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Abstract

Background: Identifying putative membrane transport proteins (MTPs) and understanding the transport
mechanisms involved remain important challenges for the advancement of structural and functional genomics.
However, the transporter characters are mainly acquired from MTP crystal structures which are hard to crystalize.
Therefore, it is desirable to develop bioinformatics tools for the effective large-scale analysis of available sequences
to identify novel transporters and characterize such transporters.

Results: This work proposes a novel method (SCMMTP) based on the scoring card method (SCM) using dipeptide
composition to identify and characterize MTPs from an existing dataset containing 900 MTPs and 660 non-MTPs
which are separated into a training dataset consisting 1,380 proteins and an independent dataset consisting 180
proteins. The SCMMTP produced estimating propensity scores for amino acids and dipeptides as MTPs. The
SCMMTP training and test accuracy levels respectively reached 83.81% and 76.11%. The test accuracy of support
vector machine (SVM) using a complicated classification method with a low possibility for biological interpretation
and position-specific substitution matrix (PSSM) as a protein feature is 80.56%, thus SCMMTP is comparable to SVM-
PSSM. To identify MTPs, SCMMTP is applied to three datasets including: 1) human transmembrane proteins, 2) a
photosynthetic protein dataset, and 3) a human protein database. MTPs showing a-helix rich structure is agreed
with previous studies. The MTPs used residues with low hydration energy. It is hypothesized that, after filtering
substrates, the hydrated water molecules need to be released from the pore regions.

Conclusions: SCMMTP yields estimating propensity scores for amino acids and dipeptides as MTPs, which can be
used to identify novel MTPs and characterize transport mechanisms for use in further experiments.

Availability: http://iclab.life.nctu.edu.tw/iclab_webtools/SCMMTP/

Background
Membrane transport proteins (MTPs), or transporters,
span lipid bilayers and form gates for hydrophilic solutes
to cross hydrophobic membranes. Transporters are essen-
tial in many biological processes, such as nutrient uptake,
metabolite secretion, ion homeostasis, signaling, energy

transduction, immune system recognition processes,
osmoregulation, and other physiological and developmen-
tal processes in the cell [1]. Currently, several commercial
drugs target ion channels or carrier proteins [2]with
results indicating that transporter proteins have tremen-
dous therapeutic potential [3,4].
MTPs are primarily involved in the transportation of

amino acids, cations, anions, sugars, proteins, mRNAs,
electrons, water, and hormones [1]. According to the
transporter nomenclature panel of the International
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Union of Biochemistry and Molecular Biology, MTPs
can be classified into six groups based on their mode of
transport, energy coupling mechanisms, molecular phy-
logeny, and substrate specificity [3]. MTPs are thought
to constitute 3-16% of the total number of open reading
frames in prokaryotic genomes [5]. Identifying putative
MTPs and understanding their transport characters are
important challenges in the advancement of structural
and functional genomics. MTPs have been identified by
proteomics strategies, such as absorbance spectroscopy,
gel electrophoresis, metal-affinity columns and shift
assay, chromatography, mass spectroscopy, and com-
bined spectroscopic studies [6]. But two main features
of the MTP make them difficult to identify [7]. First,
transporters are usually minor components in cell mem-
branes. The protein engineers often use E. coli or yeasts
as the hosts to overexpress MTPs which seems to be
toxic after overexpressing or expressed as unfolded inac-
tive proteins [7]. Second, most MTP contain a series of
hydrophobic residues causing the under-represented in
two-dimensional electrophoresis [7]. Bioinformatics
tools are needed for effective large-scale analysis of
available sequences to identify novel transporters, direct
further experiments and provide information about
transport mechanisms.
Recently, several machine learning methods have been

proposed for predicting membrane transporters from
amino acid sequence information. Lin et al. [4] used a
support vector machine (SVM) to predict transporter
families from the transporter classification system. Gro-
miha et al. [8] analyzed the amino acid compositions in
MTPs and used different classifiers implemented in the
WEKA program to discriminate channel/pore proteins,
electrochemical transporters, and active transporters. Li
et al. [9] developed a general approach combining
homology-based and machine learning methods, using
transporter sequence features learned from well-curated
proteomes as guides, to predict major transporter
families/subfamilies defined in the transporter classifica-
tion database. Ou et al.[10] analyzed the amino acid
composition of transporters and developed a radial basis
network-based method for classifying these proteins into
channel/pore proteins, electrochemical transporters,
active transporters, and six transporter families with
amino acid properties and position-specific substitution
matrix (PSSM) profiles. Mishra et al. [1] contributed to
the substrate specificity annotations of transporters by
developing SVM models that discriminate between
amino acid, anion, cation, electron, protein/mRNA,
sugar, and other transporters. The transporter characters
can be investigated based on the crystal structure of the
transport proteins and their transport objects. Sauguest
et al. [11] used pentameric ligand-gate ion channels to

examine ion permeation. Hibbs and Gouaux[12]identi-
fied permeation and activation principles in an anion
receptor. Zhou et al. [13] and Kopfer et al. [14] used potas-
sium channels to determine the relationship between ion
coordination and hydration, as well as the Coulomb
knock-on mechanism. However, the goal of most studies
has been to predict channel families; a few studies have
constructed a general predictor to predict if the proteins
are channel proteins. Although these predictors can pro-
vide a range of prediction accuracy levels, independent sta-
tistical work is needed to examine MTP characters, whose
understanding is mostly based on crystal structures and
also to some extent on sequences.
Here, we propose an approach based on the Scoring

Card Method (SCM; referred to as SCMMTP), which uses
dipeptide composition as a feature for predicting and char-
acterizing MTPs. As shown in Figure 1, the existing data-
set [1] is separated into test and training datasets. The
training dataset is used to build the scorecard for predic-
tion, visualization, and analysis to obtain new information.
SCM can provide insight into protein function predic-

tion based on interpretable propensity scores [15-18]. To
create the SCMMTP, a previously published dataset [1]
was used. The proposed method estimated the propensity
scores of 400 individual dipeptides and used the difference
between dipeptide compositions of positives and negatives
to predict putative transporters. The method was further
optimized using an Intelligent Genetic Algorithm (IGA)
[19]. The propensity scores of 20 natural amino acids were
derived from the dipeptide scores and used to identify
informative physicochemical properties (PCPs) of mem-
brane transporters. The SCM method achieved a 10-fold
cross validation accuracy (10-CV) of 81.12% and a test
accuracy of 76.11%. Several PCPs from the AAindex data-
base [20] or from some PCP studies have been useful for
describing transporters. First, the “hydropathy index” scale
(KYTJ820101) was found to precisely reflect the confor-
mational characteristics of transporters. Second, MTPs are
expected to have higher preferences for a-helices outside,
rather than inside, of protein molecules (WERD780104).
Finally, the channels are generally composed of residues
with low hydration energy levels. This occurs because
after hydrated solutes pass through the membrane via
MTPs, the channel must release the water molecules so
that additional substances can be transported.

Materials and methods
In this work, we propose a novel SCMMTP for the iden-
tification and characterization of MTPs based on the pro-
pensity scores of dipeptides and amino acids. The MTP
characterization includes the analysis of protein PCPs,
the visualization of the MTP propensity scores and a
PCP mining method. This methodutilized the propensity

Liou et al. BMC Genomics 2015, 16(Suppl 12):S6
http://www.biomedcentral.com/1471-2164/16/S12/S6

Page 2 of 14



scores of amino acids allowing for the analysis of the
MTPs. Figure 1 presents a flowchart of the experimental
design.

Dataset
We established five datasets based on different sources of
transporter proteins from various species: MTP-TRN1380,
MTP-TST180, HTS380, HMTP494 and PSPGO649.
MTP-TRN1380 and MTP-TST180 were respectively used
as training data for the SCMMTP classifier and indepen-
dent test. HTS380 and HMTP4942 both contained human
transporter proteins. PSPGO was composed of the photo-
synthetic proteins. HTS380, HMPAS4942 and PSPGO
were used for the identification of MTPs. The numbers of
transporters and non-transporters in each dataset are
summarized in Additional File 1: Table S1.
MTP-TRN1380 and MTP-TST180
Mishra et al. [1] provided a dataset which included 10,780
transporter, carrier, and channel proteins collected from
the UniProt database. Mishra et al. removed fragmented
sequences and sequences annotated with more than two
substrates, those based solely on sequence similarity, and
sequences which exhibited a similarity exceeding 70%. The
primary dataset contained 900 transporters and 660 non-
transporters that were randomly chosen from all proteins
in UniProt, excluding 10,780 MTPs for the negative dataset.

The 1,560 sequences in our dataset were divided into
training and test datasets. The training dataset, named
MTP-TRN1380, consisted of 780 transporters and 600
non-transporters, while the test dataset, named
MTP-TST180, included 180 transporters and 60 non-
transporters.
HTS380
Huang et al. [21] gathered 5,176 human transporter pro-
teins from SwissProt. Huang et al. divided the sequences
into"confirmed”, “potential” and “non-transporter” by
manually checking four annotations in SwissProt, i.e., pro-
tein names, gene names, function and sequence similari-
ties. After reducing the sequence identity with a threshold
of 25%, HTS had 380 transporters, 144 potential transpor-
ters and 2,815 non-transporters. The 380 transporters,
named HTS380, are used for the identification of MTPs.
HMPAS4942
Kim and Yi [22] built a human protein database con-
taining36,585 proteins with 5386 transporters. This
study considered the transporters members from this
database, excluding the sequences having uncommon
amino acids. Finally, 4,942 transporters were collected
as HPMAS4942.
PSPGO649
Most photosynthetic proteins are membrane-embedded
and take part in electron transport reactions of

Figure 1 The flowchart for identification and characterization of MTP. The generated amino acids and dipeptides scoring cards from
SCMMTP are used for MTP identification and analysis.
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photosynthesis. This process involves the transport of
electrons, protons and other solutes via proton complex.
This work adopted the PSPGO dataset from the pre-
vious study [23] to identify MTPs. The sequence identity
was reduced to 25%. PSPGO contained 649 photosyn-
thetic proteins as positive dataset and 649 randomly
chosen sequences from non-photosynthetic proteins as
the negative dataset. In this work, we used only positive
part of PSPGO, called PSPGO649.

SCM-based MTP classifier (SCMMTP)
The Scoring Card Method (SCM) was already used to
analyze various protein functions [15-18] from sequence
information. In contrast to the SVM classifier, SCM
demonstrates increased simplicity and interpretability by
using the propensity scores of amino acids and dipeptides
to identify and characterize protein function. Current
work proposes the SCM-based method (SCMMTP) to
predict MTPs. The SCMMTP implementation corre-
sponds to the original SCM algorithm without any major
adjustments, as follows:
Construct a training dataset, MTP-TRN1380, consist-

ing of 780 MTPs and 600 non-MTPs.
Calculate the normalized dipeptide propensity scores

of the MTPs in therange from 0-1000. According to
Huang et al [16], the dipeptide compositions are calcu-
lated as follows:

DPC(i, j) =
Nij

L − 1
, 1 ≤ i, j ≤ 20 (1)

where i,j indicate the distribution of amino acid i fol-
lowed by amino acid j, N denotes the dipeptide numbers
of the dipeptide composed with amino acid i followed by
amino acid j, and L is the total residue numbers of the
sequences. These scores revealed the dipeptide composi-
tions of the MTPs minus non-MTPs. The propensity
score of each amino acid × was then easily computed by
averaging all dipeptides containing this amino acid X.
Finally, the normalized scores were generated as follows:

S′
i =

1000(Si − Mini)
maxi − Mini

(2)

where i indicates the residues.S’i, Si , Maxi and Mini
denote the scaled target dipeptide compositions, original
target dipeptide compositions, maximum dipeptide compo-
sitions and minimum dipeptide compositions, respectively,
of the corresponding residues.
Use IGA to optimize the dipeptide propensity scores

(DPS) in order to maximize the prediction accuracy and
to conserve the original sequence information. The fitness
function of IGA is concerned with both the area under the
ROC curve (AUC) [24] and the Pearson’s correlation coef-
ficient (i.e., the R value) between the initial and optimized

propensity scores of 20 amino acids. The weights for the
AUC and R value were set based on the previous studies
[15-18,23]. (See Eq. 1).

maxFit(DPS) = 0.9 × AUC + 0.1 × R (3)

Create MTP predictor by defining a scoring function
S(P) in which P is a query protein sequence, and and
are respectively the composition and propensity score of
the dipeptides i. The threshold is an optimal score
separating the MTPs and non-MTPs in MTP-TRN1380.
If S(P) is greater than the threshold value P is MTP,
otherwise P is a non-MTP.

S(P) =
400∑

i=1

wiDPSi (4)

Generic-MTP classifiers
The SCMMTP performance was compared toother clas-
sifiers with the features commonly used in protein func-
tion prediction. This work considered the SVM, J48,
Bayes and k-Nearest Neighbor (KNN) in cooperation
with theamino acid composition (AAC), the dipeptide
composition (DPC), the normalized PSSM (PSSM400)
[25], and the 531 PCPs fromthe AAindexdatabase as the
features. SVM is widely applied for protein function pre-
diction and is also implemented for MTP classification
[1]. We used LIBSVM [26] to create SVM classifiers
with radial basis kernel. The optimal SVM parameters
were chosen via a grid search according to the 10-fold
cross-validation (10-CV) accuracy of MTP-TRN1380.
Other classifiers are implemented using WEKA [27].
The suitable K parameter of the KNN classifier was
decided based on the best 10-CV evaluated from MTP-
TRN1380. We tried 5 different K values for each KNN
classifiers i.e. 3, 5, 7, 9 and 13. We used the default
WEKA parameter settings when applying both the deci-
sion tree (J48) and the Naïve Bayes classifiers.

MTP characterization
MTPswere analysed and characterized using the PCP
mining method and the propensity score visualization
method.
The PCP mining method, SCM-PCPs, was introduced

to identify the important physicochemical properties
(PCPs) of Heme-binding proteinsbased on the propen-
sity scores of 20 amino acids [17]. To find a set of possi-
bly correlated PCPs with a considered protein function,
we examined the 544 indices representing different
PCPs from the AAindex database. After removingthe
PCPs containing the value ‘NA’, 531 PCP indices were
left and considered in this work. The implementation of
SCM-PCPs to MTPs analysis included following steps:
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1) Calculate the R values between the amino acid pro-
pensity scores of MTPs (generated by SCMMTP) for
each of the531 PCPs. 2) Calculate the R values between
the amino acid propensity scores and the informative
PCPs collected based on the domain knowledge of
MTPs. 3) If the R values of the PCP and amino acid
propensity scores of MTP > 0.5, these PCPs are chosen
as candidate PCPs for further analysis.
The visualizing method aimed to express the MTP

propensity scores for proteins to determine their charac-
teristics. The structure coordination files of the proteins
werecolored according to the amino acid or dipeptide
scores, and expressed using Pymol [28]. The red and
blue colorsrespectively represented high and low pro-
pensity score residues.

Results and discussion
Performance comparisons of different MTP predictors
Because of the variance in the MTP datasets, many pre-
dictors used different MTP datasets for creating their
predicting models. For example, TPpred [6] used the
mitochondrial proteins as the dataset while TransportTP
used sequences from the TCDB database [29]. We eval-
uated the performance of the SCMMTP method and
other generic-MTP classifiers (Decision tree, J48; Naïve
Bayes; K-nearest neighbors, KNN; Support vector
machine, SVM) with four types of feature sets (amino
acid composition, AAC; dipeptide composition, DPC;
physicochemical property, PCP; Position-Specific Scor-
ing Matrix, PSSM) to discriminate between MTPs and
non-MTPs.
The SCMMTP uses IGA, a nondeterministic method,

meaning that the result of each run is independent.
Therefore, 10 independent runs of SCMMTP on a train-
ing set were evaluated, with the results presented in
Additional File 2: Table S2. The first experiment 1st
exhibited the highest training accuracy (81.71%) and was
selected for further analysis. The sensitivity, specificity,
and a threshold value for this model were 85%, 78%,
and 476.88, respectively. The performance of SCMMTP
and other machine learning methods on MTP-TST1380
and MTP-TRN1380 are respectively shown in Table 1
and Additional File 3: Table S3.
The SCMMTP yielded test accuracy, sensitivity, specificity
and MCC results of 76.11%, 80.00%, 68.33% and 0.47,
respectively. SCMMTP had better performance than other
predictors excluding KNN-PSSM and SVM-PSSM which
showed the accuracies of 76.67% and 80.56%, respectively.
Even the predictor using PSSM as thefeatures also had a
good performance to predict the MTPs in previous study
[1], this feature cannot always provide satisfied perfor-
mances. The predictors, Bayes-PSSM and J48-PSSM, had
only the accuracies of 65.00% and 69.44%, respectively.
Among the predictors using DPC as feature, SCMMTP

had a better performance than Bayes-DPC, J48-DPC,
KNN-DPC and SVM-DPC which have the accuracies of
44.44%, 59.44%, 69.44% and 70.56%, respectively. The clas-
sifiers using AAC as feature generally had low perfor-
mances excluding the KNN-AAC which had the accuracy
of 71.67%. TheBayes-AAC, J48-AAC and SVM-AACsho-
wedthe averaged accuracyof 59.48% with the Bayes-AAC
yielding the lowest performance among all the predictors.
This suggests that AAC would not be a good feature to
predict MTPs even using different machine learning
methods.
The SVM-PSSM method outperformed other classi-

fiers with a test accuracy of 80.56%. However, the SVM
uses a complicated classification model with a low possi-
bility for biological interpretation. Moreover, the time
cost issue is also a problem, while generating a PSSM
profile takes a long time. On the other hand, SCMMTP
with a straightforward weighted-sum model and a
dipeptide composition as a feature set provides propen-
sity scores which are interpretable in biological analysis.

SCMMTP performance for identifying MTPs using existing
datasets
The SCMMTP was used to identify MTPs of
HMPAS4942, PSPGO649 and HTS380. The minimum
and maximum scores, sensitivity and the number of iden-
tified MTPs are provided in Table 2. The sensitivities of
HMPAS4942, PSPGO649 and HTS380 are 66%, 72% and
70%, respectively.
Errors in this MTP identification may be due to the

different methodsused to establish the various datasets.

Table 1 Performance comparison of MTP predictors on
the independent test set

Method Acc (%) Sensitivity (%) Specificity (%) MCC

Bayes-AAC 50.00 28.33 93.33 0.25

Bayes-DPC 44.44 23.33 86.67 0.12

Bayes-AAindex 73.33 80.00 60.00 0.40

Bayes-PSSM 65.00 70.83 53.33 0.24

J48-AAC 66.67 58.33 83.33 0.40

J48-DPC 59.44 57.50 63.33 0.20

J48-AAindex 69.44 75.00 58.33 0.33

J48-PSSM 69.44 78.33 51.67 0.30

KNN-AAC(k = 7) 71.67 72.50 70.00 0.41

KNN-DPC (k = 5) 69.44 81.67 45.00 0.28

KNN-AAindex (k = 7) 75.00 82.50 60.00 0.43

KNN-PSSM (k = 13) 76.67 89.17 51.67 0.45

SVM-AAC 61.67 91.80 46.22 0.38

SVM-DPC 70.56 93.51 53.40 0.49

SVM-AAindex 72.78 78.33 61.67 0.40

SVM-PSSM 80.56 85.12 71.19 0.56

SCMMTP 76.11 80.00 68.33 0.47

Mean 67.78 72.13 63.38 0.36
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In HMPAS4942, Kim and Yi [22] collected transporter
sequences including both experimentally verified and
predicted MTPs. The ten-lowest scoring sequences in
our identification work do not have experimental evi-
dence to be MTPs. These sequences are all predictedas
MTPs using other prediction tools. Eight are predicted
as MTPs (i.e., Q86XP4, Q9H480, Q6LA62, B4YCR0,
H9PSV8, Q8HNQ6, Q658P4 and D6RA35, with respec-
tive scores of 321.89, 354.36, 354.56, 373.43, 375.93,
377.04, 377.32, and 379.32). In addition, Q8IYB3 and
Q15287 (serine/arginine repetitive matrix protein 1,
364.88 & RNA-binding protein with serine-rich domain
1, 383.91) are selected using the ortholog selection
methods due to a lack of experimental evidence.
The PSPGO649 dataset contained photosynthetic pro-

teins, which are very diverse in terms of structure and
function, ranging from soluble to membrane-embedded.
Furthermore, membrane photosynthetic proteins do not
necessarily traverse the bilayer, as they often are subu-
nits of bigger protein complexes. Thus, the PSPGO649
dataset is expected to contain many MTPs, but is not
completely a membrane-transporter dataset. Those pro-
teins classified by SCMMTP as negative may be frag-
ments or subunits of larger photosynthetic proteins,
auxiliary subunits, soluble proteins of the Calvin Cycle,
components of light-harvesting complexes, or proteins
that help to activate other photosynthetic proteins. In
addition, a closer look at the bottom-10 sequences
shows that most of these sequences have homology-
based annotations, which are not experimentally verified.
On the contrary, sequences that have annotations based
on experimental evidence (i.e., Uniprot ID P84990,
P73202, and P09927) function as light receptors which
does not imply a transporter function (see Table S4)
[30,31].
The MTPs of HTS380 have characteristics similar to

those in the MTP-TRN1380 and MTP-TST180 datasets.
However, the sequences from HTS380 are only collected
from humans, in whom some pore-forming proteins
have functions which differ from those of the transpor-
ters. For example, Peroxisomal membrane protein 2 has
score of 429.33 and is top-7 lowest scored sequences; it
seems to be involved in pore-forming activity and may

contribute to the unspecific permeability of the Peroxi-
somal membrane. This function is different from
MTP-TRN1380 and MTP-TST180, in which the MTPs
are permeable for specific subtracts.

Comparing the dipeptide compositions of the MTPs and
non-MTPs
The SCMMTP dipeptide scores revealed that the top-5
dipeptides with the highest scoresare LF, FY, DL, VE,
and QV scored 1000, 998, 995, 994, and 990, respec-
tively. The five dipeptides with the lowest scores were
QN, NE, NK, FL, and AVwiththe scores of 1, 5, 5, 12,
and 13, respectively. The averaged dipeptide composi-
tions of MTP and non-MTP were calculated for compari-
son. Mann-Whitney U-test which is a non-parameter
statistic method was applied to evaluate the statistical sig-
nificance of averaged dipeptide compositions between
MTP and non-MTP. In the top-5 ranked dipeptides, LF,
DL, VE, and QV showed the significant differences based
on a p-value threshold of 0.05, and had p-values of 0.00,
0.00, 0.01 and 0.03, respectively. However, FY had a
p-value of 0.25 which was not significantly different
between MTPs and non-MTPs. Among the lowest-5
scored dipeptides, QN, NE, NK, FL, and AV had the
p-values of 0.00, 0.00, 0.00, 0.01 and 0.00, respectively,
indicating a significant different between MTPs and non-
MTPs. These results suggest that although the dipeptides
with the highest and the lowest scores separated the
MTPs and non-MTPs, some dipeptides that can be used
after tuning these scores.

MTPs characterization using the propensity visualizing
method
The SCMMTP predictor operates by calculating dipep-
tide and amino acid propensity scores of MTPs and
non-MTPs. Visualization techniques provide a way to
represent these results and discover informative patterns
within the structure of a given protein class. In this
study, the protein structures were colored according to
the SCMMTP-derived dipeptide (DP) and amino acid
(AA) propensity scores.
Figure 2 shows a heat map of the SCMMTP-derived

propensity scores of 400 dipeptides as MTPs and non-
MTPs. Five top-ranked dipeptides include LF, FY, DL, VE,
and QV with respective scores of 1000, 998, 995, 994, and
990. Five dipeptides with the lowest scores are QN, NE,
NK, FL, and AV, respectively scored 1, 5, 5, 12, and 13.
The distributions of DP propensity scores on the surface
of several highly-scored MTPs and non-MTPs have been
visualized in Figure 3A. ThreeMTPs, P55064, P0AGM7
and P11551, respectively scored 498.2, 540.59 and 519.6,
are selected, along with four non-MTPs, P35383,
Q8NGY6M, Q9C660 and Q9H4M7, respectively scored
474.7, 451.5, 406.7 and 431.7. The red color represents the

Table 2 Putative MTPs from Human membrane and
Photosynthetic datasets

HMPAS4942 [22] PSPGO649 [23] HTS380 [21]

Total 4942 649 380

Transporter 3256 466 266

Non_ transporter 1686 183 114

Min score 321.89 398.33 428.06

Max score 601.50 636.15 547.37

Sensitivity 0.66 0.72 0.70
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positions of highly-scored dipeptides, in contrast to the
low-scored DP, which are colored in blue. Thus, MTPs
contain more regions colored in red than non-MTPs.
Table 3 presents the propensity scores of 20 amino acids

derived from the SCMMTP dipeptide scores and the
amino acid compositions in MTPs and non-MTPs. Our
results show that SCMMTP propensities are partially
reflected in amino acid compositions of MTPs and non-
MTPs. In particular, the residues Ile, Phe, and Gly, which
are top-3 SCMMTP ranked, also have a composition dif-
ference greater than one (|Difference| > 1) among MTPs
and non-MTPs. Notably Ile, Phe and Gly are hydrophobic
and are dominant in MTPs. The hydrophobic residues
Val, Ala, Met, Leu, Thr, and Tyr are dominant in MTPs
and exhibit high- or middle-ranked propensities. All
hydrophilic amino acids (Pro, Gln, Asp, Arg, Glu, Asn,
Ser) are low-scored and are more favored in non-MTPs
These observations are consistent with the results from

several previous studies. Amongst these, the analysis of
AA propensities and physicochemical properties of
photosynthetic proteins showed that the hydrophobic
interactions are crucial for electron transport reactions
[23]. Site-directed mutations of Val102, Phe219, and
Glu276 residues are shown to impair the transport func-
tion of SmbA protein, which mediates the transport of
antimicrobial peptides [32].

The correlation between the propensity scores derived
from SCMMTP and amino acid composition is evaluated
with the Pearson correlation coefficient (R value). The
high correlation coefficient (R = 0.95) between the propen-
sity scores of amino acids and the composition difference
between MTPs and non-MTPs indicates that SCMMTP-
derived scores are effective in discriminating between posi-
tive and negative classes. The distributions of AA propen-
sity scores on the surface of several highly-scored MTPs
and non-MTPs have been visualized in Figure 3B. The red
color represents the positions of highly-scored amino
acids, whereas the low-scored AAs are colored in blue.
As shown in Figure 3, MTPs contain more regions

colored in red than non-MTPs. Furthermore, high-scored
regions in MTPs are mainly present in the transmembrane
a-helices. Hence, the increased occurrence of hydrophobic
residues in MTPs, evident from the AA propensity and
composition analysis, is due to the presence of long
stretches of these residues in the membrane spanning
a-helices.

MTPs characterization using physicochemical properties
In this study, the SCM-PCPs method was used to identify
the physicochemical properties (PCPs) of MTPs. The cor-
relations between SCMMTP-derived AA scores and
AAindex indices of the PCPs have been estimated and the

Figure 2 Heat map of the dipeptide propensity scores generated by SCMMTP.
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top-ranked PCPs from AAindex database are presented in
Table 3. The three selected PCPs with their corresponding
R values are: OLSK800101 or “Average internal prefer-
ences” (R = 0.86); KYTJ820101 or “Hydropathy index”
(R = 0.85); WERD780104 or “Free energy change of epsi-
lon(i) to alpha(Rh)” (R = 0.74).
A. Hydropathiccharacteristics of MTPs
SCM indicates that the KYTJ820101 property, described
as the “hydropathy index” [33], was found to have a
high positive correlation (R = 0.854) with AA scores.
KYTJ820101 represents a hydropathy scale in which
each of the 20 amino acids is assigned a value reflecting

its relative hydrophobicity and hydrophilicity based on
experimental observations [33].
In contrast to soluble proteins, little is understood

about the structure and folding of membrane-related
proteins. To date, very few high-resolution three-dimen-
sional structures have been solved for membrane pro-
teins due to the need for sophisticated techniques for
diffraction studies. Problems originate from the inherent
insolubility of membrane proteins due to the presence of
hydrophobic domains [34]. In fact, as of mid-February
2012 only 320 unique membrane proteins had been
deposited in the protein data bank, representing less

Figure 3 The propensity score visualization of MTP. A) SCMMTP dipeptide (DP) propensity scores visualization. B) SCMMTP amino acid(AA)
propensity scores visualization. The MTPs Uniprot entries from the left are P55064, P0AGM7, and P11551; the non-MTPs PDB entries from the left
are P35383, P49683, Q8NGY6, Q9C660, and Q9H4M7.
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than 1% of the total data [35]. While structural determi-
nation has progressed in recent years, most membrane
protein crystal structures solved are taken from bacteria
because eukaryotic membrane proteins are more difficult
to crystallize [36].
Given this lack of experimental structural data,

three-dimensional structures can be inferred from
amino acid sequences applying an appropriate hydro-
phobicity scale. Examination of the hydropathy of a
given sequence can help crystallographers measure the
distribution of hydrophobic and hydrophilic regions,
predict whether or not a given peptide segment is
sufficiently hydrophobic to interact with or reside
within the interior of the membrane, define secondary
structures, and study the relationships between buried/
exposed behaviour of the residues and their nature
[33,37].
Many hydrophobicity scales have already been devel-

oped, but the question remains: Which scale, if any,
reflects the tendency of MTPs to best adopt their con-
formation and associate with membranes? Results from
the present study indicate that a combined scale, formu-
lated by Kate & Doolittle [33] is the most appropriate
for the hydropathy analysis of the membrane transporter
proteins included in our datasets, as well as those pre-
dicted by SCM. Figure 4 provides an example of hydro-
pathy plots of MTPs and non-MTPs.
Figure 4A shows hydropathy plots ofthe MTPs, P0AGM7

and P11551. It clearly shows the physicochemical property

of “surrounding hydrophobicity in a -helix”, which has a
high positive correlation (R = 0.836) with AA scores. In
Figure 4B-1, the non-MTP Q8NGY6 showed the trans-
membrane regions but displayed few high-scoring amino
acids in the a-helix. In Figure 4B-2, the non-MTP
Q9H4M7does not show the transmembrane regions, thus
Figure 4 indicates these two PCPs are important classifica-
tion features.
Furthermore, the correlation results obtained between

SCM scores and the proposed hydropathy values [33]
reveal that Ile plays a significant role in the stability and
functionality of MTPs. Ile, Phe, Gly, Ala and Val residues
ranked top-5 in our SCM derived scale are hydrophobic
and are top- or middle-ranked in the proposed hydropa-
thy scale [33]. Further investigation is needed to deter-
mine its role in the structure and stability of membrane
transporter proteins.
Hydrophilic Arg, Gln, Asp, Lys and Glu residues are

respectively ranked by Kate & Doolittle [33] as the bot-
tom-20, -18, -15, -19 and -16, are also at the bottom-5
of SCM derived scores. This may imply reduce preva-
lence of hydrophilic residues in membrane transporter
protein native structures.
The abundance of Ile and Phe residues in the mem-

brane proteins agrees with previous findings, which
mention their location in the acyl chain areas of mem-
brane lipids [36]. It should also be noted that steric
effects may affect the folding of membrane transporter
proteins independent of hydropathy [33].

Table 3 The MTP propensity score and PCPs selected from AAindex database based on R.

Amino Acid MTP score (Rank) KYTJ820101 (Rank) WERD780104 (Rank) OLSK800101 (Rank)

I-Ile 571.9 (1) 4,5 (1) 0.06 (5) 2,32 (1)

F-Phe 566.6 (2) 2,8 (4) 0.4 (1) 1,72 (4)

G-Gly 552.8 (3) -0,4 (8) 0.27 (2) 1,34 (8)

V-Val 526.1 (4) 4,2 (2) -0.11 (8) 1,99 (2)

A-Ala 521.4 (5) 1,8 (7) -0.07 (7) 1,38 (7)

M-Met 520.9 (6) 1,9 (6) 0.03 (6) 1,78 (3)

L-Leu 490.2 (7) 3,8 (3) -0.17 (10) 1,47 (5)

T-Thr 469.7 (8) -0,7 (9) 0.09 (4) 0,89 (9)

C-Cys 468.5 (9) 2,5 (5) 0.17 (3) 1,43 (6)

Y-Tyr 460.1 (10) -1,3 (12) -0.61 (17) 0,47 (16)

S-Ser 433.5 (11) -0,8 (10) -0.11 (8) 0,86 (10)

N-Asn 424.7 (12) -3,5 (15) -0.57 (16) 0,37 (17)

E-Glu 422.8 (13) -3,5 (16) -0.63 (19) 0,71 (13)

R-Arg 415.6 (14) -4,5 (20) -0.4 (12) 0 (20)

W-Trp 411.6 (15) -0,9 (11) -0.61 (17) 0,82 (12)

D-Asp 407.8 (16) -3,5 (17) -0.8 (20) 0,52 (15)

Q-Gln 407.1 (17) -3,5 (18) -0.26 (11) 0,22 (18)

H-His 398.4 (18) -3,2 (14) -0.49 (15) 0,66 (14)

K-Lys 398.3 (19) -3,9 (19) -0.45 (13) 0,15 (19)

P-Pro 396.4 (20) -1,6 (13) -0.47 (14) 0,85 (11)

R 1 0.83 0.80 0.86
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B. Preferences of transporters to form outside a-helices
The WERD780104 property showed a high correlation
(R = 0.7445) with SCM-derived scores and is described in
the AAindex as “free energy change of epsilon(i) to alpha
(Rh)” [38]. The amino acid indices of WERD780104
reflect the effects of local solute-solvent interactions (i.e.,
interactions between a residue and water with no influ-
ence from the neighboring residues) on the conforma-
tional preferences of the 20 naturally occurring amino
acids, summarized from protein X-ray data. In a given
property [11], different residue conformations have been
assigned to one of the three types of protein backbone
structures: nonregular structure, helix, and extended
structure. Nonregular structures include residues in an
epsilon(i) conformation, which defines isolated extended
residues or those which are a part of a run of two or
three extended residues. On the other hand, the
helix structure included residues in aRh conformation,
defining those residues as a part of the right-handed a-
helix. In WERD780104, the free energy change (Δ(ΔG°))
was used to express the preferences of each residue for a
nonregular structure relative to their preferences for the
a-helical structure in going from the inside to the outside
of a protein molecule.
In general, the scale proposed by Wertz et al. [38] con-

firmed the general preference of polar groups to be on the
outside of protein molecules, while the non-polar groups
are on the inside. However, regarding the conformational
pattern, important inferences can be drawn from the
obtained positive correlation results between SCM scores
and the WERD780104 scale of free energy changes as fol-
lows: 1) transporter proteins are more stable in a-helical
structures than in non-regular or extended structures
and 2) transporter proteins have higher preferences for
a-helices outside, rather than inside.

Molecular transport proteins are regarded as ‘outside’
or surface polypeptide chains and face the cavity, pore
or channel, in contrast to membrane-buried regions. As
discussed by Wertz et al. [38], proteins are usually more
stable if they have non-regular or helical structures on
the surface, because of the greater increase in entropy in
going from the inside (where the librational motions of
all types of residues are highly restricted) to the outside
of a protein (where the restrictions on the librational
motions are less severe).

Characterization MTP using both the propensity
visualization and physicochemical properties
The training dataset, MTP-TRN130, contains 260 cation
transporters, which constitute the most of the MTPs, in
contrast to the amino acid, anion, electron, protein/
mRNA, sugar and other transporters which contain 70,
60, 60, 70, 60 and 200 sequences, respectively. There-
fore, the characteristics of the cation transporters would
dominate the characteristics of other MTPsdescribed
above. MTPs have an “inside-out” property [39] causing
the exposure of hydrophobic residues on the surfaces
that face the membrane environment. The channels
which transporthydrophilic molecules would be com-
posed of hydrophilic residues to reduce free energy bar-
rier during the transporting process. The surface heat-
maps generated using propensity visualization indicates
these residues are not particularly hydrophilic ones, with
low-scoring residues shown in blue in Figure 5.
Amino acid compositions of the transmembrane seg-

ments are used to investigate the relationship of the
propensity scores and transmembrane segmentfor chan-
nel location, the amino acid compositions. Previous stu-
dies [40,41] investigated the multi-span and single-span
transmembrane segment amino acid compositions. As

Figure 4 Amino acid propensity scores visualization and hydropathy plot using hydropathy index. (A) MTPs (B) Non-MTPs. The red color
represents the positions of highly-scored amino acids, whereas the low-scored AAs are colored in blue.
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illustrated in Table 4 the propensity scores show respec-
tive correlations of 0.78 and 0.82 to multi-span helix
AACs and single span helix AACs, suggesting that these
propensity scores are closely related to the transmem-
brane segments.
The polar residues are thought to play an important

role in ion selecting, depending on their hydration
energy. Illergard et al. [42] indicated the polar residues in
the core of membrane proteins are conserved and often
interact with water. Thissuggests that the polar residues
of transmembrane proteins usually work in aqueous

environments and the hydration energy influences the
channel selectivity. The hydration energy of each amino
acid is also provided in Table 4. WOLR810101 is the
“hydration potential” provided from the AAindex, and a
newer hydration potentials are also provided from Konig
et al. [43]. The high correlations (0.79) between the pro-
pensity scores and the hydration energies indicate the
transmembrane segments are prone to be composed of
low hydration energy residues. The MTPs are folded in
the membranes, which is an extremely hydrophobic
environment, and are composed of the hydrophobic low

Table 4 The correlations between the propensity scores and PCPs including membrane single span helix, membrane
multi-span helix and amino acid hydration energies.

Amino acid score card AAC of single span segment [40] NAKH920108 WOLR810101 Hydration energy[43].

I-Ile 571.9 3.46 13.73 2.15 -10.9

F-Phe 566.6 1.48 10.99 -0.76 -12.3

G-Gly 552.8 1.27 6.17 2.39 -14.5

V-Val 526.1 2.46 12.43 1.99 -11.6

A-Ala 521.4 1.73 9.36 1.94 -12

M-Met 520.9 0.86 3.93 -1.48 -12.5

L-Leu 490.2 2.56 16.64 2.28 -11.3

T-Thr 469.7 0.59 4.68 -4.88 -13.6

C-Cys 468.5 0.84 2.56 -1.24 -13.1

Y-Tyr 460.1 0.59 3.13 -6.11 -16.9

S-Ser 433.5 0.49 5.58 -5.06 -14.8

N-Asn 424.7 0.01 2.31 -9.68 -17.5

E-Glu 422.8 0.01 0.94 -10.2 NA

R-Arg 415.6 0 0.27 -19.92 NA

W-Trp 411.6 0.74 2.2 -5.88 -15.2

D-Asp 407.8 0.03 0.94 -10.95 NA

Q-Gln 407.1 0.03 1.14 -9.38 -17.9

H-His 398.4 0.06 0.47 -10.27 -20

K-Lys 398.3 0.03 0.58 -9.52 NA

P-Pro 396.4 0.18 1.96 -3.68 NA

R1a 1 0.82 0.78 0.79 0.79

R2b 1 0.87 0.77 0.54 0.80
a the correlation between the propensity scores of all residues and the PCPs
b the correlation between the propensity score of polar residues and the PCPs

Figure 5 The surface heat-map of fucose transporter (PDB:3O7P). A. the surface heat-map of fucose transporter. The surface contacting with
the ligand presents the light blue, light red and white according to amino acid propensity scores. The ligand is presented as the sticks. The
orange circle indicates the binding site. B. Heat map of the binding site surface in top-view and the views of different rotations.
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hydration energy amino acids that could decrease the
folding energy [44]. Since polar residues are important to
ion selection, the relationship of the polar residue pro-
pensity scores to the hydration energies of polar residues
is also shown in Table 4.
The correlations of amino acid scores between

WOLR810101 and hydration energy are 0.54 and 0.80,
respectively, suggests that the correlation increases after
updating the hydration energies. It also indicates that
the high hydration energy residues have high propensity
scores. This leads to the conclusion that the transmem-
brane regions are prone to being composed of high
hydration energy amino acids, and the polar residues in
the transmembrane regions are responsible for trans-
porting hydrophilic molecules.
The filter mechanisms of channel proteins are investi-

gated to provide insights into the selectivity of membrane
transporter proteins. As shown in Figure 6, the channel
proteins usually have filter and pore regions [11]. Ion
selection in the filter region depends on the ion hydration
states, while the pore region adjusts the ion coordination
[13]. The hypothetical filter steps are provided in Figure
6B. Ions have a water shell in water solution. After ions
enter the channel pores(which are often composed of
polar residues) the water around the ions will be fixed to
the polar residues by hydrogen bonds. The ions escape
from the water shell using the side chains of the filter
residue, which can stabilize the ion in a dehydration state
[12,13]. Once the ion escapes from the water shell and
crosses the membrane, the water molecules should leave

the pore region to fix the next ions. If the polar residues
composing the pore regions have low hydration energies,
water molecules cannot easily escape from the pore
region, thus decreasing ion channel efficiency.

Conclusions
Despite the growing amount of sequences of MTPs in
public databases, their three-dimensional structures are
being resolved at far more slower rates. In this study, sev-
eral machine learning methods have been applied to pre-
dict MTPs from sequences. Furthermore, a novel scoring
card (SCM)-based SCMMTP method have been pro-
posed for prediction and analysis of MTPs. SCMMTP
method yielded a good prediction performance and uti-
lized dipeptide and amino acid propensity scores of
MTPs to analyze their structure and physicochemical
properties.
Considering the importance of MTPs in numerous

biological processes, understanding of their nature can
help to facilitate important future applications, including
drug design.

Additional material

Additional file 1: Table S1. Performance comparison of MTP predictors
on the training set.

Additional file 2: Table S2. 10 independent runs of SCMMTP on the
training set.

Additional file 3: Table S3. Amino acid propensity scores and
composition in MTP and non-MTP.

Figure 6 The example of ion channel and the ion filter process. The channel protein modified from pentameric ligand gated ion channel
(PDBID:3EHZ) is presented using Pymol. A. the protein is shown in ribbon and colored in blue and the yellow lines denote the polar residues
composing of the pore region. The greens dots indicate the ions and the red dots mean water molecules. The orang dash squares indicate the
pore and filter regions. B. the proposed ion selecting mechanisms: 1) ion are shelled with and the channel do not contain ions; 2) the ion with
water shell enter into the channel; 3) the water shelling the ion will be fixed by the polar residues using hydrogen bonds; 4) after the
coordination of the ion and water molecules are fix, the ion can easy go through the filter region and is stabilized with the filter residues; 5) the
water molecules composing empty shell will release out from the pore region and the channel change to the empty state for next ions.
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