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Abstract

Background: microRNA (miRNA) expression plays an influential role in cancer classification and malignancy, and
miRNAs are feasible as alternative diagnostic markers for pancreatic cancer, a highly aggressive neoplasm with
silent early symptoms, high metastatic potential, and resistance to conventional therapies.

Methods: In this study, we evaluated the benefits of multi-omics data analysis by integrating miRNA and mRNA
expression data in pancreatic cancer. Using support vector machine (SVM) modelling and leave-one-out cross
validation (LOOCV), we evaluated the diagnostic performance of single- or multi-markers based on miRNA and
mRNA expression profiles from 104 PDAC tissues and 17 benign pancreatic tissues. For selecting even more
reliable and robust markers, we performed validation by independent datasets from the Gene Expression Omnibus
(GEO) and the Cancer Genome Atlas (TCGA) data depositories. For validation, miRNA activity was estimated by
miRNA-target gene interaction and mRNA expression datasets in pancreatic cancer.

Results: Using a comprehensive identification approach, we successfully identified 705 multi-markers having
powerful diagnostic performance for PDAC. In addition, these marker candidates annotated with cancer pathways
using gene ontology analysis.

Conclusions: Our prediction models have strong potential for the diagnosis of pancreatic cancer.

Background
The development of early diagnostic biomarkers and
innovative therapeutic strategies to prevent the progres-
sion of cancers is urgent. However, common biomarker
development strategies, based on gene expression alone,
have only limited potential to identify novel biomarkers.
Due several distinguishing characteristics, microRNAs
(miRNAs) have become new potential biomarkers in
cancer genetics. miRNAs are small noncoding RNA
molecules which “micro-manage” messenger RNA
(mRNA) expression by reducing its translation and

stability [1]. Recent studies show that in particular, miR-
NAs play a crucial role in cancer cell proliferation [2],
apoptosis [3], angiogenesis [4], metastasis [5], and che-
moresistance [6] by changing the expression of both
oncogenes and tumor suppressors [7] in pancreatic can-
cer. These biological roles of miRNAs represent their
potential as diagnostic biomarkers for pancreatic cancer.
An important step of estimating the gene-regulatory

activity of miRNAs is accurately predicting their targets
and monitoring their expression levels. Several computa-
tional target prediction tools have been developed, such
as TargetScan version 6.2 [8], PITA version hg18 [9],
and miRvestigator [10]. However, these in silico target
prediction tools suffer from high false positive rates
because the tools use only sequence complementarity
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and assume structural stability (following putative
assembly) to predict a specific miRNA’s target [11]. As
miRNA regulatory activation often depends on the distinct
tissue being studied (e.g., cancer tissue), the use of condi-
tion (i.e., stress, S-phase, etc.)-specific miRNA and mRNA
expression data is required to find true miRNA activity
[12]. Therefore, the use of miRNAs as potential biomar-
kers in dismal cancers such as pancreatic cancer remains
difficult.
Pancreatic cancer is one of the most hard-to-diagnose

and aggressive malignancies, despite increasing knowledge
of its etiology [13]. Because of its highly lethal nature and
silent symptoms, pancreatic cancer has remained one of
the leading causes of cancer-related death [14]. Among
the several types of pancreatic cancers, pancreatic ductal
adenocarcinoma (PDAC) is the most abundant cancer
type which accounts for about 85% of exocrine pancreatic
cancers. Although recent advances in gene expression pro-
filing technology, such as microarray and massively paral-
lel sequencing, enable researchers to discover gene-based
biomarkers for PDAC diagnosis, there are no highly effec-
tive diagnostic markers for PDAC. In order to improve the
survival rate of PDAC patients, it is important to identify
efficient diagnostic, prognostic, and therapy response
markers.
In this study, we performed a novel approach to

identify diagnostic markers for PDAC by integrating

miRNA and mRNA expression profiles. Using paired
miRNA and mRNA expression profiling, we success-
fully identified promising mRNA and miRNA markers.
By determining differential miRNA expression profiles
and interaction with their target genes in PDAC, as
compared to normal pancreatic tissues, we estimated
miRNA expression levels in independent datasets lack-
ing miRNA expression (i.e., having mRNA data only),
and validated the diagnostic performance of miRNA
marker candidates.

Results and discussion
In this section, we firstly identified multi-markers using
mRNA and miRNA expression data from 104 PDAC
tissues and 17 benign pancreatic tissues, using support
vector machine (SVM) classification and leave-one-out
cross-validation (LOOCV). Then, using miRNA target
interactions constructed using publically available tar-
get prediction tools, we validated marker candidates in
independent datasets to select more reliable markers.
In the case of independent datasets lacking miRNA
expression, we used estimated miRNA activity for
validation (based on the expression levels of the
miRNA target mRNA transcripts). After validation of
the selected candidates, we used other cancer datasets
to evaluate and annotate their functions, as shown in
Figures 1 and 2.

Figure 1 An analysis scheme of our integrated analysis for PDAC. 104 PDAC tumor and 17 normal pancreatic tissues were separately
analysed for gene and miRNA expression using microarrays. Specific features of miRNAs and mRNAs were modelled by SVM and leave-one-out
cross-validation (LOOCV). These were then verified by miRNA target prediction algorithms and finally, validated in independent datasets.
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Identification of multi-marker candidates from PDAC
expression data
For identification of multi-marker candidates for PDAC,
we used miRNA and mRNA expression data from 121
total pancreatic tissues of 104 PDAC tumors and 17
benign tissues [15]. To prevent overfitting of imbalanced
data, LOOCV and SVM with sample class weights were
applied, as described in the Methods section. After evalua-
tion analysis using PDAC and independent datasets, we
identified 705 multi-markers for 27 miRNAs, and 289
genes for PDAC diagnosis.
Table 1 shows the 39 identified multi-markers with

high accuracy (BAs > 0.85 and AUC > 0.85 in our
dataset) for diagnosis of PDAC in our training datasets
and independent datasets. Specifically, miR-107 was
upregulated in PDAC, and miR-107 was recently found
to be silenced by promoter DNA methylation in pancrea-
tic cancer [16]. However, DNA demethylation events
could induce miR-107 expression showing that epigenetic
mechanisms regulating miRNA levels may be involved in
pancreatic carcinogenesis. Likewise, miR-135b was
reported as a biomarker for PDAC [17], ovarian cancer,
and colon cancer [18], in which it promotes proliferation,
invasion, and metastasis [19], and miR-135b was similarly
upregulated in our findings. By contrast, downregulation
of miR-148a was reported in pancreatic, bladder, and lung
cancers, and miR-148a was preventative of tumor angio-
genesis and cancer progression [20]. miR-21 is also a well-
known potential biomarker for diagnosis, prognosis, and
chemosensitivity of pancreatic cancer. As most miR-21
targets are tumor suppressors, miR-21 is associated with
various cancers such as those of the breast, ovary, cervix,

colon, lung, liver, brain, esophagus, prostate, pancreas, and
thyroid [21]. miR-222 has also been reported as differen-
tially expressed in most pancreatic cancers, in which it
promotes poor survival rates [22].
In Table 2, 27 miRNAs were identified for efficacy in the

diagnosis of PDAC. Of these, 22 were previously known to
be differentially expressed in pancreatic cancer [7]. How-
ever, miR-941, miR-28, mir-487a, mir-299, and mir-503
have never been reported in pancreatic cancer.
Out of 289 target genes, 142 were coregulated by more

than one miRNA. Table 3 lists 17 target genes that were
coregulated by more than 6 miRNAs. Although there are
complex interactions between these target genes and miR-
NAs, their expression direction was required to be nega-
tively correlated (e.g., miRNAs upregulated and targets
downregulated) for PDAC vs. normal conditions in
miRNA-target gene network (Figure 3). The function of
most co-regulated target genes correlated with cancer
metabolism and cancer progression, through such pro-
cesses as attenuated apoptosis, abnormal development,
angiogenesis, and transcriptional dysregulation.

Estimating the relationship between miRNA activity and
miRNA targets
In our previous study [15], we used the average balanced
accuracy (BA), i.e., the arithmetic mean of sensitivity and
specificity of target-genes, as a metric for miRNA activity
performance. In this paper, we modified the estimation
algorithm to improve accuracy of miRNA activity
(Figure 2). The main difference was that reliable miRNA-
target gene relationships were determined by testing pan-
creatic cancer datasets for estimating miRNA activity.

Figure 2 Estimation scheme miRNA expression. Based on the predicted targeting activity of specific miRNAs and their targets identified by
three miRNA target prediction algorithms, we used linear regression to determine mRNA levels and balanced accuracies for both miRNAs and
their specific target transcript mRNAs.
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Using GSE32688 dataset [23] with both mRNA
expression and miRNA expression, we evaluated our
current and previous miRNA estimation algorithm by
comparing the estimated and observed BAs of specific
miRNAs. The mean-squared errors were 0.01515 and
0.04877 for our new and previous miRNA estimation
algorithms, respectively.

Diagnostic performance of selected markers in other
cancers
Using our selected PDAC multi-markers, we evaluated
their diagnostic performance in lymphoma and breast,
hepatocellular, and lung cancers. All independent data-
sets were collected from the GEO. Figure 4 presents our
selected multi-markers for the four other cancers. Most

Table 1 Performance of multi-markers.

miRNA Target gene

PDAC dataset Independent dataset PDAC dataset Independent dataset

miRNA regulation BA AUC PDAC1 PDAC2 PDAC3 target gene corra p-valueb BA AUC PDAC1 PDAC2 PDAC3

miR-107 up 0.859 0.851 0.800 0.729 0.670 DTNA -0.625 1.34E-14 0.936 0.937 0.937 0.795 0.810

IFRD1 -0.593 6.44E-13 0.932 0.988 0.949 0.782 0.550

KIAA1324 -0.636 3.30E-15 0.932 0.975 0.920 0.795 0.762

BTG2 -0.629 8.12E-15 0.917 0.982 0.800 0.705 0.550

NTRK2 -0.499 4.83E-09 0.889 0.905 0.823 0.705 0.772

VTCN1 -0.309 5.39E-04 0.880 0.748 0.829 0.705 0.720

SGK1 -0.451 1.85E-07 0.871 0.852 0.817 0.667 0.550

ATP8A1 -0.427 9.36E-07 0.864 0.882 1.000 0.769 0.678

USP2 -0.464 7.14E-08 0.864 0.894 0.960 0.744 0.633

PHF17 -0.600 2.80E-13 0.863 0.941 0.954 0.705 0.932

miR-135b up 0.870 0.935 0.869 0.708 0.713 BACE1 -0.599 3.18E-13 0.941 0.967 1.000 0.821 0.786

DTNA -0.525 5.24E-10 0.936 0.937 1.000 0.795 0.810

PELI2 -0.528 4.08E-10 0.927 0.973 1.000 0.769 0.772

VLDLR -0.635 4.25E-15 0.922 0.969 1.000 0.756 0.741

RRBP1 -0.388 1.03E-05 0.913 0.995 1.000 0.821 0.550

MKNK1 -0.603 1.88E-13 0.902 0.953 1.000 0.744 0.786

BCAT1 -0.524 6.04E-10 0.893 0.939 1.000 0.859 0.713

SEMA6D -0.498 5.38E-09 0.893 0.904 1.000 0.769 0.762

ATP8A1 -0.437 4.95E-07 0.864 0.882 1.000 0.769 0.678

PHF17 -0.575 4.54E-12 0.863 0.941 1.000 0.705 0.932

miR-148a down 0.927 0.956 0.897 0.788 0.688 SLC2A1 -0.486 1.41E-08 0.962 0.987 0.914 0.756 0.550

MBOAT2 -0.404 3.96E-06 0.929 0.951 0.926 0.872 0.869

TRAK1 -0.371 2.60E-05 0.905 0.973 0.863 0.692 0.793

SULF1 -0.494 7.54E-09 0.878 0.864 0.800 0.923 0.755

KLF5 -0.425 1.10E-06 0.870 0.870 0.926 0.769 0.835

LRCH1 -0.312 4.63E-04 0.865 0.916 0.909 0.654 0.772

ETV1 -0.325 2.57E-04 0.855 0.875 1.000 0.846 0.724

miR-21 up 0.897 0.925 0.903 0.725 0.687 DTNA -0.559 2.28E-11 0.936 0.937 0.937 0.795 0.810

IFRD1 -0.532 2.80E-10 0.932 0.988 0.949 0.782 0.550

BTG2 -0.648 6.89E-16 0.917 0.982 0.800 0.705 0.550

BCAT1 -0.551 5.04E-11 0.893 0.939 0.903 0.859 0.713

NTRK2 -0.444 2.92E-07 0.889 0.905 0.823 0.692 0.772

LIFR -0.596 4.64E-13 0.888 0.964 0.903 0.769 0.918

ACAT1 -0.511 1.81E-09 0.875 0.830 1.000 0.795 0.550

PHF17 -0.609 1.03E-13 0.863 0.941 0.954 0.705 0.932

SNTB1 -0.449 2.21E-07 0.855 0.802 1.000 0.769 0.585

miR-222 up 0.924 1.012 0.869 0.736 0.759 CXCL12 -0.452 1.69E-07 0.932 0.970 0.851 0.705 0.932

miR-34a up 0.908 0.912 0.806 0.742 0.670 DTNA -0.447 2.43E-07 0.936 0.937 0.937 0.795 0.810

BCAT1 -0.514 1.46E-09 0.893 0.939 0.903 0.859 0.713
a.correlation coefficient between miRNA mRNA expression. b.p-value from linear regression with miRNA and mRNA expression.
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miRNA markers showed weak association with other
cancers (besides PDAC).

Conclusion
In conclusion, we developed a novel single and multi-
marker identification approach for PDAC diagnosis by
analyzing integrated mRNA and miRNA gene expres-
sion profiles. To overcome overfitting of imbalanced
data, we applied a SVM model with sample class
weights and cross-validation, based on sample partition-
ing in our dataset and independent datasets. Finally, we
identified 705 multi-markers for 27 miRNAs and 289
genes as promising potential biomarkers for pancreatic
cancer.

Methods and materials
Expression profile datasets
To identify multi-markers in pancreatic cancer, we used
mRNA and miRNA expression data from 104 PDAC
patients and 17 normal pancreatic patients, following
surgery for kidney stones and non-malignant pancreatic

disease at Seoul National University Hospital (SNUH)
(The detailed experiment and pre-processing steps are
described in [15]). All human subjects studies were
approved by the Institutional Review Board of Seoul
National University Hospital. In this dataset, mRNA and
miRNA expression levels were profiled on Affymetrix
(Santa Clara, CA, USA) HuGene 1.0 ST (33,297 probes)
arrays and Affymetrix GeneChip miRNA 3.0 (25,016
probes) arrays, respectively. We used 5,617 human
miRNA probes, out of 25,016 probes, on the Affymetrix
GeneChip miRNA 3.0 array.
For validation with independent datasets of selected

multi-marker candidates, we collected expression data-
sets for PDAC (GSE32688 [23], GSE15471 [24], and
GSE16515 [25]), lymphoma (LP; GSE14879 [26]), breast
cancer (BC; GSE10780 [27]), hepatocellular carcinoma
(HCC; GSE6764 [28]), and lung carcinoma (LC;
GSE19188 [29]) from the Gene Expression Omnibus
(GEO) [30]. All collected expressed data were performed
using quantile normalization and RMA normalization by
R package.

Table 2 Performances of selected 27 miRNAs.

PDAC dataset Independent PDAC dataset

miRNA regulation # target genes BA AUC PDAC1 PDAC2 PDAC3

miR-148a down 18 0.927 0.956 0.897 0.788 0.688

miR-222 up 4 0.924 0.962 0.869 0.736 0.759

miR-100 up 11 0.923 0.957 0.794 0.734 0.656

miR-216b down 4 0.922 0.972 0.777 0.748 0.702

miR-155 up 24 0.912 0.949 0.726 0.740 0.635

miR-203 up 74 0.899 0.921 0.703 0.717 0.676

miR-23a up 136 0.898 0.987 0.703 0.726 0.685

miR-21 up 33 0.897 0.925 0.903 0.725 0.687

miR-130b down 20 0.897 0.981 0.771 0.762 0.654

miR-196b up 1 0.890 0.868 0.789 0.738 0.669

let-7i up 29 0.883 0.948 0.720 0.746 0.681

miR-1825 down 8 0.881 0.833 0.760 0.745 0.633

miR-135b up 13 0.870 0.935 0.869 0.708 0.713

miR-941 up 1 0.864 0.849 0.749 0.760 0.553

miR-28 up 20 0.860 0.898 0.749 0.744 0.685

miR-107 up 40 0.859 0.851 0.800 0.729 0.670

miR-145 up 25 0.859 0.892 0.743 0.717 0.666

miR-34a up 2 0.855 0.811 0.777 0.753 0.679

miR-31 up 5 0.851 0.840 0.811 0.739 0.722

miR-103a up 39 0.843 0.815 0.737 0.731 0.670

miR-487a up 3 0.839 0.830 0.720 0.759 0.685

miR-299 up 5 0.836 0.782 0.743 0.724 0.658

miR-503 up 6 0.824 0.830 0.800 0.714 0.683

miR-133b up 2 0.817 0.831 1.000 0.705 0.657

miR-150 up 1 0.811 0.896 0.806 0.673 0.720

miR-212 up 52 0.810 0.736 0.714 0.732 0.670

miR-92a up 8 0.806 0.774 0.880 0.727 0.634
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miRNA and mRNA biomarker identification for diagnosis
of pancreatic cancer
We developed a novel approach to identify candidate
mRNA and miRNA multi-markers for PDAC. The sche-
matic workflow of our pipeline is depicted in Figure 1.
Paired miRNA and mRNA expression, and miRNA-
mRNA networks were integrated to predict performance
for diagnosis of PDAC. This approach is composed of
five steps. First, the relationships between miRNA and
its target genes were constructed by miRNA target pre-
diction tools. Second, mRNA and miRNA biomarker
candidates were detected using our PDAC expression
data. In the third step, mRNA and miRNA biomarker
candidates were validated by independent datasets.
Fourth, diagnostic performances of the validated marker
candidates were checked in other cancers. Finally, in the
last step, the biological functions of the validated marker
candidates were annotated.

Step 1: Prediction of miRNA-target gene interaction
Although many miRNA studies have been performed, only
a few miRNA targets have been well validated. To collect
reliable miRNA-target relationships covering almost all
miRNAs, we employed several in silico prediction algo-
rithms. First, we used all validated target information for
567 miRNAs from miRTarBase 4.0 [31], and predicted tar-
get information for 2,735 miRNAs from three miRNA tar-
get prediction methods such as TargetScan version 6.2 [8],

PITA version hg18 [9], and miRvestigator [10]. These
three prediction methods were evaluated as reliable meth-
ods in [32]. In this paper, we used 1,357,560 miRNA-target
relationship data for 2,735 miRNAs and 18,505 targeted
genes. For detecting more reliable miRNA-target relation-
ships for specific conditions such as PDAC, only negatively
correlated expressed target genes (correlation coefficient <
-0.3 and p-value < 0.05 using linear regression) were cho-
sen (Figure 2). Finally, 33,422 miRNA-target relationship
data points, for 1,176 miRNAs and 6,424 targeted genes,
were used in this study.

Step 2: Identification of multi-marker candidates with
PDAC data
To identify multi-marker candidates, we focused on
classification performance with PDAC tissues and
benign tissues. In this step, support vector machine
(SVM) was applied for qualitative classification evaluated
with leave-one-out cross validation (LOOCV). In consid-
eration of our imbalanced sample size (i.e., having many
more cancer than benign sample datasets), SVM was
employed with sample class weights (acancer = 1 and
anormal = 6.117647) [33]. BA, area under the curve
(AUC), and p-values from the permutation tests were
used for assessing the performance of each prediction
model. Using LOOCV, we calculated BA and AUC
values from the prediction accuracies of each marker in
the testing dataset. BA is defined as an average of

Table 3 Coregulated target genes.

Target
gene

GO No. of
miRNAs

miRNAs

DTNA signal transduction 12 let-7i, miR-103a, miR-107, miR-135b, miR-203, miR-212, miR-21, miR-222, miR-223, miR-23a,
miR-299, miR-34

NTRK2 Apoptosis 11 let-7i, miR-103a, miR-107, miR-203, miR-212, miR-21, miR-222, miR-223, miR-23a, miR-299,
miR-31

PHF17 Apoptosis 11 let-7i, miR-103a, miR-107, miR-135b, miR-145, miR-155, miR-21, miR-212, miR-21, miR-222,
miR-23a

DMD extracellular matrix
organization

9 let-7i, miR-103a, miR-107, miR-155, miR-203, miR-212, miR-21, miR-223, miR-31

SEMA6D development 9 miR-103a, miR-107, miR-135b, miR-212, miR-222, miR-23a, miR-31, miR-503, miR-92a

EPB41L4B actomyosin structure
organization

9 let-7i, miR-103a, miR-107, miR-203, miR-212, miR-23a, miR-31, miR-487a, miR-503

BCAT1 cell cycle 9 let-7i, miR-135b, miR-145, miR-155, miR-196b, miR-203, miR-21, miR-28, miR-34

FAM13A signal transduction 8 miR-203, miR-212, miR-21, miR-222, miR-223, miR-23a, miR-34, miR-487a

GOLGA8A 8 miR-100, miR-203, miR-203, miR-223, miR-223, miR-23, miR-23a, miR-92a

ADHFE1 metabolism 7 let-7i, miR-203, miR-222, miR-223, miR-23a, miR-28, miR-31

ARHGAP24 angiogenesis 7 miR-103a, miR-107, miR-145, miR-203, miR-21, miR-223, miR-23a

ATP8A1 metabolism 7 miR-103a, miR-107, miR-135b, miR-203, miR-23a, miR-28, miR-31

SLC39A14 ion transport 7 miR-155, miR-212, miR-222, miR-223, miR-23a, miR-28, miR-31

ERI2 metabolism 7 let-7i, miR-100, miR-103a, miR-107, miR-203, miR-222, miR-23a

LGR4 immune response 7 let-7i, miR-203, miR-212, miR-222, miR-223, miR-23a, miR-31

SETBP1 7 miR-103a, miR-107, miR-135b, miR-203, miR-21, miR-223, miR-28

INSIG1 cell proliferation 7 miR-100, miR-103a, miR-203, miR-212, miR-222, miR-34, miR-92a
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sensitivity and specificity, and is a more appropriate eva-
luation measure for imbalanced datasets than conven-
tional accuracy (i.e., the proportion of the true results
among the number of total test datasets). The permuta-
tion p-values were calculated from empirical null distri-
bution of BAs by 1 × 106 sample permutations for
markers with high BAs.
Using the miRNA and mRNA target relationships gen-

erated in step 1, 1504 multi-markers for 217 genes and
56 miRNAs were selected with BAs > 0.8, AUC > 0.8,

and Bonferroni adjusted p-values < 0.05 for genes and
miRNAs, respectively.

Step 3: Evaluation of prediction performance in
independent PDAC datasets
To avoid selection of markers with specific data-depen-
dency or specific platform-dependency, all identified sin-
gle or multi-markers were evaluated using three public,
independent PDAC datasets collected from the GEO
[30] (Table 2). Of the three, PDAC dataset1 had both

Figure 3 miRNA-target gene network and Gene ontology. Blue diamond is miRNA. Circle node is gene. Red circle node is gene with gene
ontology related with cancerization such as apoptosis, angiogenesis, cell proliferation, blood vessel development, transcriptional regulation, and
immune response.
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mRNA and miRNA expression microarray profiles from
GSE32688 [23], while PDAC dataset2 and dataset3 had
only mRNA expression profiles using microarray data
from GSE15471 [14] and GSE16515 [25]. To select reli-
able and robust miRNA-target gene multi-markers, miR-
NAs and their putative target genes having negatively
correlated expression, and BAs > 0.7 in PDAC dataset1,
were selected.
To validate miRNA prediction performance in the

profile datasets (PDAC datasets 2 and 3) containing
only mRNA expression, we estimated the expression of
specific miRNAs using their predicted miRNA-target
gene relationships. In Figure 2, linear regression models
were fitted with miRNA and mRNA expression data
from the 104 cancer tissues and 17 benign tissues.
Then, the expression of the miRNAs of interest was
estimated by regression models and its targeted-gene
expression data in the independent datasets. Using this
estimated miRNA expression, its prediction performance
could then be calculated. We extracted the multi-mar-
kers with BAs > 0.7 in one or more of the PDAC data-
sets 2 and/or 3. Finally, after validation with the three

independent PDAC datasets, we selected 712 miRNA-
target gene multi-markers for 30 miRNAs and 290
genes.

Step 4: Evaluation of prediction performance in other
cancer datasets
To examine the feasibility of repurposing our identified
marker candidates for other cancers, we collected other
cancer datasets having mRNA expression data for lym-
phoma [26], breast cancer [27], hepatocellular carcinoma
[28], and lung carcinoma [29] from GEO datasets. Based
on SVM-LOOCV evaluation analysis, the selected single
and multi-markers were evaluated.

Step 5: Gene ontology analysis and miRNA-mRNA
network generation using the identified biomarkers
The targeted genes of the identified multi-markers were
annotated for gene ontology pathways/processes (GO)
using PANTHER [34]. In this analysis, markers with
annotation results with Bonferroni-corrected p-values <
0.05 were selected. Using this GO annotation, miRNA-
target gene relationships of identified multi-markers

Figure 4 Diagnostic performance of specific miRNA target genes in other (i.e., non-PDAC) cancers.
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were represented by the network generated by Cytos-
cape 3.1.1 [35] (Figure 3).
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