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Abstract

Background: In addition to direct targeting and repressing mRNAs, recent studies reported that microRNAs
(miRNAs) can bridge up an alternative layer of post-transcriptional gene regulatory networks. The competing
endogenous RNA (ceRNA) regulation depicts the scenario where pairs of genes (ceRNAs) sharing, fully or partially,
common binding miRNAs (miRNA program) can establish coexpression through competition for a limited pool of
the miRNA program. While the dynamics of ceRNA regulation among cellular conditions have been verified based
on in silico and in vitro experiments, comprehensive investigation into the strength of ceRNA regulation in human
datasets remains largely unexplored. Furthermore, pan-cancer analysis of ceRNA regulation, to our knowledge, has
not been systematically investigated.

Results: In the present study we explored optimal conditions for ceRNA regulation, investigated functions
governed by ceRNA regulation, and evaluated pan-cancer effects. We started by investigating how essential factors,
such as the size of miRNA programs, the number of miRNA program binding sites, and expression levels of miRNA
programs and ceRNAs affect the ceRNA regulation capacity in tumors derived from glioblastoma multiforme
patients captured by The Cancer Genome Atlas (TCGA). We demonstrated that increased numbers of common
targeting miRNAs as well as the abundance of binding sites enhance ceRNA regulation and strengthen
coexpression of ceRNA pairs. Also, our investigation revealed that the strength of ceRNA regulation is dependent
on expression levels of both miRNA programs and ceRNAs. Through functional annotation analysis, our results
indicated that ceRNA regulation is highly associated with essential cellular functions and diseases including cancer.
Furthermore, the highly intertwined ceRNA regulatory relationship enables constitutive and effective intra-function
regulation of genes in diverse types of cancer.

Conclusions: Using gene and microRNA expression datasets from TCGA, we successfully quantified the optimal
conditions for ceRNA regulation, which hinge on four essential parameters of ceRNAs. Our analysis suggests
optimized ceRNA regulation is related to disease pathways and essential cellular functions. Furthermore, although
the strength of ceRNA regulation is dynamic among cancers, its governing functions are stably maintained. The
findings of this report contribute to better understanding of ceRNA dynamics and its crucial roles in cancers.
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Background
A group of short single-stranded RNAs, namely micro-
RNAs (miRNAs), has been widely investigated in this
decade. With an average length of 22 nucleotides only,
miRNAs are not protein coding transcripts. Instead,
they fulfill the role of regulators of gene expression by
complementarily binding to 3’ untranslated regions (3’
UTRs) of target mRNA transcripts [1,2]. According to
existing biological evidence, the binding of miRNAs on
mRNA can cause mRNA degradation or suppression of
translation, and may affect expression of up to one third
of the protein coding genes in humans [2]. In cancers,
the dysregulation of miRNAs has been proven to be
involved in oncogenesis (reviewed in [3]), tumor pro-
gression [4,5], and clinical outcomes, such as patient
survival [6,7]. With advances in next-generation sequen-
cing, a great number of novel miRNAs have been identi-
fied and deposited in the public database miRBase [8],
increasing the complexity of miRNA regulation.
Recently, reports postulated and experimentally vali-

dated that miRNAs can serve as an alternative layer of
post-transcriptional gene-gene regulation, namely the
competing endogenous RNAs (ceRNAs) [9-11]. Pairs of
genes (ceRNAs) fully or partially sharing common bind-
ing miRNAs can establish crosstalk with each other
through competition for a limited pool of the common
miRNAs (miRNA programs; abbreviated as miRP). When
expression level of one ceRNA rises (or decreases) in cells,
it attracts (or releases) the targeting miRNAs away from
(or toward) the other ceRNAs, and in turn has protective
(or degradative) effects on expression of the other ceRNA
partners. In other words, this postulation provides the sce-
nario that genes can, facilitated by miRNAs, regulate each
other without direct interaction. Through bioinformatic
analysis and in vitro experiments on the tumor suppressor
gene PTEN, previous studies suggested that ceRNAs
of PTEN, e.g., VAPA and ZEB2, can possess tumor-sup-
pressive properties by modulating (i.e. coexpressing with)
PTEN expression levels in a miRNA-dependent while pro-
tein-coding independent manner [9-11]. Through in silico
analysis of glioblastoma gene expression datasets, our
recent study further demonstrated that ceRNA regulation,
while only accounting for a small portion of global gene
regulation, plays an essential role in transient cellular
responses to dynamic inter-cellular signals [12]. Taken
together, these observations have revealed that ceRNA
regulation provides an alternative mechanism of gene reg-
ulation in essential cellular processes and functions. To
address the optimal cellular conditions for ceRNA regula-
tion, several recent studies used the mathematical mass-
action simulation [13,14] and cell line experiments [13] to
demonstrate the dependency of ceRNA regulation on the
dosages (i.e., cellular concentration) of both ceRNAs
and miRPs, and number of miRNA response elements,

suggesting the dynamic and condition-specific properties
of ceRNA regulation in vitro.
Realizing that biological processes typically involve

more complex mechanisms in vivo than in vitro, in the
first part of this study we investigate the optimal con-
ditions of ceRNA regulation in expression datasets
derived from clinical samples. The optimal conditions
may depend on the following essential factors: 1) Size
of miRNA programs, 2) Number of miRNA program
binding sites, 3) Expression level of miRNA programs,
and 4) Expression level of ceRNAs. Here we developed
an analytic scheme for determining whether these fac-
tors affect strength of ceRNA regulation. By integrating
four factors’ effects, the biological functions governed
by optimal ceRNA regulation can be elucidated. On the
other hand, while pan-cancer genomic analysis has been
widely utilized to reveal tumor-specific and distinct mole-
cular signature to better understand cancer heterogeneity
[15,16], pan-cancer analysis of ceRNA regulation, to
our knowledge, has not been systematically explored.
Collectively, the present study provides a systematic
investigation of optimal conditions for ceRNA regulation,
explores associated biological functions, and conducts
pan-cancer analysis of ceRNAs in four cancer types.

Results
Model overview and data preparation
The proposed study aims to comprehensively explore
optimal conditions for ceRNA regulation, to investigate
functions governed by ceRNA regulation, and to evaluate
pan-cancer effects. We started by investigating how essen-
tial factors, such as the size of miRNA programs, the num-
ber of miRNA program binding sites, and expression levels
of miRNA programs and ceRNAs affect the ceRNA regu-
lation in tumor samples from glioblastoma multiforme
(GBM) patients. Here we chose GBM as the model cancer
type because it is one of the most frequently studied
cancers in investigating ceRNA regulation [10,11]. The
analysis flowchart is illustrated in Figure 1. We analyzed
481 tumor sets with tumor-matched mRNA and miRNA
expression profiles from TCGA [17]. Based on the defini-
tion of previous studies, we defined putative ceRNA pairs
as two genes sharing any number of common predicted
targeting miRNAs. Recruiting the prediction data from the
TargetScan algorithm [2,18], we identified 47,451,423
putative ceRNA pairs with least one common targeting
miRNA, comprising 10,872 ceRNAs (genes). For each
of the putative ceRNA pairs, the pairwise correlation
coefficient of gene expression profiles was computed
(Figure 1A). Varying size of miRNA program, for example,
generated multiple cumulative distribution functions
(CDFs) of correlation coefficients. We then performed the
goodness-of-fit tests (Kolmogorov-Smirnov test; K-S test)
among the CDFs to pinpoint whether or not the optimal
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conditions for intensified ceRNA regulation depend on the
essential factors (Figure 1B). Here the intensified ceRNA
regulation refers to the overall increased degree of coex-
pression of ceRNA pairs. Upon identification of optimal
conditions with respect to the four essential factors, we
defined the optimal ceRNA pairs from the putative ceR-
NAs, which satisfy all the four optimal conditions. We

then performed functional annotation analysis to investi-
gate biological processes and functions governed by opti-
mal ceRNA regulation (Figure 1C). To further address the
cancer type-specific and independent effects, we evaluated
pairwise coexpression of the optimal ceRNA pairs identi-
fied from GBM in other TCGA cancer datasets, including
585-sample ovarian serous cystadenocarcinoma (OV) [19],

Figure 1 Analysis flowchart of this study. The present study is aimed to systematically explore optimal conditions and related biological
functions of ceRNA regulation in GBM, and confer cancer type specific and independent effects. (A) First we defined 47,451,423 putative ceRNA
pairs as pairs of genes (i.e., pairs of ceRNAs) sharing any number of predicted targeting miRNAs in the TargetScan database. Pairwise correlation
coefficients of putative ceRNA pairs were computed in 481-sample TCGA GBM datasets. (B) Correlation coefficients were partitioned into groups
based on the states of each essential factor of putative ceRNA pairs, followed by inter-group goodness-of-fit tests (K-S tests) that pinpointed the
essential factors and optimal conditions for ceRNA regulation. (C) 551,175 pairs of ceRNAs fulfilling all of the identified optimal conditions were
defined as optimal ceRNA pairs. In order to address differential and constitutive functions, we then included TCGA OV, LUSC, and LAML datasets
and performed pan-cancer analysis.
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133-patient lung squamous cell carcinoma (LUSC) [20],
and 197-sample acute myeloid leukemia (LAML) [21].
The comprehensive results from the functional annotation
level and from the enrichment of signaling pathways were
reported in later sections below.

Increased size of miRNA program and number of miRNA
program binding sites intensify ceRNA regulation in GBM
The size of miRNA programs (number of common target-
ing miRNAs) among the 47,451,423 putative ceRNA pairs
ranged from 1 to 262, with quartiles of 2, 6, and 14 (Addi-
tional file 1: Figure S1). In order to dissect the association
of size of miRPs with ceRNA regulation, we divided the
putative ceRNA pairs into 4 groups based on size of miRPs,
(i) 7,382,212 putative pairs < 25th-percentile, (ii) 15,289,167
pairs within 25th- 50th percentiles, (iii) 12,163,761 pairs
within 50th-75th percentiles, and (iv) 12,616,283 pairs ≥
75th-percentile, and compared the distributions of correla-
tion coefficients across groups. Coexpression of ceRNA
pairs was significantly elevated with increasing size of
miRPs (K-S test p-value < computing precision of double-
precision floating point, hereafter referred to as p-value ~0,
between any two groups) while correlation coefficients of
13,043,077 non-ceRNA pairs followed approximately the
null random distribution (Figure 2A-B).
As defined in the Methods section, the number of miRNA
program binding sites (#miRPBS) was determined by sum-
ming up the total number of interacting sites of miRPs on
the corresponding pairs of ceRNAs. Among all the puta-
tive ceRNA pairs the #miRPBS fell in the range of 2-1,859
(histogram in Additional file 2: Figure S2). We grouped
the putative ceRNA pairs based on the #miRPBS with
identical criteria as used in analyzing size of miRNA pro-
grams, resulting in 4 groups of 10,829,459, 12,443,877,
12,296,702, and 11,881,385 putative ceRNA pairs. With
the K-S tests, significant p-values between any two groups
(p-value ~0) indicate that the number of miRP binding
sites is positively associated with ceRNA coexpression
(Figure 2C-D). Taken together, our data demonstrate that
increased numbers of common targeting miRNAs as well
as the abundance of binding sites intensify the strength of
ceRNA regulation.

Strength of ceRNA regulation is dependent on expression
levels of miRNA programs and ceRNAs in GBM
We reasoned that ceRNA regulation might depend on
expression levels of miRNAs in miRPs. To test this hypoth-
esis, we split the putative ceRNAs into 4 groups by the
quartiles of expression levels of miRPs (6.29, 6.88, and 7.52
in log2 scale; histogram in Additional file 3: Figure S3),
resulting in 11,862,855 ceRNA pairs in each group. Here
the expression levels of miRPs were calculated by simply
averaging the expression levels of miRNAs in miRPs for
each ceRNA pair. All of the four groups (i.e., Q1 to Q4)

showed significantly different distributions of correla-
tion coefficients from non-ceRNA pairs and the Q3
group showed the most right-shifted distribution func-
tion (Figure 3A-B). Among the four groups, remarkably,
the putative ceRNA pairs with median miRP expression
levels (Q2 and Q3) exhibited higher correlation than
ones belonging to Q1 and Q4 (K-S test p-value ~0). This
result was in agreement with the common assumption
that both excessive abundance (loss of competition) and
sparse availability (nothing to compete for) of miRNA
transcripts will reduce regulation.
We further investigated whether ceRNA expression levels
play a crucial role in governing ceRNA regulation. 3,653,
3,222, and 3,343 genes with mean expression levels across
the samples falling in the range of 5-35, 35-65, and 65-95
percentiles of all 10,872 genes analyzed, respectively, were
annotated as low (L), medium (M), and high (H) expres-
sion states. We note that in the analysis we eliminated the
genes within the bottom or top 5% expression levels,
which may be largely attributed to background or satura-
tion noise. Putative ceRNA pairs were then categorized
based on expression states of their composed ceRNAs (see
Table 1 for number of ceRNA pairs in each group). Inter-
estingly, the results revealed high involvement of expres-
sion levels of ceRNAs in determining ceRNA regulation
(Figure 3C). 4,551,383 (9.59%) putative ceRNA pairs com-
posed of two highly expressed genes showed significant
coexpression (H-H) compared to other ceRNA pairs and
non-ceRNA pairs (K-S statistics = 0.356 and 0.378 and
both K-S test p-values ~0; Figure 3D). Overall, the results
suggest that ceRNA regulation is dependent on expression
levels of both miRPs and ceRNAs. Remarkably, our obser-
vation from analysis of clinical microarray data agrees with
Ala et al.’s data using a mathematical mass-action model
in that optimal cellular conditions for ceRNA regulation
depend on expression levels of miRNA programs as well
as ceRNAs [13].

Intertwined signaling among optimal ceRNAs is
associated with essential cellular functions and disease
pathways
Observing that regulation strength is intensified in ceRNA
pairs with a large size of miRP (Q4), large number of miRP
binding sites (Q4), appropriate miRP expression levels
(Q3), and high expression levels of both partner ceRNAs
(H-H), we then defined 551,175 pairs of ceRNAs satisfying
all of the four optimal conditions as optimal ceRNA pairs.
The optimal ceRNA pairs accounted for only 1.16% of all
putative ceRNA pairs, containing 2,405 optimal ceRNAs
(22.12%) of all 10,872 ceRNA genes. Additional file 4: Table
S1 includes list of the optimal ceRNA pairs and summary
of optimal ceRNAs. Pairwise coexpression of the optimal
ceRNA pairs led other ceRNA pairs and non-ceRNAs by
large margins (K-S statistics = 0.391 and 0.442 and both
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K-S test p-values ~0, Figure 4A). In order to dissect higher-
order properties of inter-ceRNA signaling, we merged the
identified optimal ceRNA pairs and constructed the optimal
ceRNA regulatory network (Figure 4B). On average each
ceRNA directly interacted with up to ~458 optimal ceRNA
partners, suggestive of the complex signaling maintained by
ceRNA regulation. Connected to 1,480 first-order neigh-
bors CDS2 (CDP-diacylglycerol synthase (phosphatidate
cytidylyltransferase) 2) was found as the top hub ceRNA in
the network, with the greatest number of first-order neigh-
bors. Many of the top 20 hub genes were previously
reported to be associated with cancer (8 genes), neurologi-
cal diseases (9), hereditary disorders (9), or the function of
cell death and survival (7) (data from database of Ingenuity
Pathway Analysis (Qiagen Inc.), Table 2). Notably, the

well-studied prognosis biomarker in cancers, SMAD
family member 4 (SMAD4), regulated up to 1,382 optimal
ceRNAs and was ranked 12th in the hub ceRNA list. Func-
tional annotation analysis indicated that the 2,405 optimal
ceRNAs played crucial roles in the biological functions of
intracellular transport (GO:0046907, Bonferroni adjusted
p-value = 9.26 × 10-18) and protein localization
(GO:0008104, Bonferroni adjusted p-value = 7.88 ×
10-17). Figure 4C-D depicts complex intra-function
ceRNA regulation within the two functions. For a more
comprehensive overview of functional annotation, we
utilized The Database for Annotation, Visualization and
Integrated Discovery (DAVID) [22,23] to analyze the
enriched clusters of Gene Ontology (GO) biological pro-
cess and molecular function terms. The top five clusters of

Figure 2 Effects of size of miRNA programs and number of miRNA program binding sites on ceRNA regulation. (A, B) Density functions
and cumulative distribution functions of correlation coefficients of putative ceRNA pairs. The putative ceRNA pairs were divided into four groups
by the quartiles of miRNA program sizes. (C, D) Density functions and cumulative distribution functions of correlation coefficients of putative
ceRNA pairs, which were partitioned based on number of miRNA program binding sites.
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functions were protein transport, protein catabolic process,
vehicle-mediated transport, protein modification/ubiquiti-
nation, and regulation of translation (see Table 3 DAVID
cluster scores > 5). Taken together, our data indicate that
optimal ceRNA regulation is highly involved in diseases
and maintenance of essential cellular functions.

Pan-cancer analysis revealed dynamic ceRNA regulation
among constitutive ceRNAs
For further conferring similarity/dissimilarity of ceRNA
regulation and functions among different cancer types,
we analyzed pairwise correlation coefficients of the
551,175 optimal ceRNA pairs in TCGA datasets of GBM,

Figure 3 Effects of expression levels of miRNA programs and ceRNAs on ceRNA regulation. (A, B) Density functions and cumulative
distribution functions of correlation coefficients of putative ceRNA pairs. The putative ceRNA pairs were split into groups by quartiles of miRNA
programs expression levels. (C) Density functions of correlation coefficients of putative ceRNA pairs. Here the putative ceRNA pairs were
categorized based on expression states (i.e., H, M, and L) of their composed ceRNAs. (D) Cumulative distribution functions of (C), focused on
comparison of ceRNA pairs composed of two highly expressed genes (H-H) to other ceRNA pairs and non-ceRNA pairs.

Table 1 Number of ceRNA pairs in groups categorized based on expression states of their composed ceRNAs.

High-expression genes (H) Medium-expression genes (M) Low-expression genes (L)

High-expression genes (H) 4551383 (9.59%)

Medium-expression genes (M) 8262660 (17.41%) 3786914 (7.98%)

Low-expression genes (L) 10134010 (21.36%) 9302868 (19.61%) 5654651 (11.92%)

The percentages were calculated with respect to the number of all putative ceRNA pairs (47,451,423).
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OV, LUSC, and LAML. Among the optimal ceRNA pairs,
452,718 (82.14%), 358,359 (65.02%), 239,886 (43.52%),
and 106,940 (19.40%) pairs (hereafter referred to as core
ceRNA pairs) exhibited significantly positive correlation
coefficients (right-tail p-value < 0.05) in GBM, OV,
LUSC, and LAML, respectively. Notably, although num-
bers of significant regulating pairs changed immensely,
the involved ceRNAs were largely similar among cancer
types: 2,389 (99.33% out of 2,405 optimal ceRNAs), 2,377
(98.84%), 2,353 (97.84%), and 2,293 (95.34%) ceRNAs

(core ceRNAs) in four cancer types, with 2,278 in com-
mon (Figure 5A). For the most highly connected core
ceRNAs in each cancer, LAML showed relatively distinc-
tive results from the solid tumors, with 27 out of the 59
(45.76%) LAML hub core ceRNAs appearing exclusively
in LAML (Figure 5B). Detailed lists of core ceRNA pairs
are tabulated in Additional file 5: Table S2. Also, the four
sets of core ceRNAs shared highly identical enriched bio-
logical functions with the optimal ceRNAs (data not
shown). Among the five clusters of GO terms associated

Figure 4 The optimal ceRNA regulatory network. (A) Cumulative distribution functions of correlation coefficients of optimal ceRNA pairs
satisfying four optimal conditions, other ceRNA pairs, and non-ceRNA pairs. (B) The optimal ceRNA regulatory network. The network is
constructed by merging the identified 551,175 optimal ceRNA pairs comprising 2,405 ceRNAs. Nodes and edges denote ceRNAs and optimal
regulatory relationship, respectively. (C) The subnetwork of intracellular transport (GO:0046907), generated by extracting 181 genes related to the
function and corresponding ceRNA regulatory pairs from (B). Node size is proportional to the number of first-order neighbors and nodes
accounting for more than 1% of all intra-function ceRNA regulating pairs are labeled with gene symbols. (D) The subnetwork of protein
localization (GO:0008104).
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with the optimal ceRNAs, the number of intra-function
core ceRNA pairs varied massively (coefficients of varia-
tion all > 28.13%, Table 3) while the number of compris-
ing ceRNAs remained relatively stable (coefficients of
variation ranging from 1.79% to 2.88%, Table 3). The top
(protein transport) and the 4th (protein modification/ubi-
quitination) clusters were found with the largest changes
in number of core ceRNA pairs and ceRNAs, respectively
(see Additional file 6: Figure S4 and Additional file 7:
Figure S5 for network visualization). Furthermore, our

analyses revealed that, although massive re-wiring under-
lies ceRNA regulation among cancer types, the overall
topology (recruitment of ceRNAs) of the core ceRNA
networks was relatively stable, maintained mainly by a
tiny subset of ceRNA regulating pairs with an extremely
high degree of coexpression (Additional file 8: Figure S6).
Incorporating these observations, we concluded that
while the strength of ceRNA regulation is dynamic across
cancer types, the essential biological functions governed
by ceRNA regulation are stably retained.

Table 2 Top 20 hub genes of the optimal ceRNA network.

Hub
genes

No. of first-order
neighbors

Percentage of
total optimal
ceRNA pairs

Entrez gene name Typea Disease/Functiona

CDS2 1480 0.269% CDP-diacylglycerol synthase
(phosphatidate cytidylyltransferase)

2

enzyme

PARVA 1470 0.267% parvin, alpha other cancer; cell death and survival

SLC1A2 1466 0.266% solute carrier family 1 (glial high
affinity glutamate transporter),

member 2

transporter neurological disease; hereditary disorder

NFIB 1435 0.260% nuclear factor I/B transcription
regulator

SSR1 1421 0.258% signal sequence receptor, alpha other

GTF2H5 1407 0.255% general transcription factor IIH,
polypeptide 5

other neurological disease; hereditary disorder

SAR1B 1398 0.254% SAR1 homolog B (S. cerevisiae) enzyme hereditary disorder

GSK3B 1392 0.253% glycogen synthase kinase 3 beta kinase cancer; cell death and survival; neurological
disease; hereditary disorder

HEG1 1390 0.252% heart development protein with
EGF-like domains 1

other cancer

ZNF148 1390 0.252% zinc finger protein 148 transcription
regulator

cell death and survival

EIF5 1387 0.252% eukaryotic translation initiation
factor 5

translation
regulator

cancer

SMAD4 1382 0.251% SMAD family member 4 transcription
regulator

cancer; cell death and survival; prognosis
biomarker; neurological disease; hereditary

disorder

TCF4 1374 0.249% transcription factor 4 transcription
regulator

cell death and survival; neurological disease;
hereditary disorder

QKI 1366 0.248% QKI, KH domain containing, RNA
binding

other cancer; neurological disease; hereditary
disorder

LSAMP 1364 0.247% limbic system-associated
membrane protein

other

ATXN1 1354 0.246% ataxin 1 transcription
regulator

cancer; cell death and survival; neurological
disease; hereditary disorder

DCP2 1354 0.246% decapping mRNA 2 enzyme

PSD3 1346 0.244% pleckstrin and Sec7 domain
containing 3

other cancer; neurological disease

SLC38A1 1340 0.243% solute carrier family 38, member 1 transporter

VAPB 1340 0.243% VAMP (vesicle-associated
membrane protein)- associated

protein B and C

other cell death and survival; neurological disease;
hereditary disorder

a Annotations were obtained from Ingenuity Pathway Analysis (Qiagen Inc.).
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Table 3 Top 5 clusters of Gene Ontology terms enriched in the 2,405 optimal ceRNAs

GO Term No. of
genes

Bonferroni
adjusted
P-value

Total No. of optimal
ceRNA pairs/ceRNAs

GBM
corea

OV
corea

LUSC
corea

LAML
corea

CV among
cancersb

Cluster 1 (Enrichment Score: 17.99)

GO:0046907~intracellular transport 184 9.26E-18

GO:0008104~protein localization 225 7.88E-17

GO:0015031~protein transport 200 4.67E-16

GO:0045184~establishment of protein
localization

201 6.18E-16 8229/261 7152/
261

6235/
258

3961/
254

2755/
247

34.85%/
2.06%

GO:0070727~cellular macromolecule
localization

126 2.75E-14

GO:0034613~cellular protein localization 124 1.09E-13

GO:0006886~intracellular protein transport 111 3.17E-11

Cluster 2 (Enrichment Score: 8.27)

GO:0009057~macromolecule catabolic
process

180 2.95E-08

GO:0044265~cellular macromolecule
catabolic process

168 1.04E-07

GO:0030163~protein catabolic process 143 6.75E-06

GO:0043632~modification-dependent
macromolecule catabolic process

134 8.41E-06

GO:0019941~modification-dependent
protein catabolic process

134 8.41E-06 4838/200 4418/
200

3836/
197

2379/
193

2049/
191

31.08%/
1.79%

GO:0051603~proteolysis involved in cellular
protein catabolic process

138 1.31E-05

GO:0044257~cellular protein catabolic
process

138 1.85E-05

GO:0006511~ubiquitin-dependent protein
catabolic process

68 8.96E-05

GO:0006508~proteolysis 177 1

Cluster 3 (Enrichment Score: 6.01)

GO:0016192~vesicle-mediated transport 141 8.98E-08

GO:0016044~membraneorganization 93 3.70E-04 3462/157 2882/
155

2519/
156

1607/
149

1208/
147

32.82%/
2.53%

GO:0010324~membrane invagination 50 0.935246

GO:0006897~endocytosis 50 0.935246

Cluster 4 (Enrichment Score: 5.67)

GO:0032446~protein modification by small
protein conjugation

45 6.85E-05

GO:0070647~protein modification by small
protein conjugation or removal

50 2.36E-04

GO:0016567~protein ubiquitination 40 7.30E-04

GO:0019787~small conjugating protein
ligase activity

45 0.012039 607/67 555/
67

488/
66

335/65 266/62 28.13%/
2.88%

GO:0016881~acid-amino acid ligase activity 51 0.020482

GO:0004842~ubiquitin-protein ligase activity 39 0.084550

GO:0016879~ligase activity, forming carbon-
nitrogen bonds

53 0.213866

Cluster 5 (Enrichment Score: 5.10)

GO:0010608~posttranscription al regulation
of gene expression

59 0.001017

GO:0006417~regulation of translation 40 0.036298 1312/105 1132/
105

961/
101

643/99 480/
100

31.90%/
2.25%

GO:0032268~regulation of cellular protein
metabolic process

96 0.576893

a Number of optimal ceRNA pairs/ceRNAs with significant positive correlation coefficients in corresponding cancer dataset, b Coefficients of variation of number
of core ceRNA pairs/ceRNAs among four cancer datasets.
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Discussion
Besides the well-studied role of miRNAs in directly regu-
lating gene expression, emerging evidence postulates that
ceRNA regulation is an alternative mechanism through
which miRNAs participate in gene regulation. Regulation
of ceRNAs has been proved to govern essential biological
functions in human development and diseases including
cancer (reviewed in [24,25]). While recent studies have
proved the dynamicity of ceRNA regulation among cellu-
lar conditions based on in silico and in vitro experiments
[13,14], comprehensive investigation into the strength of
in vivo ceRNA regulation remains largely unexplored.
Addressing this, in the present study we started by charac-
terizing crucial factors in determination of optimal condi-
tions using gene expression profiles derived from tumor
specimens from TCGA. Our analyses indicated the dose
effect of miRNA programs; i.e., increased size of miRNA
programs as well as increased number of miRNA program
binding sites enhance the competing relationship among
genes and thus elevate inter-ceRNA coexpression. Further-
more, the expressional levels of both miRNA programs
and ceRNAs affect ceRNA regulation and lead to statisti-
cally significant differences in distributions of correlation
coefficients, suggestive of the existence of optimal molecu-
lar conditions in which ceRNA regulation prevails. Inter-
mediate expression levels of miRNA programs allow
efficient and effective competition, thus further optimize
the power of ceRNA regulation; while varied expression
levels of ceRNAs exhibited divergent effects on ceRNA
regulation. Taken together, our analyses clearly demon-
strated that ceRNA regulation highly depends on states of
the essential factors and thus may involve complex and
dynamic processes in vivo. Incorporating the optimal con-
ditions of ceRNA regulation, we identified the optimal
ceRNA pairs and revealed the biological functions signifi-
cantly associated with protein transport, protein catabolic
processes, and regulation of translation. These functions
are all of essential significance in regular cellular routines,
indicative of the indispensable involvement of ceRNA

regulation in vivo. Recently, Denzler et al. assessed the
ceRNA effect in hepatocytes and liver using quantitative
biological experiments [26]. Our findings agree with their
paper where it was concluded that ceRNA regulation is
more likely to occur when both ceRNAs are highly
expressed or miRNA binding sites are sufficient. Interest-
ingly, analyzing the unusually highly expressed miRNA
miR-122, they showed that coexpression of miR-122 target
genes was achieved specifically at extremely high target site
abundance. Our data further showed the dependence of
ceRNA regulation on the essential factors and cancer types.
Taken together, we elucidated that ceRNA regulation is a
complex and sophisticated mechanism in vivo, thus diffi-
cult to be observed under some cellular conditions. Future
biological studies may investigate it in detail and carry out
essential clues to complex ceRNA regulation.
With the growing volume of DNA microarray and next-

generation sequencing samples, pan-cancer analysis has
unveiled both common and unique characteristics of
genomic aberrations [15], expression profiles [27], onco-
genic microRNAs [16], and secretome [28] across cancer
types. This emerging research domain illuminates the
tumor type-specific and independent molecular properties,
and further contributes to enhanced understanding of
tumorigenesis and progression. In this pioneer report, for
better characterizing ceRNA in cancers, we extended the
optimal ceRNA pairs identified from GBM to large data-
sets deposited in TCGA, including ovarian serous cystade-
nocarcinoma, lung squamous cell carcinoma, and acute
myeloid leukemia datasets. Our results demonstrated that
ceRNA regulatory networks are massively rewired across
cancer types. Acute myeloid leukemia exhibited the most
distinctive ceRNA pattern from other solid tumors.
Remarkably, although the strength and wiring of ceRNA
regulation changed immensely, the recruitment of genes
into the ceRNA regulatory network is highly stable among
cancer types; i.e., the highly intertwined ceRNA regulatory
relationship enables genes to be effectively regulated by
some of their ceRNA partners regardless of perturbations

Figure 5 Venn diagrams of core ceRNAs among four cancer types. (A) Comparison of core ceRNAs in four cancer datasets. Core ceRNAs are
genes that comprise the core ceRNA pairs with significant positive correlation coefficients in a cancer dataset. (B) Comparison of top hub core
ceRNAs which collectively account for 10% of the total core ceRNA regulating pairs in corresponding cancer datasets.
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to cellular conditions. This property of ceRNA regulation
stabilizes intra-function regulation and thus facilitates
maintenance of essential biological functions in cells. With
the increasing number of molecular profiles of cancers,
future analysis may extend the analysis to more cancer
types and provide universal landscape of ceRNA regulation.
In the present study, for each of four factors we

attempted with the quartiles and specific percentiles to
partition the putative ceRNAs into groups and compare
inter-group distribution of correlation coefficients. For
inferring more subtle changes in distribution of correlation
coefficients, future work may use other methods that are
capable of revealing local fluctuations of distribution func-
tions. For defining putative ceRNA pairs, we employed
prediction data from the miRNA-target gene prediction
algorithm of TargetScan. TargetScan is a widely used pre-
diction algorithm that takes into consideration both
sequence complementarity (especially the seed regions of
miRNAs) and conservativity of binding sites. There are
still a handful of prediction algorithms, such as PicTar,
based on genome-wide sequence alignment [29] and mir-
Bridge utilizing gene set enrichment analysis [30]. While
different prediction methods, as well as species-specific
targeting, define dissimilar miRNA-target gene pairs, since
our present report was aimed to investigate the systematic
view of ceRNA regulation and its optimal conditions, out
of simplicity we only employed the TargetScan algorithm.
Indeed, ceRNAs with larger number of targeting miRNAs
are expected to have more putative ceRNA partners, and
thus account for a higher proportion of the 47 million
putative ceRNA pairs. However, in the analysis of optimal
conditions for each parameter, the calculation of correla-
tion coefficients was based on “ceRNA pairs” instead of
“ceRNAs”. Furthermore, since TargetScan is one of the
algorithms with the highest prediction precision (reviewed
in [31]), in this study the putative ceRNA pairs were
defined with high confidence, regardless of the numbers of
their ceRNA partners. Thus, we reason that differences in
the number of ceRNA partners among genes would not
cause major systematic biases to our analysis.
Besides, here we adopted the biologically straightforward

Pearson correlation as a measure of gene-gene coexpres-
sion, other methods such as mutual information and poly-
nomial regression may provide alternatives for modeling
non-linear properties of miRP-modulated coexpression of
ceRNAs. In the report, out of simplicity we focused on
“pairwise” relationship between ceRNA pairs. However, the
competition for a set of miRNAs may not be exclusively
limited to pairs of ceRNAs since a handful of ceRNAs can
compete, fully or partially, for common targeting miRNAs.
Realizing that one miRNA can target up to hundreds of
mRNAs in the genome-wide scale, taking all these factors
into account will exponentially complicate the problem
and thus require more complex mathematical models.

Conclusions
Here we carried out a comprehensive investigation into
optimal conditions for competing endogenous RNA regula-
tion, associated biological functions, and pan-cancer effects
of ceRNA regulation. Using TCGA GBM microarray data-
sets, we demonstrated that regulation between ceRNAs is
dynamic, however the optimal conditions are quantifiable.
The obtained optimal ceRNA regulatory network is asso-
ciated with diseases pathways and essential cellular func-
tions. Pan-cancer analysis revealed that while strength of
ceRNA regulation is dynamic across cancer types, the
highly intertwined ceRNA signaling stably maintains the
essential functions it governs. Therefore, we expect the
study presented here brings biological insights into the
dynamicity and essential roles of ceRNA regulation.

Methods
Microarray expression datasets
Microarray datasets of glioblastoma multiforme (GBM)
[17], ovarian serous cystadenocarcinoma (OV) [19], lung
squamous cell carcinoma (LUSC) [20], and acute mye-
loid leukemia (LAML) [21] patients were downloaded
from The Cancer Genome Atlas (TCGA) database. We
extracted 481 GBM samples with paired miRNA and
mRNA expression profiles from the datasets of 557-
sample Affymetrix Human Genome U133A Arrays and
505-sample Agilent 8 × 15K Human miRNA-specific
microarrays. The OV, LUSC, and LAML datasets were
composed of 585-sample Affymetrix Human Genome
U133A Arrays, 133-sample Affymetrix Human Genome
U133A Arrays, and 197-sample Affymetrix Human Gen-
ome U133 Plus 2.0 Arrays, respectively. We utilized
TCGA Level 3 data, which were previously normalized
and merged into gene- or miRNA-level expression
values by TCGA, for consequent analysis in this study.

MiRNA targeting genes
For defining miRNA targeting genes we adopted miRNA-
target gene prediction data from the TargetScan database
[2,18], which predicts binding sites of miRNA families on
targets based on the context scores. Genes with either
conserved or poorly conserved binding sites for a miRNA
were defined as targeting genes of interest for the corre-
sponding miRNA. For each of the genes with multiple
transcripts, only one transcript was selected as the repre-
sentative transcript. Let G and M denote the total num-
ber of genes and miRNAs, respectively. The miRNA-
target gene information can be mathematically described
in the G-by-M miRNA-target matrix T.

T = {tgm}
where g = 1,..., G, m = 1,..., M, and tgm is an indicator

function, or tgm = 1 if mth miRNA binds to gth gene as
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defined above, otherwise, tgm = 0. Putative competitive
endogenous RNA (ceRNA) pairs, defined as pairs of
genes sharing common predicted binding miRNAs (i.e.,
miRNA programs or miRPs) according to previous
reports [9,11], correspond to non-zero elements in the
putative ceRNA matrix P, or

PG×G = T × T′

where T’ is the transpose of T. For each putative
ceRNA pair, we calculated the number of miRNA pro-
gram binding sites (#miRPBS) by summing the numbers
of binding sites of all miRNAs belonging to the miRP
on the pair of ceRNAs.

Statistical analysis
The Pearson correlation coefficient was utilized to mea-
sure degree of coexpression between expression profiles
of pair of ceRNAs. In order to identify the essential fac-
tors that affect ceRNA regulation, we compared distri-
butions of correlation coefficients obtained from
different sets of putative ceRNA pairs. Each set of
ceRNA pairs was derived by varying the size of miRPs,
number of miRNA binding sites, etc., all essential factors
for determination of ceRNA pairs. The goodness-of-fit
between two cumulative distribution functions (CDFs)
was evaluated with the two-sample Kolmogorov-Smir-
nov test (K-S test). By measuring the K-S statistic as the
maximum vertical distance of two CDFs, the K-S test
statistically infers whether two sets of samples are
drawn from the same distribution and thus provides a
nonparametric measure for comparing two CDFs. The
putative ceRNA pairs satisfying the optimal states of
essential factors in the GBM dataset were selected and
defined as the “optimal ceRNA pairs”.

Construction and visualization of ceRNA networks
To confer higher-order signaling properties among
ceRNA pairs, we first identified optimal ceRNA pairs
and then constructed the ceRNA networks for various
cancer types. Nodes and edges in the network denote
ceRNAs and co-expressions between ceRNA pairs,
respectively. We utilized the open source software
Cytoscape [32] for visualization of the network.
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