Correction

Open Access

Loss of Parp-1 affects gene expression profile in a genome-wide manner in ES cells and liver cells

Hideki Ogino^{1,2}, Tadashige Nozaki², Akemi Gunji², Miho Maeda^{1,3}, Hiroshi Suzuki⁴, Tsutomu Ohta⁵, Yasufumi Murakami³, Hitoshi Nakagama², Takashi Sugimura² and Mitsuko Masutani^{*1,2}

Address: 1ADP-ribosylation in Oncology Project, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan, ²Biochemistry Division, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan, ³Department of Biological Science & Technology, Faculty of Industrial Science & Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan, ⁴Chugai Pharmaceutical Co. Ltd., 1-135, Komakado, Gotemba, Shizuoka 412-0038, Japan and ⁵Center for Medical Genomics, National Cancer Center Research Institute, 1-1, Tsukiji, 5-chome, Chuo-ku, Tokyo 104-0045, Japan

Email: Hideki Ogino - hogino@gan2.res.ncc.go.jp; Tadashige Nozaki - nozaki@cc.osaka-dent.ac.jp; Akemi Gunji - agunji@ntmc.hosp.go.jp; Miho Maeda - mihmaeda@gan2.res.ncc.go.jp; Hiroshi Suzuki - hisuzuki@obihiro.ac.jp; Tsutomu Ohta - cota@gan2.res.ncc.go.jp; Yasufumi Murakami - yasufumi@rs.noda.tus.ac.jp; Hitoshi Nakagama - hnakagam@gan2.res.ncc.go.jp; Takashi Sugimura - tsugimur@gan2.res.ncc.go.jp; Mitsuko Masutani* - mmasutan@gan2.res.ncc.go.jp

* Corresponding author

Published: 10 July 2007

BMC Genomics 2007, 8:227 doi:10.1186/1471-2164-8-227

This article is available from: http://www.biomedcentral.com/1471-2164/8/227

© 2007 Ogino et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Received: 20 March 2007

Accepted: 10 July 2007

Background

Following the publication of the paper 'Loss of Parp-1 affects gene expression profile in a genome-wide manner in ES cells and liver cells' [1], we found an error in our data.

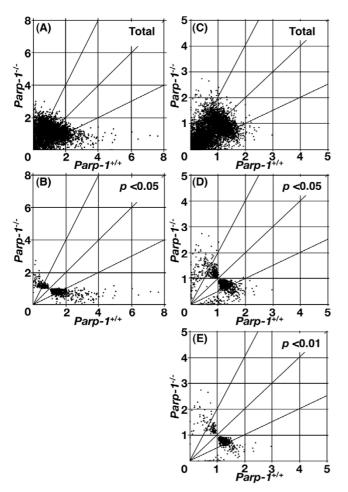
In the article, we used six replicates of microarray data of wild-type ES cells for comparison with the microarray data of Parp-1 knockout ES cells. We found that three replicate data were carelessly included in the data for wildtype ES cells. The comparison should have been carried out between three replicates for the *Parp*-1^{+/+} ES cell line, J1, and three replicates for two Parp-1-/- ES cell lines, 210-58 and 226-47, respectively.

Therefore, we re-analyzed the data in ES cells according to the same criteria. The consequences of this error are reflected in changes to our results although the conclusions we obtained in the study are not affected.

Corrected sentences in the Abstract

Here, we demonstrate that of the 9,640 genes analyzed, in Parp-1^{-/-} ES cells. 3.6% showed altered gene expression. Of these, 2.5% and 1.1% of the genes were down- or up-reg-

Table I: Differential expression of genes between Parp-1+/+ and Parp-1-- ES cells, livers, and EFs

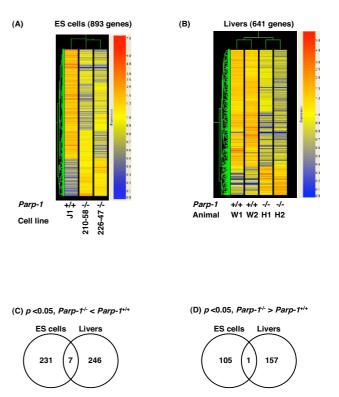

p-value cut off ^a		No. of genes									
		Parp-1	/- <parp-1+ +<="" th=""><th colspan="3">Parp-1-'- > Parp-1+'+</th></parp-1+>	Parp-1-'- > Parp-1+'+							
	Total	Total	2-fold or greater	Total	2-fold or greater						
ES cells ^c											
Total ^b	9,640	5,065	1,056	4,481	1,520						
р < 0.05 ^ь	893	663	238	230	106						
Livers ^d											
Total ^b	12,353	7,138	1,184	4,860	1,038						
p < 0.05 [⊾]	1,616	1,190	253	426	158						
p < 0.01 ^b	641	515	100	126	43						
EFs ^e											
Total	12,357	5,042	707	7,317	501						
p < 0.05	996	390	216	606	205						

^aAnalyzed by One-Way ANOVA (non-parametric test known as the Mann-

Whitney U test)
^bThese genes were presented in Fig. 1.
^cParp-1^{+/+} ES cell clone, J1, and Parp-1^{-/-} ES cell clones, 210–58 and 226–47, were

used. ^dTwo mice were used for each genotype.

eThree EFs obtained from three embryos were analyzed as triplicate experiments.


Figure I

Effect of *Parp-1* **deficiency on gene expression**. Gene expression data from microarray analyses are plotted for *Parp-1^{-/-}*versus wild-type (*Parp-1^{+/+}*) ES cell lines (A) & (B). Horizontal and vertical axes represent expression levels normalized for an individual gene. Each point represents normalized expression data for an individual gene. The genes that showed standard deviation greater than 2.0 in the normalized data of both genotypes (A) were excluded and gene lists were constructed with p < 0.05 (B). Fig. 1D–F in the original article [1] remains unchanged and is presented as (C) – (E), respectively.

ulated by 2-fold or greater, respectively, compared with *Parp*- $1^{+/+}$ ES cells (p < 0.05).

Corrected results in the text Gene expression profile in Parp-I^{-/-} ES cells

A comparison of the basal gene expression profiles in *Parp*-1^{-/-}EScells to their wild-type (*Parp*-1^{+/+}) counterparts, is presented in Fig. 1A &1B (corrected) and Table 1 (corrected). We found the expression of (344/9,640) genes, namely 3.6%, was different by at least 2-fold between

Figure 2

Comparison of gene expression profiles among cell lines or cell types. Heatmaps of gene expression profiles in ES cells (A). We constructed the heatmaps using the gene lists containing the genes that showed a difference at p < 0.05in ES cells. Each heatmap is constructed using GeneSpring GX ver. 7.3.1. Numbers of genes down-(C) or up-(D) regulated in common between *Parp-1-'*-ES cells and livers. The numbers of the genes are indicated in Venn diagrams. These genes showed the difference with at least 2-fold between *Parp-1+'*-and *Parp-1-'-*(p < 0.05). Fig. 2B in the original article [1] remains unchanged and is presented as (B). Fig. 2D & F in the original article [1] are removed and Fig. 2C & E were corrected in the original article [1] and are presented as (C) and (D).

Parp-1-/- and *Parp-1+/+*ES cells (p < 0.05) (Fig. 1B (corrected) and Table 1 (corrected)). Notably, a larger fraction of the genes, being 2.5%(238/9,640), was down-regulated, whereas only 1.1% (106/9,640) of the genes were up-regulated (see Table 1 (corrected)).

We also made the heatmaps using the gene lists containing the 893 genes that showed a difference at p < 0.05 in ES cells (Fig. 2A (corrected)). Although we used independently isolated *Parp*-1^{-/-}ES cell clones, a clear and common alteration in the gene expression profile was observed (see Fig. 2A (corrected), and Tables 2 (corrected) and 3 (corrected)).

		Fold change	e ^{a)}				
Accession No.	W vs H JI vs 210–58		JI vs 226–47	Symbol	Chromosome	Gene description	
Cell cycle/cell proliferation/cell death							
AW122355	3.2	5.2	2.3	Prkcbp I	2	Protein kinase C binding protein I	
AF067395	2.9	2.9	2.9	Bnip3l	14	BCL2/adenovirus EIB 19 kDa-interacting protein	
AI842277	2.7	2.3	3.2	lgfbp3	11	Insulin-like growth factor binding protein 3	
U95826	2.2	2.5	1.9	Ccng2	5	Cyclin G2	
Cell structure/cell adhesion							
U1674I	4.1	6.3	3.1	Capza2	6	Capping protein (actin filament) muscle Z-line, alpha 2	
AI132380	3.6	3.1	4.3	Fndc3a	14	Fibronectin type III domain containing 3a	
AI505453	2.9	2.5	3.4	Myh9	15	Myosin, heavy polypeptide 9, non-muscle	
AW208938	2.4	3.2	2.0	Pkp2	16	Plakophilin 2	
M76124	2.4	2.2	2.6	Tacstd I	17	Tumor-associated calcium signal transducer I	
Metabolism							
U73820	5.5	5.2	5.8	Galnt I	18	Polypeptide GalNAc transferase-T1 (ppGaNTase-T1)	
AI841270	3.4	2.4	6.4	Gstm I	3	Glutathione S-transferase, mul	
AV308550	2.6	4.1	1.9	Piga	x	Phosphatidylinositol glycan, class A	
AI851912	2.3	2.2	2.5	Rps27	3	Ribosomal protein S27	
AI852144	2.1	2.9	1.7	Pbef-pending	12	Pre-B-cell colony-enhancing factor	
U65986	2.1	1.9	2.5	Anxa I I	14	Annexin AII	
D50264	2.1	1.4	4.1	Pigf	17	Phosphatidylinositol glycan, class F	
AF031486	2.0	2.0	2.0	Sms	x	Spermidine synthase	
AI845882	2.0	2.5	1.7	Асур I	12	Acylphosphatase1, erythrocyte (common) type	
Protein biosynthesis/degradation							
AI852581	3.0	3.0	3.1	Ide	19	Insulin degradating enzyme	
AI414051	3.0	1.8	9.1	Usp24	4	Ubiquitin specific protease 24	
AW121012	2.9	2.8	3.0	Rnf19	15	Ring finger protein 19	
X92665	2.9	2.5	3.4	Ube2e1	14	Ubiquitin-conjugating enzyme UbcM3	
AW048882	2.2	2.8	1.8	lars	13	Isoleucine-tRNA synthetase	
AA867340	2.2	1.9	2.6	Psme4	П	Proteasome (prosome, macropain) activator subunit	
AB024427	2.2	2.3	2.1	Rnfl I	4	Ring finger protein 11	
Signaling							
AI846023	4.6	2.8	13.1	Arl7	I	ADP-ribosylation factor-like 7	
AA260005	2.8	2.7	2.8	Pawr	10	PPKC, apoptosis, WTI, regulator	
AI317205	2.6	2.4	2.7	Map3k1	13	Mitogen activated protein kinase kinase kinase I	
AF035644	2.3	2.0	2.7	Ptp4a2	4	Protein tyrosine phosphatase 4a2	
M21019	2.3	1.9	2.9	Rras	7	Harvey rat sarcoma oncogene, subgroup R	
AI194248	2.2	2.5	1.9	Csnk2a1	2	Casein kinase II, alpha I polypeptide	

Table 2: Genes down-regulated in Parp-1-- ES cells (Continued)

	•	i.	,				
AI854006	2.0	2.0	2.1	Set	2	SET translocation	
D83921	2.0	1.9	2.1	Ebaf	I	Endometrial bleeding associated factor	
Transcription/replication							
X14206	9.9	8.4	11.9	Adprt I	I	Poly(ADP-ribose) polymerase I	
M99167	3.0	6.2	2.0	Hnrpa I	15	Heterogeneous nuclear ribonucleoprotein Al	
AW107922	2.8	3.7	2.2	SoxII	12	SRY-box containing gene 11	
AI849135	2.5	2.5	2.5	Foxo3a	10	Forkhead box 03a	
Y07836	2.5	2.3	2.8	Bhlhb2	6	Basic-helix-loop-helix domain containing, class B2	
X74760	2.5	2.3	2.7	Notch3	17	Notch gene homolog 3, (Drosophila)	
AI447783	2.1	2.4	1.9	Helb	10	Helicase (DNA) B	
X94694	2.1	2.7	1.7	Tcfap2c	2	Transcription factor AP-2, gamma	
AF077861	2.1	2.2	2.1	ld2	12	Inhibitor of DNA binding 2	
AI605405	2.0	1.9	2.3	Phfl 3	4	PHD finger protein 13	
D78382	2.0	1.7	2.6	Tob I	11	Transducer of ErbB2.1	
Transport							
AV356315	4.1	5.5	3.3	Lman I	18	Lectin, mannose-binding, I	
AV298789	2.9	2.6	3.2	Ranbp5	14	Ran binding protein 5	
D88315	2.2	2.2	2.2	Hiat l	3	Hippocampus abundant gene transcript I	
Unknown							
AI845617	3.5	3.5	3.4	26 00 9A0 5Rik	П	Hypothetical protein	
AI852287	3.2	3.3	3.2	Ankrd28	14	Ankyrin repeat domain 28	
AI836771	3.0	2.8	3.3	2900008M I 3Rik	15	Unknown EST	
AA684456	2.9	2.1	4.5	2310015N0 7Rik	7	Hypothetical protein	
AI848435	2.8	1.9	4.8	C78339	13	Unknown EST	
AW123157	2.8	2.5	3.1	l 70005 l E0 9Rik	П	Hypothetical protein	
AW124843	2.6	3.1	2.3	C85108	4	Unknown EST	
AA710439	2.6	2.0	3.6	6230421P0 5Rik	16	Unknown EST	
AI853444	2.5	1.8	3.9	2610042L0 4Rik	14	Hypothetical protein	
AI853444	2.2	2.1	2.3	2610042L0 4Rik	14	Hypothetical protein	
AW121353	2.1	1.6	3.1	Lrrc8	2	Luecine rich repeat containing 8	
AI037493	2.1	1.5	3.4	Tbcld15	10	TBCI domain family, member 15	
AI461803	2.1	2.2	1.9	1300006C1 9Rik	9	Hypothetical protein	
AW049969	2.0	2.0	2.1	C330005L0 2Rik	9	Hypothetical protein	
AI847483	2.0	2.0	2.0	Tmem41b	7	Transmembrane protein 41B	

^{a)}W, wild-type cells (J1); H, *Parp-1-¹⁻* ES cells (210–58 and 226–47).

Table 3: Genes up-regulated in Parp-1-1- ES cells

	Fold change ^{a)}					
Accession No.	H vs W	210–58 vs JI	226–47 vs JI	Symbol	Chromosome	Gene description
Cell cycle/cell proliferation/cell death						
X58196	3.1	3.3	2.9	H19	7	H19 non-coding RNA
AI842665	3.0	3.1	2.8	Tax I bp3	П	Human T-cell leukemia virus type I binding protein 3
Cell structure/cell adhesion						
X04017	2.3	2.3	2.3	Sparc	11	Cysteine-rich glycoprotein SPARC
M26071	2.1	2.5	1.8	F3	3	Coagulation factor III
M91236	2.1	2.1	2.1	Gjb5	4	Gap junction membrane channel protein beta 5
Immune response						
U13705	2.3	2.1	2.4	Gpx3	П	Glutathione peroxidase 3
Metabolism						
AW120625	2.3	1.9	2.7	Pgd	4	Phosphogluconate dehydrogenase
M64782	2.2	1.9	2.5	Folr I	7	Folate-binding protein I (FBPI)
X97755	2.0	2.1	2.0	ЕЬр	x	Phenylalkylamine Ca ²⁺ antagonist (emopamil) binding protein
Protein biosynthesis/degradation						
W71352	3.9	4.2	3.6	Bag2	I	Bcl2-associated athanogene 2
AI844175	3.4	3.4	3.4	Mrþs I I	7	Mitochondrial ribosomal protein SII
U16163	2.9	2.9	2.8	P4ha2	11	Prolyl 4-hydroxylase alpha(II)-subunit
D00622	2.5	2.0	3.0	Lrþaþ I	5	Low density lipoprotein receptor related protein, associated protein I
X60676	2.3	2.4	2.2	Serpinh I	7	HSP47
AW124432	2.1	1.8	2.5	MrpI12	11	Mitochondrial ribosomal protein L12
AI839392	2.0	2.0	2.1	Aars	8	Alanyl-tRNA syntase
Transcription/replication						
D49473	3.4	3.0	3.7	Sox I 7	I	SRY-box containing gene 17
U51335	2.5	2.5	2.6	Gata6	18	GATA-binding protein 6
U79962	2.4	2.1	2.6	Tarbp2	15	TAR (HIV) RNA binding protein 2
D49473	2.1	1.9	2.3	Sox 17	I	SRY-box containing gene 17
Transport						
D14077	2.2	2.1	2.3	Clu	14	Clusterin
Others						
M34603	2.6	2.3	3.0	Prg	10	Proteoglycan core protein
AA793009	2.3	2.0	2.7	Tex19	11	Testis expressed gene 19
Unknown						
AI846553	3.2	3.0	3.3	002 0C 3Rik	15	Hypothetical protein
AI845664	2.1	2.0	2.2	Grwd	7	Glutamate-rich WD repeat containing I

BMC Genomics 2007, 8:227

^{a)}H, Parp-1-^{/-} ES cells (210–58 and 226–47); W, wild-type cells (J1).

We further selected the genes that showed relatively high expression levels (the "Flag value" in GeneSpring ver. 6.1 of the genes should be either "Present" (high level of expression) or "Marginal" (moderate level of expression) in all replicates of the genotype within the 893 genes that showed a difference at p < 0.05, see Table 1 (corrected)). Among the 85 genes selected by this analysis, there were 61 genes, obviously including the Parp-1 (Adprt1) gene itself, that were down-regulated and 24 genes up-regulated, as listed in Tables 2 (corrected) and 3 (corrected).

Gene expression profile of the livers and EF cells

In the livers, 3.3% (411/12,353) of genes showed a significant difference in expression level (p < 0.05) between the *Parp-1* genotypes. In the livers of *Parp-1-/-* mice, 2.0% (253/12,353) of the genes were down-regulated and 1.3% (158/12,353) of the genes were up-regulated (p < 0.05). Similar to *Parp-1-/-* ES cells, a higher percentage of the genes, 62% (253/411), were down-regulated and the remaining 38% were up-regulated (Fig. 1C–E in the original article [1], and Table 1 (corrected)). The expression of representative marker genes of the liver, including *albumin (Alb1)* and *phosphoenolpyruvate carboxykinase (Pepck)*, was similarly high in both *Parp-1* genotypes.

The heatmaps were constructed using the gene lists containing the 641 genes that showed a difference at p < 0.01in livers (Fig. 2B). *Parp-1* deficiency commonly altered gene expression profiles in the livers of two mice analyzed (Fig. 2B, and Table 4 in the original article [1]).

Comparison of the profiles among different cell types

We compared gene expression profiles between *Parp-1*-/-ES cells and the livers. There were no genes commonly upor down-regulated as summarized in Tables 2 (corrected), 3 (corrected), and 4 in the original article [1], namely in the genes showing relatively high expression levels selected by Flag values, although we observed that 7 genes, including *Eif2s2* (*eukaryotic translation initiation factor 2 subunit 2 beta*), *Parp-1*, and 1 gene *Crygs* (*crystallin gamma S*), were commonly down- and up-regulated in the ES cells and livers (p < 0.05), respectively (Fig. 2C (corrected) &2D (corrected)).

Corrected methods in the text Data analysis

Data analysis was performed with the GeneSpring[®] software ver. 6.1 and ver. 7.3.1 (the latest version). For statistical analyses, the fluorescence intensity (raw signal) was normalized to the 50th percentile reading per chip, and then normalized to the median reading per gene. We performed the non-parametric tests with the cross-gene error model being inactive. In the case of *Parp-1-/-* ES cells, 6 replicates consisting of triplicate microarray results from two *Parp-1-/-* ES cell lines were used. We used the triplicate

microarray results from the *Parp*-1^{+/+} ES cell line, J1. We excluded genes that showed a standard deviation greater than 2.0 in the normalized data of both genotypes, and we started analysis with 9,640 genes and ESTs for ES cells (Table 1 (corrected)). We constructed gene lists only with the genes that showed statistical differences (p < 0.05) and 2-fold or greater differences in normalized expression levels between *Parp*-1 genotypes. To construct heatmaps, we used GeneSpring[®] GX ver. 7.3.1 (the latest version).

We regret that this error occurred in the phase of generating the data set in our paper may have caused any inconvenience. In the process of making these corrections, the microarray data were submitted to the gene expression database CIBEX [2] with the following accession number: CBX22.

References

- Ogino H, Nozaki T, Gunji A, Maeda M, Suzuki H, Ohta T, Murakami Y, Nakagama H, Sugimura T, Masutani M: Loss of *Parp-1* affects gene expression profile in a genome-wide manner in ES cells and liver cells. *BMC Genomics* 2007, 8:41.
- 2. Center for Information Biology Gene Expression Database [http://cibex.nig.ac.jp]

