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Abstract
Background: The genome of classical laboratory strains of mice is an artificial mosaic of genomes
originated from several mouse subspecies with predominant representation (>90%) of the Mus m.
domesticus component. Mice of another subspecies, East European/Asian Mus m. musculus, can
interbreed with the classical laboratory strains to generate hybrids with unprecedented phenotypic
and genotypic variations. To study these variations in depth we prepared the first genomic large
insert BAC library from an inbred strain derived purely from the Mus m. musculus-subspecies. The
library will be used to seek and characterize genomic sequences controlling specific monogenic and
polygenic complex traits, including modifiers of dominant and recessive mutations.

Results: A representative mouse genomic BAC library was derived from a female mouse of the
PWD/Ph inbred strain of Mus m. musculus subspecies. The library consists of 144 768 primary
clones from which 97% contain an insert of 120 kb average size. The library represents an
equivalent of 6.7 × mouse haploid genome, as estimated from the total number of clones carrying
genomic DNA inserts and from the average insert size. The clones were arrayed in duplicates onto
eight high-density membranes that were screened with seven single-copy gene probes. The
individual probes identified four to eleven positive clones, corresponding to 6.9-fold coverage of
the mouse genome. Eighty-seven BAC-ends of PWD/Ph clones were sequenced, edited, and aligned
with mouse C57BL/6J (B6) genome. Seventy-three BAC-ends displayed unique hits on B6 genome
and their alignment revealed 0.92 single nucleotide polymorphisms (SNPs) per 100 bp. Insertions
and deletions represented 0.3% of the BAC end sequences.

Conclusion: Analysis of the novel genomic library for the PWD/Ph inbred strain demonstrated
coverage of almost seven mouse genome equivalents and a capability to recover clones for specific
regions of PWD/Ph genome. The single nucleotide polymorphism between the strains PWD/Ph
and C57BL/6J was 0.92/100 bp, a value significantly higher than between classical laboratory strains.
The library will serve as a resource for dissecting the phenotypic and genotypic variations between
mice of the Mus m. musculus subspecies and classical laboratory mouse strains.
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Background
PWD/Ph is a highly inbred strain currently at 81 genera-
tions of brother × sister matings. It originated from the
Mus m. musculus mouse subspecies by systematic inbreed-
ing of a pair of wild mice trapped in 1972 [1,2]. The
mouse subspecies M. m. musculus and M. m. domesticus
diverged from their common ancestor about 300 thou-
sand years [3] to 1 million years ago [4] and at present
they display signs of incomplete reproductive isolation [5-
7]. As a consequence of the interrupted gene flow between
both subspecies, the mice of the PWD/Ph strain exhibit a
high degree of DNA polymorphisms and a broad range of
phenotypic differences when compared to classical labo-
ratory strains [2,8]. Because of this unique feature, the
PWD/Ph inbred strain has been nominated among 15
mouse strains, the genomes of which are being rese-
quenced using high-density oligonucleotide array tech-
nology by Perlegen Sciences, Inc. [9]. Moreover, PWD/Ph
serves as the chromosome donor strain in construction of
a set of C57BL/6-ChrPWD chromosome substitution
strains (Gregorova, Forejt and coworkers, in preparation).

Bacterial Artificial Chromosome (BAC) genomic libraries
are source of large genomic DNA insert clones for
sequencing projects, physical mapping and isolation of
intact genes [10,11]. Although BAC clones may carry large
inserts of genomic DNA (up to 200 kb) they display low
rate of de novo rearrangements and are easy to handle.
These features are in strong favor of the BAC libraries over
the Yeast Artificial Chromosome (YAC) libraries, which
can contain up to 60% of chimeric clones [12]. Transgenic
mice can be generated using BAC clones to examine can-
didate genes in context of all regulatory DNA elements
required for their function and the phenotype of a mutant
mouse can be rescued by BAC transgenesis [13,14]. More-
over a targeted modification at exact positions within a
genomic BAC clone can be introduced by recombineering
[15,16].

Here we report construction and characterization of the
PWD/Ph BAC library, the first genomic library of the Mus
m. musculus mouse subspecies. This library together with
the upcoming panel of chromosome substitution strains

Insert size distribution in two segments of the PWD/Ph BAC libraryFigure 1
Insert size distribution in two segments of the PWD/Ph BAC library. The segment 1 (�) represents 37.4% of the 
clones and its average insert size was 101.1 kb (SD ± 21.4). The segment 2 (■) represents 62.6% of the clones and its average 
insert size was 129.5 kb (SD ± 14.7). The average insert size of the entire library was 120 kb.
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will serve as a tool for analysis of complex traits by taking
advantage of the evolutionary divergence between the two
closely related mouse subspecies.

Results and discussion
Construction of the PWD/Ph-BAC library
The BAC library was prepared by cloning the EcoRI-par-
tially digested genomic DNA from the spleen of a PWD/
Ph female mouse in the vector pBACe3.6. Female DNA
was chosen to gain an unbiased representation of the X
chromosome in the library. The primary clones were
picked and arrayed in 377 individual 384-well plates. The
library consists of two segments containing 54 144 and 90
624 clones, respectively. Together 144 768 primary clones
were arrayed on eight high-density nylon membranes (18
342 clones in doublets per membrane). The high-density
membranes were utilized in subsequent hybridization
experiments.

Average insert size of the library
The average insert size of the library was determined on a
set of 400 randomly selected BAC clones. DNA samples
were prepared from 164 and 236 BAC clones from the
library segments 1 and 2, respectively, and subjected to
NotI restriction analysis. The products of the digestion
reactions were resolved by pulsed-field gel electrophoresis
(PFGE) along with the high molecular weight markers.
The average insert size for the first and the second library
segment was 101.1 kb (SD ± 21.4) and 129.5 kb (SD ±
14.7), respectively (Figure 1). In the first and second

library segments 6% and 1.2% clones were observed with-
out insert, corresponding to 97% of insert-containing
clones for the entire library. Estimation of 6.7-fold redun-
dancy of the library was based on the average insert size
(120 kb) and 2.6 × 109 bp size of the mouse genome.

Library screening and BAC end sequencing
A probability to find any given unique sequence in the
library is 99.85%, according to the published formula (P
= 1 - eN.ln(1-I/GS), where P is probability, N is number of
clones, I is insert size, and GS is size of genome) [17]. To
further assess the genome redundancy and possible clon-
ing bias of the library experimentally we performed a
screening of the library with 7 single-copy gene probes.
The probes were designed to amplify PCR products on the
PWD/Ph genomic DNA template (Table 1). Seven probes
detected in total 48 positive clones by hybridization on 8
high-density library membranes, 4 to 11 clones for each
individual probe. The average number of clones recog-
nized by a single probe was 6.9, in good accordance with
the assessment of the library redundancy based on the
average insert size.

To characterize the inserts of the PWD/Ph BAC library at
the DNA sequence level we sequenced and manually
edited 87 BAC ends from 47 BAC clones (total 38,339
nucleotides). The BAC end sequences (BESs) were masked
for repeats and aligned on the C57BL/6J mouse genome.
BES pairs of 29 BAC clones mapped to unique positions
in the B6 genome on the opposite DNA strands within the

Table 1: Hybridization of single-copy gene probes on high-density membrane

Gene/Primer GenBank accession/Primer sequence Genomic position1 Length Positive clones

Mash NM_008554
mMashCgi-F ACCCGGTTCCTCGCGAGCACTTTTC chr7:130,673,330 358 bp 5/48
mMashCgi-B AGCGCAGCGTCTCCACCTTACTCAG chr7:130,672,998
Adseverin NM_009132
CpG-Ads-1F TCTTGGAGGGTCATACTCATT chr12:35,153,275 516 bp 7/48
CpG-Ads-1R GCAGCTCAAAATAATTACGAC chr12:35,152,780
Igf2r NM_010515
Igf2r-H4F TCAGAACACTGGTGAGCAGTGGG chr17:12,150,732 244 bp 11/48
Igf2-H4R GAGGGTAGGATTCCGTTGCAAGG chr17:12,150,509
Tbp NM_013684

* probe derived from tbp-1942 clone chr17:14,324,440 1085 bp 4/48
chr17:14,334,524

Usp26 NM_031388
Usp26-A AATGTAACGAAGGGAGAAGTG chrX:44,101,298 206 bp 3/48
Usp26-B AGGCTTTGCCTTCTTATCGAG chrX:44,101,113
Xist AY618354
mXistF AGTGGGTGTTCAGGGCGTGG chrX:94,885,925 293 bp 11/48
mXistR CTATCCCCTAGTCCTCTGCGG chrX:94,885,652
Tex13 NM_031381
Tex13 pub-1F ACCAGAGTTGGGAACAACTAA chrX:130,816,501 220 bp 7/48
Tex13 pds-1R CTGTTGTAGAGGGTAGAGGTT chrX:130,816,302

1 mm5 assembly, UCSC
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distance up to 200 kb (Additional file 1). The mapping
allowed us to estimate the average insert size of the BAC
clones based on their locations on the B6 genome as 127
kb, which was slightly higher estimate than the average
insert size acquired by restriction analysis (120 kb). These
values corresponded well with the average insert size cal-
culated for another set of clones recovered by the library
screening described above (Table 2). A BES pair belonging
to the clone 307-9O mapped to two distinct chromo-
somes. Whether it represents a chimeric insert or a chro-
mosomal rearrangement in the PWD/Ph genome remains
to be determined by fluorescence in situ hybridization
(FISH) analysis. For each of the additional 13 BAC clones
we found unambiguous positions for only one BES of a
pair. Mapping of remaining 14 BESs was prevented by a
high content of repetitive elements.

Analysis of SNPs and DNA polymorphism
To find out the degree of nucleotide polymorphism
between the PWD/Ph and C57BL/6J mouse strains, we

aligned 73 uniquely mapped BESs (32,182 nucleotides)
with their C57BL/6J genomic counterparts and found 297
single nucleotide substitutions. The calculated SNP rate
0.92 per 100 bp is significantly higher than SNP frequency
between laboratory strains [18-20] and corresponds well
to the rate between the closely related subspecies Mus m.
molossinus and the C57BL/6J strain (0.96%) [21]. The
insertions and deletions (indels) were found with lower
frequency than SNPs: single nucleotide indels occurred
with frequency 0.19% while multinucleotide indels with
only 0.08% frequency. All nucleotide changes observed in
the alignments of 87 PWD/Ph BESs and their B6 counter-
parts are summarized in Additional files 2 and 3. The high
number of SNPs of the PWD/Ph strain is reflected by a
high frequency of genetic and phenotypic variations
between PWD/Ph and B6 inbred mice. An initial study
performed to compare behavior of the PWD/Ph inbred
strain with the B6 revealed substantial behavioral differ-
ences between these two strains [8]. Using dense SNP
maps of various laboratory and wild-derived inbred

Table 2: BAC end sequences of the positive clones mapped on the C57BL/6J genome

Gene Probe position BAC clone/primer BES position Strand Insert size (bp)

mapped PFGE

Mash chr7:130,672,998 327-5I/T7 chr7:130,587,753 + 132,317 145,000
327-5I/SP6 chr7:130,720,069 -

Ads chr12:35,152,780 262-11G/SP6 multiple hits n.d. 105,000
262-11G/T7 chr12:35,192,443 -
266-2E/SP6 chr12:35,090,782 + 109,399 115,000
266-2E/T7 chr12:35,200,180 -

Igf2r chr17:12,150,509 279-5I/SP6 chr17:12,057,702 + 125,000 120,000
279-5I/T7 chr17:12,182,701 -
282-5D/T7 chr17:12,028,446 + 144,525 145,000
282-5D/SP6 chr17:12,172,970 -
245-11P/SP6 chr17:12,000,500 + 186,822 195,000
245-11P/T7 chr17:12,187,321 -

Tbp chr17:14,324,440 297-2I/T7 chr17:14,291,556 + 147,925 145,000
297-2I/SP6 chr17:14,439,480 -

Usp26 chrX:44,101,113 293-21P/T7 chrX:44,086,068 + 184,994 190,000
293-21P/SP6 chrX:44,271,061 -

Xist chrX:94,885,652 269-9H/SP6 chrX:94,817,775 + 150,314 160,000
269-9H/T7 chrX:94,968,088 -
255-3L/T7 chrX:94,756,622 + 134,724 145,000
255-3L/SP6 chrX:94,891,345 -
271-12L/SP6 chrX:94,854,496 + 131,966 140,000
271-12L/T7 chrX:94,986,461 -

Tex13 chrX:130,816,302 257-22B/SP6 chrX:130,761,904 + 124,211 120,000
257-22B/T7 chrX:130,886,114 -
322-4J/SP6 chrX:130,761,839 + 117,691 110,000
322-4J/T7 chrX:130,879,529 -

BAC ends (BESs) of the positive clones identified on the membranes no. 6 and no. 7 were sequenced, mapped and aligned to the mouse genome 
(mm5 assembly, UCSC). The coordinates on the mouse genome are shown for the probes as well as for the ends of genomic inserts. An average 
insert size 140.8 kb was calculated from mapped positions and 141.2 kb was determined by pulsed-field gel electrophoresis (PFGE).
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strains [20,22] it will be possible to map genes responsi-
ble for particular complex traits more efficiently. For ulti-
mate validation of candidate genes genomic BAC libraries
will be highly desirable.

Conclusion
The first genomic BAC library was constructed for the Mus
m. musculus subspecies of the house mouse, represented
by the PWD/Ph inbred strain. The quality of the PWD
BAC library was verified by hybridization with seven
unique probes that identified multiple positive clones.
BAC end sequencing provided a new piece of evidence on
the high incidence of SNPs (0.92/100 bp) between
C57BL/6J and PWD/Ph inbred strains. The mouse PWD/
Ph BAC library will serve as a tool for functional genomics
of complex genetic traits with the ultimate goal to identify
and clone responsible genes. The PWD BAC library will
become accessible to the scientific community via RZPD,
Berlin, Germany [23].

Methods
Mouse strain and DNA isolation
Mouse manipulation was in accordance with the Czech
Animal Protection Act No. 246/92, 162/93, and decrees
No. 311/97, fully compatible with the NIH Publication
No. 85-23, revised 1985. A female mouse of the PWD/Ph
inbred strain, derived from the Mus mus musculus sub-
species [2] was used for high molecular weight DNA
(HMW-DNA) preparation. The mouse was killed by cervi-
cal dislocation, spleen dissected and single cell suspen-
sion prepared in PBS using a glass homogenizer. The
agarose-embeded HMW-DNA was prepared as described
in detail elsewhere [24].

Library construction
The agarose HMW-DNA plugs were subjected to pre-elec-
trophoresis in a CHEF-DR-III apparatus (BioRad) in 1%
agarose and 0.5 × TBE buffer for 12 hrs (4 V/cm, 5 s pulse,
14°C). Genomic DNA was partially digested with the
mixture of EcoRI endonuclease and EcoRI methylase. The
optimal ratio of the enzymes was determined by titration:
usually 5–25 units of methylase per 1 unit of endonucle-
ase were employed. DNA fragments were prepared by
slight modification of an approach described before [24].
Briefly, DNA fragments were separated from the digested
agarose plugs in the CHEF-DR-III in 1% agarose and 0.5 ×
TBE buffer for 16 hrs (5 V/cm, 0.1 to 40 s pulse, 14°C).
Subsequently, three stripes corresponding to fragment
size between 150 kb and 200 kb were excised and sub-
jected to another size selection by additional electro-
phoresis in 0.5 × TBE buffer for 12 hr (5 V/cm, 2.5 to 4.5
s pulse, 14°C). The second size selection effectively
removed short fragments while keeping long fragments in
the agarose strips. The appropriate fragments were iso-
lated by electroelution and ligated to the EcoRI site of the

pBACe3.6 vector [25]. The ligation mixtures were dialyzed
on ice in a well created by 0.5% agarose with 1 M glucose
for 1 hr. The desalted ligation mixtures were electropo-
rated into E. coli electrocompetent DH10B ElectroMax
cells (Invitrogen) by a Gene Pulser apparatus (BioRad) in
0.1 cm cuvette with the following parameters: voltage 1.8
V, impedance 200 Ω, capacitance 25 µF, time constant
between 3.5 to 4.5 s. The electroporated cells were diluted
in 1 ml SOC medium and incubated in an orbital shaker
at 37°C and 200 rpm for 1 hr. The titer of each electropo-
ration reaction was determined by spreading an aliquot
on selection agar plates (LB, 20 µg/ml chloramphenicol,
5% sucrose) as described [24]. The remainder containing
the primary clones was supplemented with glycerol to the
final concentration of 15%, then quickly frozen in liquid
nitrogen and stored at -80°C. The frozen stocks of the pri-
mary clones were recovered and spread on large selection
plates. The colonies were picked with multi-functional
robotical system Gene TacTM-G3 (Genomic Solutions)
and arrayed in 377 individual 384-well dishes containing
LB medium supplied by 7.5% glycerol and 20 µg/ml chlo-
ramphenicol. The clones were gridded using the robot on
8 nylon membranes (18 342 unique clones in duplicates
per membrane). Afterwards, the bacterial colonies were
lysed, their DNA denatured, and crosslinked to the mem-
branes by standard methods [26].

Estimation of average insert size
One hundred sixty-two clones from the library segment 1
and 236 clones from the segment 2 were randomly picked
and grown in 15 ml 2xYT medium (16 g/L tryptone, 10 g/
L yeast extract, 5 g/L NaCl, 20 µg/ml chloramphenicol) at
37°C and 300 rpm for 18–20 h. BAC DNA was prepared
using a modification of the standard protocol based on
alkalic lysis. Briefly, 15 ml of the overnight culture was
spun down, the bacterial pellet was resuspended in 300 µl
of lysis buffer I (50 mM glucose, 25 mM Tris-HCl with pH
= 8.0, 10 mM EDTA), then lysed with 600 µl of freshly
made lysis buffer II (0.2 M NaOH, 1% SDS) and precipi-
tated with 450 µl of lysis buffer III (3 M KOAc, pH = 4.8)
followed by incubation on ice for 1 hour. The resulted
precipitate was spun down in a microfuge for 15 min at
maximum speed. The BAC DNA was further precipitated
at room temperature with 0.6 volumes of isopropanol for
30 min and centrifuged at maximum speed for 10 min.
The pellet was washed with 70% ethanol, air dried shortly
and dissolved in 25 µl of TE. The BAC DNA was subjected
to NotI (Fermentas) restriction overnight to achieve com-
plete digestion. The reactions were resolved along with the
mid range PFG marker I (New England Biolabs, cat #
N3551S) in the CHEF-DR-III in 1% agarose and 0.5 × TBE
buffer for 16 hrs (5 V/cm, 0.1 to 40 s pulse, 14°C). The
insert size was estimated after ethidium bromide staining
and the average insert size for both segments of the library
was calculated.
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Hybridization of high-density colony filters
Seven probes for single-copy mouse genes were used to
screen the library on high-density membranes. Six of
them were produced by PCR on 50 ng of HMW-DNA iso-
lated from the brain of a female PWD/Ph mouse. The
primers were designed using Oligo 6 (MBI) software and
the GenBank mRNA sequences (Table 1). PCR was per-
formed at standard conditions: 96°C for 1 min, 30 cycles
at 96°C for 10 s, 58°C for 20 s, 72°C for 1 min, and final
extension at 72°C for 3 min. The 1085-bp DNA fragment
of Tbp (U63933) was derived from the tbp-1942 cDNA
clone (kind gift from Dr. Trachtulec) [27]. The resulted
amplicons and Tbp fragment were purified and labeled by
random priming with [α-32P]dCTP. Hybridization was
done in Church buffer [28] with 15% formamide at 60°C
over night. The membranes were washed in 0.2 × SSC,
0.1% SDS buffer at 42°C for 20 min and then in 0.2 ×
SSC, 0.1% SDS buffer at 60°C for 10 min. The membranes
were then autoradiographed for 2 to 10 days, the positive
clones identified and recovered from the frozen 384-well
plates.

BAC end sequencing and analysis
BAC DNA was prepared from 60 clones as described
above and purified using a QIAGEN kit following the
manufacturer's instructions. The sequencing was per-
formed using a Big Dye Terminator v3.1 cycle sequencing
kit in an ABI 310 instrument (Applied Biosystems) with
primers T7 (GGTCGAGCTTGACATTGTAG) and SP6
(GATCCTCCCGAATTGACTAGTG). Each DNA sample
was sequenced twice. The sequences from the same BAC
end were aligned and manually edited in order to obtain
a consensus sequence. BESs were masked for mouse
repeats using RepeatMasker [29] (sensitive settings) and
aligned to the mouse genome sequence (mm5 assembly,
May 2004, UCSC) [30,31] using BLAT [32]. The mouse
genome sequence had already been soft-masked for
repeats by UCSC and BLAT was set to produce all possible
alignments (tile size = 10, minimum score = 0, minimum
sequence identity = 0). The hits were filtered to keep only
those with minimum alignment ratio = 0.8. After manual
inspection, a list of BESs mapped to unambiguous posi-
tions in the genome was compiled. The corresponding
genomic sequences were excised and aligned with the
appropriate BESs (unmasked sequence) using SSEARCH
[33] (standard settings). A Perl script was written to proc-
ess the pair-wise alignments and enumerate the sequence
polymorphisms (SNPs, insertions, deletions, etc). The vis-
ualization of DNA polymorphisms was made by TeX-
shade LaTeX package [34]. All intermediate steps were
performed using customized Perl scripts and utilities
available from UCSC website [35].
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