expression and promoter methylation
associated with PC3. Left column: gene expression, right column:
promoter methylation. NM_002145 (HOXB2), NM_032040 (CCDC8),
NM_153608 (ZNF114), NM_000793 (DIO2), NM_006762 (LAPTM5),
NM_002922 (RGS1), NM_003781 (B3GALNT1). (Black open circles: A549
without metastasis, red triangles: A549 with metastasis, green crosses:
HTB56 without metastasis, blue crosses: HTB56 with metastasis). Left
column: gene expression, right column: promoter methylation. “cor”
indicates Pearson correlation coefficients between gene expression and
promoter methylation averaged within each of four categories and “P” is
attributed to “cor”.

Additional file 3: Fig. S3 Gene expression and promoter
methylation associated with PC4 (promoter methylation) and PC5
(gene expression). Gene expression and promoter methylation
associated with PC4 (promoter methylation) and PC5 (gene expression).
Left column: gene expression, right column: promoter methylation.
NM_022164 (TINAGL1), NM_020182 (PMEPA1), NM_002996 (CX3CL1),
NM_000201 (ICAM1). Contributions of samples (black open circles: A549
without metastasis, red triangles: A549 with metastasis, green crosses:
HTB56 without metastasis, blue crosses: HTB56 with metastasis) to PCs.
Left column: gene expression, right column: promoter methylation. “cor”
indicates Pearson correlation coefficients between gene expression and
promoter methylation averaged within each of four categories and “P” is
attributed to “cor”.

Additional file 4: Supplementary figures. Supplementary figures from
Fig. S4 to Fig. S14.

Figure 4 Schematic figure of data processing. Schematic of data
processing.
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Additional file 5: Ligand binding configuration to TINAGL1. Full list
of ligands that bind to TINAGL1.

Additional file 6: Fig. S15 Promoter methylation profile of selected
genes measured by sequencing technology. Promoter methylation
measured by sequencing, NM_002145 (HOXB2), NM_032040 (CCDC8),
NM153608 (ZNF114), NM_006762 (LAPTM5), NM_003781 (B3GALNT1),
NM_022164 (TINAGL1), NM_020182 (PMEPA1), NM_002996 (CX3CL1),
and NM_000201 (ICAM1).

Additional file 7: Amino acid sequences used for tertiary protein
structure prediction. Amino acid sequences retrieved from Uniprot of
selected genes (in fasta format).
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