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Abstract

Background: Horizontal gene transfer (HGT) played an important role in shaping microbial
genomes. In addition to genes under sporadic selection, HGT also affects housekeeping genes and
those involved in information processing, even ribosomal RNA encoding genes. Here we describe
tools that provide an assessment and graphic illustration of the mosaic nature of microbial
genomes.

Results: We adapted the Maximum Likelihood (ML) mapping to the analyses of all detected
quartets of orthologous genes found in four genomes. We have automated the assembly and
analyses of these quartets of orthologs given the selection of four genomes. We compared the ML-
mapping approach to more rigorous Bayesian probability and Bootstrap mapping techniques. The
latter two approaches appear to be more conservative than the ML-mapping approach, but
qualitatively all three approaches give equivalent results. All three tools were tested on
mitochondrial genomes, which presumably were inherited as a single linkage group.

Conclusions: In some instances of interphylum relationships we find nearly equal numbers of
quartets strongly supporting the three possible topologies. In contrast, our analyses of genome
quartets containing the cyanobacterium Synechocystis sp. indicate that a large part of the
cyanobacterial genome is related to that of low GC Gram positives. Other groups that had been
suggested as sister groups to the cyanobacteria contain many fewer genes that group with the
Synechocystis orthologs. Interdomain comparisons of genome quartets containing the archaeon
Halobacterium sp. revealed that Halobacterium sp. shares more genes with Bacteria that live in the
same environment than with Bacteria that are more closely related based on rRNA phylogeny .
Many of these genes encode proteins involved in substrate transport and metabolism and in
information storage and processing. The performed analyses demonstrate that relationships among
prokaryotes cannot be accurately depicted by or inferred from the tree-like evolution of a core of
rarely transferred genes; rather prokaryotic genomes are mosaics in which different parts have
different evolutionary histories. Probability mapping is a valuable tool to explore the mosaic nature
of genomes.

Background Fox [1] led most microbiologists to assume that the con-
The introduction of small subunit ribosomal RNA as a  cepts of animal and plant taxonomy could be extended to
tool in microbial taxonomy by Carl Woese and George  the realm of prokaryotes. In particular, it was assumed
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that a natural taxonomic system for microorganisms was
feasible [2]. The goal of a natural taxonomic system is the
formation of taxonomic groups that are defined by shared
ancestry [3]. By definition, an ancestor that defines a
monophyletic group can only give rise to members of this
group. No organism outside this group has a lineage that
traces back to the same ancestor (paraphyletic group);
however, there might be earlier ancestors that define more
inclusive monophyletic groups. The metaphor for organ-
ismal evolution that underlies a natural taxonomic system
is a strictly bifurcating tree of species. A decade ago ribos-
omal RNA promised that one day it might be possible to
place every extant organism on a universal tree of life, and
the hope was that more genomic sequences would make
this placement more accurate.

However, the analyses of completely sequenced genomes
initiated a reassessment of concepts in microbial evolu-
tion [4]. While some molecular markers were found to
agree with one another e.g., [5], others do not [6-12].
Transfer of genetic information between divergent organ-
isms has turned the tree of life into a net or web [13], and
genomes into mosaics. Different parts of genomes have
different histories, and representing the history of genome
evolution as a single tree appears inconsistent with the da-
ta. Nevertheless, the assumption of a tree-like process still
underlies many approaches. Genome content trees have
been calculated based on the presence and absence of
genes [14-16] or types of protein folds [17]. While there
is limited agreement between genome and rRNA phylog-
eny, at present it remains unclear whether this similarity is
based on shared ancestry of part of a less frequently ex-
changing genome core [18], or if the apparent congruence
is itself the result of horizontal gene transfer [19].

Overall genome content is not best represented on a single
tree. Fig. 1 gives an example of an alternative depiction,
where thickness of a line reflects percentage of genes
shared between two genomes. The coherence among the
three domains of life (Bacteria, Archaea, Eucarya [20]), is
clearly reflected in genome content; i.e., Archaea share
more genes with other Archaea than with Bacteria, but
many features are incompatible with representing the re-
lationships between different genomes as a tree. For exam-
ple, the mesophilic euryarchaeon Halobacterium sp. has
more genes in common with the mesophilic Bacteria than
does the thermophilic crenarchaeote Aeropyrum pernix.
However, the extremophilic euryarcheote Archaeoglobus
fulgidus shares many more genes with the extremophilic
bacteria, Aquifex aeolicus and Thermotoga maritima than
does Halobacterium. While this example illustrates the
web-like relationships among genomes, recent phyloge-
netic reconstructions from molecular data have explored
only few alternatives to the tree-paradigm (e.g. [21,22]).
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One obvious drawback of the star-like representation in
Fig. 1 is that it utilizes BLAST search results only. Any phy-
logenetic information retained in the sequences is not uti-
lized beyond the presence or absence decision based on a
single expectation value cut-off. Because of recombina-
tion, individual genes themselves might be mosaic [23];
however, within-gene recombination of protein coding
genes occurs mostly between closely related organisms.
The redundancy of the genetic code greatly reduces recom-
bination between divergent proteins. Even if a region is
100% conserved on the amino acid level, the encoding
DNA can be so different as to allow the mismatch repair
system to prevent recombination. For studies of single di-
vergent orthologous protein encoding genes the assump-
tion of a tree-like evolutionary history remains a
reasonable expectation. In this manuscript we focus on
methods that utilize the phylogenetic information that is
retained in molecular sequence data, while not presuming
that genomes as a whole evolved in a tree-like fashion.

In an elegant approach Korbinian Strimmer and Arndt
von Haeseler [24] utilized Bayesian posterior probabili-
ties to assess the phylogenetic information contained in
an alignment of four homologous sequences. With four
sequences there are only three possible tree topologies,
and thus the three posterior probabilities corresponding
to these three trees must sum up to one. Utilizing a bary-
centric coordinate system, the resulting probability vector
is represented as a point in an equilateral triangle (Fig. 2),
where the distances of the point P to the three sides repre-
sent the three probabilities. Strimmer and von Haeseler
applied this approach to depict the phylogenetic informa-
tion content present in a multiple sequence alignment.
They plot the results from the analyses of all possible
quartets, where the four sequences are selected from a sin-
gle multiple sequence alignment in the same coordinate
system. If there is a lot of phylogenetic information in the
alignment, then most probability vectors will fall close to
one of the corners; conversely datasets containing little
phylogenetic information will mainly result in vectors
falling into the center of the triangle. Here we explore the
application of this and similar approaches in comparative
genome analyses. In particular, we compare different ap-
proaches to calculate Bayesian posterior probabilities, and
we compare these probabilities to the more widely used
bootstrap support values. We assess the reliability of the
different probability mapping approaches through their
application to mitochondrial genomes, and we illustrate
their usefulness by mapping selected interphylum and in-
terdomain relationships.

Results and Discussion

Overview of data flow in probability mapping

An outline of our approach to genome probability map-
ping is given in Figure 3. Using SEALS [25] and MySQL we
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Star Like Representation of Genome Relationships. The diagram depicts pairwise comparisons among thirteen genomes. Every
genome is represented as a point on the perimeter of a circle. The thickness of the line connecting two genomes reflects the
percentage of shared genes between the genomes. The thickest line connecting Aquifex aeolicus and Thermotoga maritima corre-
sponds to 51% shared genes, and the thinnest line connecting Aeropyrum pernix and Borrelia burgdorferi corresponds to 9%
shared genes. A gene is considered shared when it had a BLAST hit in the other genome with an E-value below 10-8. The per-
centage of genes shared between genomes A and B is calculated as ((#of genes in A shared with B/total # of genes in A)+(# of
genes in B shared with A/total # of genes in B))/2. Bacteria are depicted in green, Archaea in red and Eukaryotes in blue. The
domain affiliation is also indicated by a letter following the species name (A: Archaea, B: Bacteria, and E: Eukaryotes).

developed scripts that identify and retrieve quartets of or-
thologous protein-encoding open reading frames (Quar-
tOPs) from four selected genomes. We use the term
genome to denote the collection of all ORFs identified in
a genome. (In the case of genomes that are not well anno-
tated, it is feasible to use a very wide definition of ORF,
e.g, all amino acid sequences encoded between two stop
codons in any of the six possible reading frames. As long
as one of the genomes included in the analyses is properly
annotated, only those identified ORFs that are actually
homologous to an identified ORF will become part of a
quartet of orthologs.) We utilize an operational definition
of an ortholog: two open reading frames are considered

orthologous, if and only if they are each other's top scor-
ing BLAST hit when one is used as a query to search the
other genome. A QuartOP is formed when each of the
open reading frames picks the other members of the quar-
tet as the top scoring hit in searches of the respective ge-
nomes. QuartOPs are similar to the clusters of
orthologous groups (COGs) maintained by the NCBI
[26-28], but differ in that COGs require only unidirec-
tional, circular best hit relationships for three of the refer-
ence genomes, whereas we require the reciprocal top hit
relationship for the four genomes included in a quartet,
and we do not limit our identification of QuartOPs to a
number of reference genomes. Montague and Hutchison
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Mapping of the probability vector onto an equilateral triangle.
Each QuartOP is represented as a probability vector P inside
an equilateral triangle. The position of P is determined by the
barycentric coordinates (p|, py, p3), Which correspond to the
posterior probabilities or bootstrap support values of the
three possible tree topologies. The vertices of the triangle
T, T, and T3 represent the three possible unrooted tree
topologies. Geometrically, each of the coordinates (p;, py,
p3) equals the distance between P and the side of the triangle
opposite the corresponding vertex. Points closer to a vertex
T, have a larger corresponding probability p; and represent a
more probable tree topology than the two alternatives. All
the points are classified by their position in one of three
zones: "total" zone, "90%" zone and "99%" zone, which are
depicted schematically and not drawn to scale. In this dia-
gram, point P corresponds to a dataset which has highest
probability for the topology T3, but the probability is below
90%, so the point P is located in the "total" zone, but not in
the 99% or 90% zone. Figure adapted from [24].

utilized a comparable approach in their definition of con-
gruent COGs [29]. So far we have analyzed 68 genome
quartets (see supplementary material). The number of
QuartOPs identified per genome quartet ranges from 82
(for genome quartet #6: Deinococcus radiodurans, Trepone-
ma pallidum, Escherichia coli, and Halobacterium sp.) to
1182 (for genome quartet #63: Agrobacterium tumifaciens,
Sinorhizobium meliloti, Mezorhizobium loti and Caulobacter
crescentus).

Each of the aligned QuartOPs from a genome quartet was
analyzed with respect to the posterior probability of the
three possible tree topologies given the aligned QuartOP.
Routinely we calculated these probabilities using Strim-
mer's and von Haeseler's approach [24]: Using each of the
three topologies as a usertree, we calculated the maximum
likelihood for each of the three topologies given the data.
We then use the three maximum likelihoods to calculate
the probability for topology i according to the formula: P;
=L;/(L,+L,+L3), where L; is the likelihood for the best tree
given topology i. Other types of reliability measures used
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to evaluate QuartOPs were bootstrap support values and
Bayesian posterior probabilities estimated using MrBayes
program (see below).

An example for the comparison of four genomes from dif-
ferent phyla is given in Fig. 4A. Surprisingly, each of the
three tree topologies is strongly supported by more than
40 QuartOPs, and most of the QuartOPs appear to strong-
ly support one of the trees. None of the three possibilities
has majority support. Figure 5 lists the functional catego-
ries of those QuartOPs that strongly support the different
tree topologies. None of the categories shows a preference
for a particular tree topology. For each tree topology more
than 50% of the strongly supporting QuartOPs belong to
the category "information storage and processing", while
this category contains only about 1/3 of the genes present
in the genomes. While the genes in this category appear
more conserved and phylogenetically informative, the
strong support that the genes in this category provide is
nearly evenly split between the three possibilities.

Impact of model parameters and sequence conservation

To test if ill-aligned sequences might have had an impact
on the analyses, we repeated the analysis of genome quar-
tet # 8 (see Figure 4) using only QuartOPs that contained
very similar sequences. By default we only excluded top
hits with an E-value larger than 10-4. We repeated the ex-
ample given in Fig. 4A with a cut-off of 10-20, i.e., we not
only required the sequences in a QuartOP to be each oth-
ers top hit, but in addition we asked for a high similarity
between the two sequences. As a result the support for the
three topologies in genome quartet #8 dropped to 54 (44,
38), 51 (45, 32), 39 (29, 28) (the numbers in parenthesis
are the numbers of quartets that support the topology

Download four Select
genomes

“BLAST” evelyl 3
E} genome :} top hit :}
(ala \ inst every of every

Detect
quartets of
orthologues

]

Align quartets

(quartet)

- - other genome BLAST
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Convert of orthologues
Plot all points probabilities using ClustalW
onto (barycentric
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triangle Into Carteslan
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e

maximurrikellhood

Extract datasets i 5 e
Detect Functional with strong values and posterior
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(according to COG for a particular values for
database) topology(p>0.99) all three tree topologles|
Figure 3

Data flow for the genome quartet analysis. See Materials and
Methods for details.
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with posterior probability larger than 90% and 99%, re-
spectively). To access the level of sequence conservation
within the QuartOPs' sequences, we calculated the aver-
age percentage of pairwise identity per QuartOP. It varied
from 40.53 10.54% to 43.84 £ 9.7% when the E-value cut-
off was varied between 10-2 and 10-20 (see supplementary
material for the summary table). While pairwise sequence
identity is not a universally dependable measure of phyl-
ogenetic information content, these values illustrates that
the sequences within a QuartOP are neither identical to
one another, nor so divergent as to be saturated with sub-
stitutions and of questionable homology [30]. Using only
the most conserved QuartOPs does not change the quali-
tative result: each of the three possible tree topologies is
supported by about an equal number of QuartOPs (see
supplementary material).

We recalculated the likelihoods for all QuartOPs in ge-
nome quartet #8 using a model that incorporates among
site rate variation (ASRV). The posterior probabilities cal-
culated according to Strimmer and von Haeseler did not
change dramatically and each of the three tree topologies
is still supported by roughly equal number of QuartOPs.
The maps for this analysis are available in the supplemen-
tary material.

Estimating Bayesian Posterior Probabilities

The formula used by Strimmer and von Haeseler [24] to
calculate posterior probabilities (i.e. the probability that
tree topology T; is true given an aligned set of four se-
quences) considers only three trees (i.e. branch lengths
and topology), each with the same prior probability.
These three trees are those that have the highest likelihood
for the three possible topologies. However, there are infi-
nitely many other trees that differ from the three chosen
ones only by differences in branch lengths. What is the ef-
fect on the calculated posterior probability of using only
the single best tree as a representative of all the trees with
the same topology? There is no a priori reason to exclude
the other trees that have slightly lower likelihoods.

A different approach that does not make these assump-
tions is the use of Markov Chain Monte Carlo methods to
explore tree space. We used the program MrBayes written
by Huelsenbeck and Ronquist [31]. Using a QuartOP with
posterior probabilities of .76, .10 and .13 we explored dif-
ferent parameter choices for the biased random walk
through tree-space. We chose two chains with 5,000 burn-
in cycles, and 25,000 cycles with sampling after every cycle
as a compromise between increased precision of the prob-
ability estimate and computation time (see Materials and
Methods for more details).

The result of calculating the posterior probabilities of all
QuartOPs in genome quartet #8 is given in figure 4B.
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Figure 4

Maps of a genome quartet with organisms from four different
bacterial phyla: Escherichia coli (Gram negative), Deinococcus
radiodurans (Deinococcales), Bacillus subtilis (Gram positive)
and Treponema pallidum (spirochete). Tree topologies
assigned to the vertices are depicted in New Hampshire tree
format near the corresponding vertex of the triangle and
they are equivalent to the unrooted tree topologies as
depicted in Figure 2. The three numbers associated with each
tree topology indicate how many QuartOPs fall into each of
the three zones: "total", 90% and 99% respectively. For defi-
nition of zones see figure 2. A) Probabilities are calculated
according to Strimmer and von Haeseler [24]. There is no
single topology that is supported by the majority of the
QuartOPs and all three possible tree topologies are sup-
ported by roughly equal number of QuartOPs at the different
probability levels. B) Probabilities are calculated with
MrBayes program [31]. C) Bootstrap support values are
plotted. For this case the zones are "total", 70% and 90% sup-
port, respectively. Bootstrapping appears to provide a more
conservative reliability estimate than the posterior probabili-
ties used in cases A and B. Nevertheless, each tree topology
is still supported by a roughly equal number of bootstrapped
datasets.
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Distribution among different functional categories for those
datasets that support one of the three topologies with better
than 99% posterior probability. Tree topologies are indicated
by column numbers |, 2 and 3. Column | corresponds to
topology ((1,4),2,3), columns 2 and 3 correspond to topolo-
gies ((1,3),2,4) and ((1,2),3,4) respectively. Divisions into
functional categories are adopted from the COG database
[27]. Functional categories are aggregated into four broad
functional meta-categories. Distributions of datasets among
the meta-categories are plotted as pie charts for each tree
topology. In this case all three topologies are supported by
roughly equal number of datasets from each meta-category.

Again all of the three tree topologies are strongly support-
ed by some QuartOPs. When we repeated this analysis us-
ing the same settings, none of the probabilities changed
by more than a few percent. The support for the three tree
topologies changed from 67/47/37, 69/40/22 and 86/55/
32 (the three numbers indicate total support and Quar-
tOPs that supported a topology with more than .90 and
.99 respectively) in the first run to 67/47/37, 70/41/22
and 85/55/32 in the second, indicating that the chosen
parameters provided satisfactory reproducibility. Plots of
both analyses are available in the supplementary material.
Comparing figure 4B with 4A it is clear that in this case the
Bayesian posterior probabilities estimated with MrBayes
are more conservative assessments of reliability than the
ones calculated according to [24]. The 99% support level
calculated according to [24] approximately corresponds
to the 90% support level calculated with MrBayes.

Bootstrap support values versus posterior probabilities

To facilitate comparison of Bayesian posterior probabili-
ties with a more widely used confidence measure, we gen-
erated 100 bootstrapped samples [32] from each
QuartOP in case #8. Each of the bootstrapped samples
was analyzed using maximum likelihood with the same
model of substitution as before. Each of the bootstrapped
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samples supports one of the three possible topologies,
thus the sum of the bootstrap support values for the three
topologies adds up to 100%, and the percentage of boot-
strapped samples for each QuartOP that best supported
each tree was again plotted in a barycentric coordinate sys-
tem (Fig. 4C). Many more QuartOPs map into the central
region of the triangle as compared to Figure 4A and 4B.
Clearly, for this test bootstrap support values are more
conservative measures of support than either of the poste-
rior probabilities calculated above. Nevertheless, there are
still several QuartOPs that strongly support each of the
three tree topologies; however, there are 22 QuartOPs that
support grouping E. coli with Treponema pallidum with bet-
ter than 90% bootstrap support, whereas the alternatives
are supported by only 12 and 13 QuartOPs, respectively.
Comparing Figures 4A and 4C it appears that in analyzing
quartets 70% bootstrap support is comparable to .99 pos-
terior probability calculated according to [24].

Comparison of the different reliability assessment tools
ML-mapping according to [24] is the least conservative of
the tools explored. For the test cases analyzed a posterior
probability of .99 according to [24], corresponds to a
Bayesian posterior probability of .90 calculating using a
Markov chain exploration of tree-space using [31] and
about 70% bootstrap support. We did not find a strong
dependence of the results on the substitution models used
in calculating likelihoods and separate runs indicated sat-
isfactory precision of the calculated probabilities and
bootstrap values. Given that we only analyzed about 300
QuartOPs using all three approaches it would be prema-
ture to generalize our findings; however, other analyses
that utilized both bootstrapping and Bayesian posterior
probabilities also found bootstrapping to be more con-
servative than posterior probabilities calculated using
Bayesian methods with Markov chain Monte Carlo sam-
pling (e.g., [33-35]).

Mitochondrial genomes

While gene transfer into the mitochondrial genomes has
been inferred [36-39], mitochondrial genomes are ex-
pected to have undergone many fewer legitimate and ille-
gitimate recombination events than free-living
prokaryotes. Clearly, if probability mapping is to be con-
sidered a reliable approach, we expect that when analyz-
ing quartets of mitochondrial genomes, the different
genes should all support the same tree topology.

In most instances, this expectation is fulfilled (see Table
1), even though we selected instances in which the splits
could be expected to be ill resolved, e.g., echinoderm,
mammal, insect, mollusk (m4), or protist, fungus, ani-
mal, plant (m7). The only exception was an ORF in quar-
tet m7 that encodes the cytochrome oxidase subunit II.
This ORF did not support grouping the animal with the
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Table I: Results of analyses for the control mitochondrial genome quartets #ml-m7.

((1,2),3,4) ((1,3),2,4) ((1,4),2,3)

# Genome | Genome 2 Genome 3 Genome 4
Tot. A B Tot. A B Tot. A B
ml Drosophila Drosophila Ceratitis capitata ~ Apis mellifera 9 8 8 0 0o o | 0 0
melanogaster yakuba ligustica 10 8 8 0 0 0 0 0 O
9 7 5 0 0 o0 | I 0
m2 Alligator Opossum Stork Donkey 0 0 0 I 1l 0 0 0
0 0 0 11 i 0 0 o0
0 0 0 11 1l 0 0 o0
m3  Turtle Opossum Stork Donkey 0 0 0 12 12 12 0 0 O
0 0 0 12 12 12 0 0 o0
0 0 0 12 12 12 0 0 o0
m4  Starfish Donkey Fruit Fly Doorsnail 8 7 7 2 | | 0 0 0
8 7 7 | 0o 0 | 0 o0
8 7 5 | | 0 | 0 o0
mé Reclinomonas  Saccharomyces  Arabidopsis Homo sapiens 0 0 0 4 3 3 0 0 0
americana cerevisiae thaliana | 0 0 3 3 3 0 0 o0
0 0 0 4 3 2 0 0 0
m7 Cafeteria Saccharomyces ~ Arabidopsis Homo sapiens 0 0 0 3 2 2 | [
roenbergensis  cerevisiae thaliana | 0 0 2 2 1 | [
| 0 0 2 | 0 [ (I

The groupings corresponding to the expected organismal phylogenies are given in bold. The three numbers in each table cell correspond to the
three approaches used. The top number corresponds to results obtained using Strimmer and von Haeseler's approach [24], the middle number cor-
responds to results obtained using MrBayes program [31], and the bottom number corresponds to results of bootstrap support values calculation.
Column "Tot." lists the number of QuartOPs from "total" zone, column A lists the number of QuartOPs from "90%" zone (70% for bootstrap sup-
port), and column B lists the number of QuartOPs from "99%" zone (90% for bootstrap support). For definition of zones see Fig. 2. With the excep-
tion of the one dataset for quartet #m7, the analyses proved to be consistent with organismal tree topologies. The alignment for the exceptional

dataset is presented in Fig. 6. The common names for the organisms listed correspond to the following scientific names: alligator corresponds to Alli-
gator mississippiensis, opossum to Didelphis virginiana, stork to Ciconia ciconia, donkey to Equus asinus, turtle to Chelonia mydas, starfish to Asterina pec-

tinifera, doorsnail to Albinaria caerulia, fruit fly to Drosophila melanogaster.

fungal homolog as expected; rather it grouped the protist
and animal homologs together (posterior probability ac-
cording to [24] was t 0.99). Inspection of the aligned se-
quences (Fig. 6) revealed that there are more residues
shared between the homologs from Cafeteria roenbergensis
and Homo sapiens thanbetween the homologs from Cafete-
ria roenbergensis and Arabidopsis thaliana. No artifact that
could be responsible for this unexpected grouping was de-
tected. The same high support for this unexpected group-
ing is also recovered in bootstrap analysis and in posterior
probabilities calculated with MrBayes [31].

The finding of a QuartOP in a mitochondrial genome
quartet that supports a non-traditional grouping could ei-
ther reflect a rare recombination event, selection pressures
that led to convergent evolution in two lineages, or a
chance event - if one looks at enough samples one will

find some that (considered by themselves) appear signifi-
cant. At present it is not possible to decide between these
three possible explanations. Our analysis of mitochondri-
al genomes shows that in most instances the calculated
probabilities (ML-mapping, Bayesian posterior probabili-
ties, or bootstrap values) support the expected tree topol-
ogies, albeit with surprisingly strong support values.
Rarely, unexpected groupings can be recovered and sup-
port for these probably erroneous groupings can be high.
In most instances the ML-mapping approach accurately
revealed the expected relationships between the mito-
chondrial genomes. This confirms the suitability of this
approach in genome analyses.

Interphylum genome quartets
Here we focus on examples that illustrate the utility of the
probability mapping approach. Focusing on the relation-
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Saccharomy MLDLLRLQOLT TFIMNDVPTP YACYFQDSAT PNQEGILELH DNIMFYLLVI
Arabidopsi -MIVLKWLFL TISPCDAAEP WQLGSQDAAT PIMQGIIDLH HDIFFFLILI
Cafeteria ------ -MFSN SYFDLGMAKA WQFGFQIPAS PVMEGIVNFH HDLFFELVVI
Homo = =  ——-mmmmmmm o] MAHA AQVGLQODATS PIMEELITFH DHALMIIFLI
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Figure 6

Alignment of mitochondrial cytochrome oxidase subunit Il.
The alignment for the control mitochondrial quartet m7 (see
Table ) that supports the unexpected ((Homo sapiens, Caf-
eteria), Saccharomyces, Arabidopsis) topology. The exact
matches for each tree topology are colored in three different
colors. Blue corresponds to the ((Homo sapiens, Cafeteria),
Saccharomyces, Arabidopsis), yellow corresponds to the
((Homo sapiens, Arabidopsis), Saccharomyces, Cafeteria)
and green corresponds to the ((Homo sapiens, Saccharomy-
ces), Arabidopsis, Cafeteria) tree topology. As can be seen,
the majority of the matches are in favor of ((Homo sapiens,
Cafeteria), Saccharomyces, Arabidopsis) tree topology.
There are nine parsimony informative positions favoring the
latter topology, and only three for each of the other two
topologies.

ships between the cyanobacteria with other bacterial phy-
la we calculated several genome quartets that include the
Synechocystis sp. genome and three members each of oth-
er bacterial phyla (see Table 2). In all cases that included
both Bacillus subtilis as a representative of the low GC
Gram positives, and Synechocystis sp., the majority of
QuartOPs supported the topologies that grouped these
two organisms together. The alternative topologies were
significantly supported by some QuartOPs, but the
number of strongly supporting QuartOPs was lower than
for the B. subtilis — Synechocystis grouping. This also was
true when one of the other two genomes was from a high
GC Gram positive (genome quartets #53, #54, #55 and
#68). Only when two low GC Gram positives were includ-
ed in the same quartet, was the intra-phylum grouping of
low GC Gram positives supported by many more Quar-
tOPs than the grouping of B. subtilis with Synechocystis
sp. (genome quartets #51 and #52).

Previous analyses based on a limited number of proteins
and signature insertions and deletions had suggested dif-
ferent bacterial groups as closest relatives to cyanobacte-

http://www.biomedcentral.com/1471-2164/3/4

ria. Among the suggested sister groups were the
Deinococcales [40] and spirochetes [41,42]. Our analyses
do not support these earlier claims, but are in agreement
with the recent analyses of genes involved in chlorophyll
biosynthesis [43], which indicated that the low GC Gram
positive heliobacteria are closest to the last common an-
cestor of all oxygenic photosynthetic lineages. The analy-
ses summarized in Table 2 also illustrate that interphylum
HGT, while turning genomes into mosaics, has not erod-
ed all associations between bacterial phyla. In the case of
cyanobacteria, a close association between low GC Gram
positives and the cyanobacteria is supported by the major-
ity of conserved genes. Similar observations of reproduci-
ble associations between phyla based on genome wide
comparisons were recently published [44-47]. However,
at present it cannot be decided to what extent these closer
associations reflects shared ancestry or are due to pre-
ferred HGT [19].

Interdomain genome quartets

In our search for the "sister-phylum" to the cyanobacteria
we also analyzed a few quartets including Archaea. One
noteworthy finding was that in the genome quartet in-
cluding Synechocystis sp., Halobacterium sp., Aquifex aeolicus
and Thermotoga maritima the grouping of Halobacterium
sp. with Synechocystis sp. was recovered by many more
QuartOPs (56 with p > .99) than the grouping that would
be expected following 16S rRNA phylogeny (12 QuartOPs
with p > .99; see Table 3). To test if this association was
specific for Synechocystis sp., we repeated the analyses re-
placing Synechocystis sp. with Bacillus subtilis. The result
was qualitatively the same: at the p > .99 level 53 Quar-
tOPs supported grouping Bacillus subtilis with Halobacteri-
um sp., and only 27 supported grouping Aquifex aeolicus
with Halobacterium sp. (Fig. 7).

Clearly, there are many artifacts possible in analyzing di-
vergent sequences. For many QuartOPs the ortholog from
Halobacterium sp. is expected to be the longest branch. To
test for the possibility that long branch attraction [48]
might be the reason for the strong support of Halobacteri-
um sp. grouping with Synechocystis sp., we repeated the
analysis replacing the Halobacterium sp. genome with that
from Archaeoglobus fulgidus, another archaeon. Gratifying-
ly, many more QuartOPs supported the grouping of the
thermophilic archaeon Archaeoglobus with the ther-
mophilic bacteria Aquifex and Thermotoga. The different
interdomain genome quartets that include a meso- or
thermophilic archaeon are summarized in Table 3.

An analysis of the putative functional assignments of the
QuartOPs that grouped Halobacterium sp. with the mes-
ophilic bacteria is given in Table 4. To assess which of
these categories have an increased percentage of Quar-
tOPs as compared to distribution of ORFs within the ge-
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Table 2: Summary of the genome quartets that include Synechocystis sp., Bacillus subtilis, and two bacterial genomes from other phyla.

# Genome | Genome 2 Genome 3 Genome 4 (1,2).3,4) (1,3).2,4) ((1.4.2,3)
Tot 0.9 0.99 Tot 0.9 0.99 Tot 0.9 0.99
9  Synechocystis  P. aeruginosa  D. radiodurans B. subtilis 94 76 63 101 73 57 186 158 126
10 Synechocystis P. aeruginosa T. pallidum B. subtilis 69 54 50 51 33 28 102 80 67
14 Synechocystis  R. sphaeroides B. subtilis E. coli 65 53 44 286 263 248 28 25 17
I5  Synechocystis  R. sphaeroides B. subtilis D. radiodurans 95 72 60 201 173 149 73 60 47
16  Synechocystis  D. radiodurans B. subtilis T. pallidum 63 50 40 94 74 63 60 46 35
17 Synechocystis B. subtilis T. pallidum E. coli 93 72 66 55 43 34 66 49 39
18  Synechocystis  D. radiodurans T. pallidum E. coli 86 68 54 65 49 38 75 54 47
19  Synechocystis  D. radiodurans B. subtilis E. coli 129 105 86 156 131 104 98 76 62
50  Synechocystis B. subtilis E. coli M. loti 276 255 228 44 31 21 54 43 38
53  Synechocystis B. subtilis E. coli M. leprae 125 104 82 101 84 65 19 19 66
54  Synechocystis B. subtilis E. coli M. tuberculosis 141 114 97 101 82 69 128 101 89
55  Synechocystis B. subtilis M. loti M. tuberculosis 189 164 139 92 74 59 80 58 44
64  Synechocystis  C. trachomatis B. subtilis T. pallidum 47 31 24 108 96 86 36 25 18
67  Synechocystis  C. trachomatis B. subtilis M. loti 64 48 32 116 104 84 72 51 44
68  Synechocystis  C. trachomatis B. subtilis M. tuberculosis 77 55 45 94 80 62 68 52 38
51  Synechocystis B. subtilis E. coli S. aureus 33 19 15 361 349 333 15 7 5
52  Synechocystis B. subtilis E. coli S. pyogenes 34 22 18 259 249 227 24 17 9

The # column refers to the unique number assigned to the genome quartets analyzed. Columns "((1,2),3,4)", "((1,3),2,4)" and "((1,4),2,3)" refer to
the three possible tree topologies. Numbers in columns "Tot", ".90" and ".99" give the number of QuartOPs that support the indicated tree topol-
ogy with a posterior probability higher than the other two posterior probabilities, or with 90% or 99% probability, respectively. The numbers in
bold indicate the number of orthologs supporting the grouping of Synechocystis sp. and Bacillus subtilis in the absence of another low GC gram-posi-
tive in the genome quartets. Note that those numbers are the largest of the three numbers, a finding that supports the recent analyses by [43]. In
the presence of another low GC Gram-positive in addition to Bacillus subtilis, the largest number of QuartOPs support grouping of low GC Gram-
positives with each other (underlined). Other groupings that involve putative sister groups to the cyanobacteria (Deinococaceae and spirochetes)

that had been suggested by others (e.g., [40,41]) are indicated in italics.

nome, we also calculated the distributions of ORFs among
functional categories in the Halobacterium sp. and A. fulg-
idus genomes. Open reading frames within a genome are
distributed almost evenly among the four meta-categories
(see columns labeled "H" and "A"). However, the Quar-
tOPs that group the halobacterial orthologs with those
from mesophilic Bacteria are distributed differentially
among the meta-categories. Most of the QuartOPs are in
the "Metabolism" and "Information Storage and Process-
ing" meta-categories. These are also the categories in
which Halobacterium sp. shows many more OuartOPs in
support of topology 3 than A. fulgidus.

The analyses described in this section reconfirm that genes
have been transferred across domain boundaries [6-12].
Not surprisingly, these transfers appear to occur preferen-
tially between organisms living in the same or similar en-
vironment. The genome of the mesophilic Halobacterium
sp. contains many genes that group with the orthologs
from mesophilic bacteria, whereas the majority of genes
from the thermophilic archaeon Archaeoglobus fulgidus
group with the orthologs from the extremely thermophilic

bacteria. The majority of QuartOPs that group the halo-
bacterial orthologs with the ortholog from the mesophilic
bactria belong to two of four meta-categories: "Informa-
tion Storage and Processing" and "Metabolism". Quar-
tOPs in Information Storage and Processing meta-
category that support the grouping of Halobacterium sp.
with Synechocystis/Bacillus are listed in the Table 5. A com-
plete listing is available in the supplementary material. As
expected, this list includes several tRNA synthetases,
which were previously found to be frequently transferred
[6-8], and enzymes involved in DNA repair (cf. [9]). More
surprisingly, this list also includes translation initiation
factors and several ribosomal proteins. The latter were as-
sumed to be infrequently transferred, but recent analyses
reported them to be horizontally transferred among bac-
terial lineages [10,11]. The initiation factor IF-2 in Halo-
bacterium sp. was previously shown to have strong
similarity to the initiation factor IF-2 from Bacteria [49].
Most of the genes that group Halobacterium with the mes-
ophilic bacteria encode functions that were postulated to
be frequently exchanged [50]. While no meta-category ap-
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Figure 7

ML map of the quartet representing Bacillus subtilis, the deep
branching bacteria T. maritima and A. aeolicus, and the salt-
loving archaeon Halobacterium sp.. The majority of the
orthologous datasets support the grouping of the Halobacte-
rium with Bacillus subtilis. The topology that corresponds to
the 16S rRNA topology (lower left vertex) is supported by
the least number of orthologous datasets. The result stayed
qualitatively the same when B. subtilis was replacedwith the
cyanobacterium Synechocystis sp. (see results for quartet #1 |
in Table 3). For details on the figure notations see legend for
Figure 4. A. Probabilities calculated according to Strimmer
and von Haeseler [24]. B. Probabilities calculated with the
MrBayes program [31].

pears exempt from HGT, some functions appear to be
more often transferred than others (cf. Table 4).

Conclusions

Maximum likelihood mapping is a useful tool for analyz-
ing and depicting the mosaic nature of genomes. ML-
mapping is much less conservative than other approaches
of estimating Bayesian posterior probabilities. If ML-map-
ping is used as the only probability mapping tool, the
overestimation of supporting probabilities has to be taken
into consideration. A posterior probability of .99 calculat-

http://www.biomedcentral.com/1471-2164/3/4

ed with ML-mapping often corresponds to a posterior
probability of only .90.

Many relationships among prokaryotes cannot be depict-
ed by a tree-like pattern reflecting a core of rarely trans-
ferred genes. Rather prokaryotic genomes are mosaics
where different parts have different evolutionary histories.
However, HGT between divergent organisms has not
erased all patterns of interphylum relationship. For exam-
ple, the majority of QuartOPs group the cyanobacteria
with the low GC Gram positives as sister phyla.

Due to horizontal gene transfer even organisms from dif-
ferent domains living in the same or similar environments
share more genes with each other than organisms with a
similar degree of divergence that live in different environ-
ments. These interdomain horizontal transfers mainly
concern proteins involved in nucleotide, carbohydrate
and amino acid transport and metabolism; however, pro-
teins that are part of the translation machinery or are in-
volved in DNA repair appear to be transferred across
domain boundaries as well.

Materials and Methods

Genome Data

Completed genomes were retrieved from the NCBI's FTP
site [ftp://ncbi.nlm.nih.gov/genbank/genomes/] in the
form of amino acid sequences encoded by open reading
frames (ORFs) as identified in the annotated genomes.
Mitochondrial genomes were obtained from the Or-
ganelle Genomes Page at NCBI [http://www.nc-
bi.nlm.nih.gov/PMGifs/Genomes/euk_o.html] . The
genomes were formatted using the formatdb program from
the stand-alone BLAST package, initially of version 2.0.11
and later of versions 2.1.2 and 2.2.1 as they were released
[51]. All analyses were performed locally.

Data Flow in Quartet Analyses

For each set of four genomes, BLAST [51,52] searches of
every ORF in one genome against the other three genomes
were performed using the blastp program. The E-value cut-
off for the BLAST searches was set to 104 (in one test case
an E-value cutoff of 1020 was used). For every BLAST
search the GI number of the top hit (if it was below the
cutoff) was saved along with the GI number of the query
sequence forming a GI pair. This resulted in twelve lists of
GI pairs for each of the twelve possible pairwise genome
comparisons. This information was further used to identi-
fy quartets of orthologous proteins (QuartOPs). Follow-
ing Tatusov et al. [27] we defined QuartOPs as those sets
of genes that mutually pick each other as the top scoring
hit in the BLAST comparisons. The detection of the Quar-
tOPs was performed using the MySQL database software
[http://www.mysql.com] . The lists of GI pairs were en-
tered into twelve tables of a database. The tables were
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Table 3: Summary of the genome quartets that include the mesophilic archaeon Halobacterium sp. or the thermophilic archaeon Ar-
chaeoglobus fulgidus, deep-branching bacteria Thermotoga maritima and Aquifex aeolicus, and bacteria Synechocystis sp. or Bacillus subtilis.

# Genome | Genome2  Genome 3 Genome 4

Il Synechocystis sp.  Thermotoga  Aquifex aeolicus  Halobacterium sp.
maritima

13 Synechocystis sp.  Thermotoga  Aquifex aeolicus Archaeoglobu
maritima fulgidus

61  Bacillus subtilis ~ Thermotoga  Aquifex aeolicus ~ Halobacterium sp.
maritima

62  Bacillus subtilis ~ Thermotoga  Aquifex aeolicus Archaeoglobus
maritima fulgidus

((1,2),3,4) ((1,3),2,4) ((1,4),2,3)
Tot. 0.9 0.99 Tot. 0.9 0.99 Tot. 0.9 0.99
29 20 12 45 34 27 86 69 56
47 36 30 63 5l 44 50 34 25
44 32 27 27 19 I 83 62 53
64 50 40 50 35 30 41 27 23

For table notations see legend for Table 2. Quartets #1 | and 61 indicate that the majority of the QuartOPs group Halobacterium sp. together with
Synechocystis sp. and with Bacillus subtilis respectively, which is in disagreement with 16S rRNA topology. In two control quartets (#13 and #62)
Halobacterium was substituted with Archaeoglobus fulgidus, and in these cases the majority of QuartOPs support the topology that is in agreement

with SSU rRNA topology.

joined into one table under conditions that satisfy the def-
inition of the QuartOPs (see above). This resulted in a ta-
ble with four columns of GI numbers for QuartOPs. The
amino acid sequences for each QuartOP were retrieved
from GenBank at NCBI and were aligned using ClustalW
1.8 [53]. QuartOPs were analyzed using the ML-mapping
approach according to Strimmer and von Haeseler, Baye-
sian probabilities mapping and bootstrap support values
mapping techniques (see details below).

Posterior probabilities according to Strimmer and von
Haeseler

For all three possible unrooted tree topologies maximum-
likelihood values and posterior probabilities were calcu-
lated using in-house JAVA programs that were written uti-
lizing classes from the Phylogenetic Analysis Library
version 1.0 [54] and parts of Vanilla package version 1.0
[54]. If not indicated otherwise, likelihood values were es-
timated using the automatically selected suitable substitu-
tion model (chosen from BLOSUMG62, CPREV, Dayhoff,
JIT, MTREV24, VT and WAG) with no ASRV. The maxi-
mum-likelihood mapping approach was further used to
visualize support for each tree topology [24], i.e. the pos-
terior probability vector for each QuartOP was plotted
into an equilateral triangle. Maximum-likelihood maps
were generated using GNUPlot v. 3.7 [http://www.gnu-
plot.info/] .

Posterior Probabilities calculated with MrBayes program

Posterior probabilities were also calculated with MrBayes
version 2.01 [31]. Each QuartOP was analyzed with two
simultaneous Markov chains for 25,000 cycles under the
JTT substitution model [55] without ASRV. One chain was

heated with the temperature set equal to the default value
of 0.2. Samples were taken at each cycle. The "burn in" op-
tion was set to 5,000 cycles. The remaining 20,000 cycles
were used to calculate posterior probabilities for each of
the three tree topologies. The posterior probabilities were
plotted to equilateral triangle as described above. For dis-
cussion of the choice of the parameters see below.

Bootstrap Support Values

As an alternative to posterior probability vectors, boot-
strap support values were calculated and plotted. Each
QuartOP was bootstrapped 100 times and the proportion
of bootstrapped datasets supporting each tree topology
was recorded as a bootstrap probability vector. The boot-
strap probability vectors were plotted into an equilateral
triangle with the zones changed to "total", "70%" and
"90%" (see Fig. 2).

Empirical Search for Optimal MrBayes Parameters

To find parameters that will return consistent posterior
probabilities within reasonable computation time, one
QuartOP from mitochondrial genome quartet #m1 was
analyzed multiple times with different parameters. Ac-
cording to Strimmer and von Haeseler's approach [24]
this QuartOP has posterior probabilities of 0.76, 0.10 and
0.13. In all runs samples were taken at each cycle; two
chains and the JTT substitution model [55] without ASRV
were used.

First, we analyzed the dataset with 250,000 cycles. We
tried different "burn in" options in the range of 1,000~
20,000. The posterior probability values changed by less
than 0.3% from case to case. We selected a "burn in" of
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Table 4: Distribution of the datasets that strongly support (with 99% posterior probability) one of the three topologies among different

functional categories.

#11 #13 #61 #62 H A
Functional Categories of COGs: 1 2 3 1 2 3 I 2 3 1 2 3
Information storage and processing 5 7 20 7 7 10 4 17 12 4 0 24 17
J  Translation, ribosomal structure and biogenesis 4 6 14 5 6 9 9 3 Il 10 3 0 31 44
K Transcription I 1 0 | (] I 1 0 | (] 30 30
L DNA replication, recombination and repair 0 0 6 I 0 1 I 0 6 I 0 0 39 26
Cellular processes I 5 4 5 7 1 5 1 6 6 3 | 21 16
D  Cell division and chromosome partitioning o 0 | 2 0 | 3 0 O 3 0 O 7 5
O  Posttranslational mod., protein turnover, I 0 | | | 0 I 0 3 2 0 0 22 18

chaperones

M Cell envelope biogenesis, outer membrane 0 3 O | | 0 0o I 0 | 0 O 13 14
N  Cell motility and secretion 0o o0 | | I 0 I 0 0 0 0 O 15 10
P Inorganic ion transport and metabolism 0o 2 1 0 4 0 0o 0 3 0o 3 | 30 31
T  Signal transduction mechanisms 0o 0 O 0 0 O 0 0 O 0o 0 O 14 22
Metabolism 6 16 29 18 30 12 9 6 30 22 28 14 30 37
C  Energy production and conversion 2 3 | I 4 1 0 0 O 3 0 O 23 31
G Carbohydrate transport and metabolism I 2 | 2 2 0 3 0 2 2 | | 12 8
E  Amino acid transport and metabolism I 5 16 12 10 7 2 2 14 10 12 6 27 24
F  Nucleotide transport and metabolism 2 4 10 I 9 4 2 2 I 4 10 7 10 7
H Coenzyme metabolism 0o 2 1 2 5 0 2 2 3 3 5 0 19 16
I Lipid metabolism 0 0 O 0 0 O 0 0 O 0o 0 O 9 14
Poorly characterized [ 3 | I 0 2 12 | | | 24 30
R  General function prediction only I 3 | I 0 2 12 | | | 64 58
S  Function unknown 0 0 O 0 0 © 0 0 O 0 0 © 36 42

The distribution corresponds to the genome quartets listed in Table 3. Functional categories are as designated in Fig. 5. Columns 1, 2 and 3 corre-
spond to the three possible unrooted topologies for each genome quartet (see Table 3). Column entries indicate the number of QuartOPs in each
functional category. The last two columns represent the distribution of ORFs in Halobacterium sp. (H) and Archaeoglobus fulgidus (A) genomes among
different functional categories. For these two columns, numbers in the rows corresponding to the meta-categories give the percentage of proteins
in each meta category relative to the total number of classifiable proteins and numbers in the rows for each functional category indicate the percent

distribution of the proteins within the corresponding meta-category.

5,000 cycles in further analyses. Second, we tried different
numbers of cycles to calculate posterior probabilities. The
probabilities were calculated using 10,000-240,000 cy-
cles with increment of 10,000 cycles. Again, the posterior
probability values did not change significantly from case
to case. Third, we raised the "temperature" parameter T to
2.0 for the second, heated chain. This did not result in
changes of the estimated posterior probabilities. Fourth,
we used 25,000 cycles and repeated the analysis 10 times,
calculating average and standard deviation of all runs. For
all three probabilities the standard deviation was less than
0.01. Based on these analyses we selected 25,000 cycles
with a "burn in" of 5,000 as a compromise between preci-
sion of probability estimation and computational time

spent. As a final test, we performed the analysis of the
quartet #8 twice with selected parameters. This did not re-
sult in significantly different maps. Graphs and tables de-
picting the results of these analyses are given in the
supplementary material.

Mapping taking ASRY into account

For the genome quartet #8 we calculated posterior proba-
bilities under the model which takes ASRV into account
with Strimmer and von Haeseler's [24] approach and with
the MrBayes program version 2.01 [31]. TREE-PUZZLE
5.0 [56] was used to calculate posterior probabilities ac-
cording to Strimmer and von Haeseler [24]. A discrete ap-
proximation of the gamma distribution [57] was used to
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Table 5: List of genes putatively horizontally transferred between Halobacterium sp. (H. sp.) and the mesophilic Bacteria Synechocystis
sp. and Bacillus subtilis ("Information Storage and Processing" meta-category only).

Protein Name

H. sp. GI number

tRNA synthetases for serine, valine, methionine, cysteine, arginine, proline

phenylalanyl-tRNA synthetase subunit alpha
Glu-tRNA amidotransferase subunits A, B
tRNA-pseudouridine synthase
dimethyladenosine transferase

DNA gyrase subunits A, B

DNA helicase

excision nuclease ABC chains A, B, C (involved in DNA repair)
endonuclease V (involved in DNA repair)

DNA mismatch repair protein

Putative translation factor SUAS

Translation initiation factor elF-2B subunit alpha
Initiation factor IF2

ribosomal proteins LI, LI 1, L3, S4

10581491, 10581937,10579953, 10580644, 10584349, 10580016
10581896

10580435, 10579969

10581191

10580702

[10580453, 10580452]

10580995

10582016, 10581796, 10581790

10579981

10579807

10581723

10581299

10581429

[10580652, 10580653], 10581159, 10580672

GI numbers in brackets correspond to genes in operons. This list is derived analyses of genome quartets #1 | and #61. A complete list of all Gl
numbers for each QuartOP as well as the four definition lines is available in the supplementary material.

describe ASRV. Eight rate categories were used in TREE-
PUZZLE [56], and four rate categories were used in Mr-
Bayes [31]. The maps are available in the supplementary
material. Due to the amount of time required for calcula-
tions, the analyses were not performed for other genome
quartets.

Functional assignments using the COG database

Datasets for QuartOPs with strong preference for a partic-
ular tree topology (i.e. with posterior probability above
99% for that particular topology, or in other words the
QuartOPs located in the very corners of the equilateral tri-
angle) were extracted. For each of those QuartOPs the
COG functional category [27] was identified. In order to
detect the functional categories, the COG database was
downloaded from NCBI's FTP site (initially the year 2000
release and later the year 2001 release). The COG database
was formatted using the formatdb program of BLAST pack-
age. Every QuartOP was compared to the COG database
using the blastp program. The category of the each se-
quence in the QuartOP was assigned according to the cat-
egory of the top hit of each BLAST search. The numbers of
QuartOPs in each functional category were calculated for
each of the three tree topologies.

Distribution of ORFs among COG categories for complete
genomes of Halobacterium sp. and Archaeoglobus fulgidus
Every predicted ORF in a genome was compared to the
COG database (release of year 2001) using the blastp pro-
gram with E-value cutoff 10-4. The category of each ORF
was set to be equal to the category of the top hit of the cor-

responding BLAST search. Category Q was dropped from
the results, because the corresponding genome quartets
were analyzed with the previous release of the COG data-
base (release of year 2000) that did not contain the Q cat-

egory.

Data Analysis Automation

The repetitive tasks of analyses were automated using the
SEALS package version 0.824 [25]. The tasks that were not
available through SEALS package were programmed in
PERL v. 5.005. The PERL scripts and JAVA programs are
available upon request.

Mitochondrial Genome Quartets Analyses

Seven mitochondrial genome quartets were used as con-
trols and were analyzed with the three approaches for ge-
nome quartet analysis described above. For calculation of
posterior probabilities with MrBayes at least 25,000 cycles
were used.

List of Abbreviations

HGT horizontal gene transfer

COG cluster of orthologous groups

ML maximum likelihood

rRNA ribosomal ribonucleic acid

Sp. species
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BLAST Basic Local Alignment Search Tool

QuartOP quartet of orthologous proteins

SEALS System for Easy Analysis of Lots of Sequences
NCBI National Center for Biotechnology Information
ASRV Among Site Rate Variation

Supplementary Material

Supplementary material is located at the QuartOP web
page [http://carrot.mcb.uconn.edu/quartets/] . This web
page includes the summary of all genome quartets ana-
lyzed (with maps), the results of control analyses, and a
form to request the scripts described in this article. ML
maps are available in postscript and PDF formats. An of-
fline version of the QuartOP web page is available as a
compressed archive named supp_material.zip and as a
self-extracting archive supp_material.exe for Microsoft
Windows users. The archive can be expanded using Win-
Zip [http://www.winzip.com/] for Windows, Stufflt for
Macintosh [http://www.stuffit.com/], or unzip utility for
Unix. The uncompress utilities have to be run with the op-
tion to preserve the subdirectory structure inside the ar-
chive. To access the information in the archive, the file
index.html has to be opened using an Internet browser.
This index.html file is located in the root directory named
"offline_quartops". All the files in the archive are hyper-
linked and accessible through the index.html file.
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Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-3-4-S1.zip]

Additional file 2
Click here for file
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